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ABSTRACT

Aims. We aim to determine the phase speed of an oscillation in a magnetic pore using only intensity images at one height. The
observations were obtained using the CRisp Imaging SpectroPolarimeter at the Swedisch 1-m Solar Telescope and show variations in
both cross-sectional area and intensity in a magnetic pore.
Methods. We have designed and tested an observational method to extract the wave parameters that are important for seismology. We
modelled the magnetic pore as a straight cylinder with a uniform plasma both inside and outside the flux tube and identify different
wave modes. Using analytic expressions, we are able to distinguish between fast and slow modes and obtain the phase speed of the
oscillations.
Results. We found that the observed oscillations are slow modes with a phase speed around 5 km s−1. We also have strong evidence
that the oscillations are standing harmonics.
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1. Introduction

Numerous magnetic structures are observed on the solar sur-
face, from active regions (AR) to loops that occupy the outer
edges of the Sun’s atmosphere. Sunspots are one of the structures
that solar research focusses on because of their ease of obser-
vation, as they are large-scale structures spanning tens of mega-
meters along. Magnetic pores are thought to be smaller magnetic
flux tubes in inter-granular lanes in the solar photosphere. They
have come under more intense study with the advent of high-
resolution, ground- and space-based instruments. While not the
same scale as sunspots, they retain the magnetic field strength of
sunspots (several kilogauss) but lack the distinctive penumbra of
sunspots. They are also typically smaller than sunspots.

Sunspots display a wide range of oscillatory behaviour, e.g.
line-of-sight (LOS) oscillations (Bogdan & Judge 2006; Marsh
& Walsh 2008; Reznikova & Shibasaki 2012), cross-sectional
area oscillations (Dorotovič et al. 2014), “running” phenomenon
called running penumbral waves (RPWs; Kobanov et al. 2006;
Bloomfield et al. 2007; Jess et al. 2013), and also umbral dots
and flashes (Rouppe van der Voort et al. 2003; Yuan et al. 2014).
Magnetic pores have been shown to display similar oscillations
(Dorotovič et al. 2008; Morton et al. 2011; Freij et al. 2014).
Dorotovič et al. (2014) observed three magnetic structures, two
sunspots and a pore, and detected a mixture of short and long
period perturbations in both the cross-sectional area and total in-
tensity. Using wavelets (e.g. Torrence & Compo 1998) and em-
pirical mode decomposition (e.g. Terradas et al. 2004), these os-
cillations were identified as slow sausage waves.

? Appendix A is available in electronic form at
http://www.aanda.org

Identifying which magnetohydrodynamic (MHD) wave is
responsible for the observed oscillations is important for un-
derstanding the propagation of energy in the solar atmosphere.
This, in turn, is critical for solving the coronal heating problem
(Ofman 2005; Taroyan & Erdélyi 2009; Parnell & De Moortel
2012). The base theory for MHD waves in cylindrical mag-
netic flux tubes was developed by Zaitsev & Stepanov (1975)
and expanded by several authors (e.g. Roberts & Mangeney
1982; Edwin & Roberts 1983; Cally 1986). More recently, the
available MHD theory that underpins wave identification was
expanded by Fujimura & Tsuneta (2009), finding the phase
relations between several observational quantities, such as den-
sity, LOS velocity, and LOS magnetic field perturbations for
either the slow sausage wave or the kink wave. Moreels &
Van Doorsselaere (2013) improved on the model of Fujimura
& Tsuneta (2009) by including a non-zero gas pressure, using a
thick flux tube instead of the more common thin flux tube model,
and investigating body and surface modes for sausage waves.
Moreels et al. (2013) analysed the effect of the compressive na-
ture of the sausage modes on the observable cross-sectional area
and the total intensity of a flux tube. This is important as these
two quantities are easily measured from space- or ground-based
observations. Further, it allows the calculation of key back-
ground plasma properties using MHD seismology of the solar
atmosphere (e.g. Andries et al. 2005, 2009; Banerjee et al. 2007;
Erdélyi & Goossens 2011; De Moortel & Nakariakov 2012).

Complex numerical simulations enable the understanding of
the physical processes that underpin the formation of these mag-
netic flux tubes; these simulations also allow us to understand
how complex motions of the solar surface play a role in cre-
ating the waves that are observed in these structures. Driver

Article published by EDP Sciences A73, page 1 of 10

http://dx.doi.org/10.1051/0004-6361/201425096
http://www.aanda.org
http://www.aanda.org/10.1051/0004-6361/201425096/olm
http://www.edpsciences.org


A&A 579, A73 (2015)

simulations investigate the effects of observed motions on the
solar surface on the generation of MHD waves in magnetic flux
tubes. Driver simulations have been carried out by several au-
thors (e.g. Bogdan et al. 2003; Khomenko et al. 2008; Vigeesh
et al. 2009; Fedun et al. 2011b) and have shown that wave refrac-
tion and mode conversion may play an important role in heat-
ing the solar atmosphere. More recently, driver simulations car-
ried out by Kato et al. (2011), Fedun et al. (2011a), and Vigeesh
et al. (2012) use more realistic solar atmosphere models and ex-
pand the range of drivers. These numerical studies, combined
with (MHD seismology of) observations of waves in sunspots
and/or magnetic pores, enable both the validation of the numeri-
cal methods employed and the restriction of the input parameters
for the numerical methods.

In this work, we analyse the variations in the cross-sectional
area and total intensity of a magnetic pore identifying the waves
that are excited within. The aim is to determine the phase speed
of the identified waves. We have found no papers in the litera-
ture that succeed in determining the phase speed only from in-
tensity images at strictly one height. The phase speed of waves
is important, since together with the period of the wave, we can
deduce information about the vertical wavenumber. The vertical
wavenumber in turn gives information about the vertical struc-
ture of the wave and the associated flux tube.

The paper is organised as follows: Sect. 2 describes and tests
the theoretical framework to analyse the observations; Sect. 2.1
describes the method used to extract the phase speeds from
the observations; Sect. 2.2 describes the data analysis method;
Sect. 2.3 tests the validity of the method on synthetic data;
Sect. 3 describes the data collection and the methods used to cal-
culate the observational parameters required; Sect. 4 describes
the results of the data analysis; Sect. 5 lists the conclusions of
this paper; and Appendix A studies the effects of clouds on the
determination of the area of a magnetic pore.

2. Framework

In this section, we discuss the theoretical framework for carrying
out wave mode identification of observed oscillations and deter-
mining the phase speed of the wave. The observables are the area
of the magnetic pore and the total intensity of the magnetic pore
(Morton et al. 2011). Therefore we need a way to distinguish
different wave modes using the observables and a way to calcu-
late the phase speed of the wave modes. Both of these can be
found using linear MHD theory. The method of distinguishing
the different wave modes has already been described in Moreels
et al. (2013). We now add a method to calculate the phase speed.
The resulting method is then tested on an artificially generated
data set.

2.1. Determine phase speed with MHD theory

We assume that the flux tube is modelled as a straight cylinder
with radius R. The plasma is uniform, both inside and outside
the cylinder, with a jump in the equilibrium values at the bound-
ary (cf. Edwin & Roberts 1983). The magnetic field is assumed
to be directed along the axis of the flux tube and is given by B0,i
inside the flux tube and B0,e outside the flux tube. The plasma
pressure and density are p0,i and ρ0,i inside the flux tube and p0,e
and ρ0,e outside the flux tube. We assume that the plasma has no
background flow, i.e. the equilibrium velocity is v0 = 0 both
inside and outside the flux tube. This model omits important
physics, e.g. density stratification (Osterbrock 1961; Rosenthal
et al. 2002; Erdélyi & Verth 2007). However, we feel that the
use of a simple model is valid because we want to illustrate

the possibility of determining the phase speed of waves in mag-
netic pores when only intensity observations at one height are
available. The ideal MHD equations for the uniform flux tube
configuration were solved by Edwin & Roberts (1983), Sakurai
et al. (1991), and many different authors. An example of a dis-
persion diagram under photospheric conditions can be found in
Moreels & Van Doorsselaere (2013) in their Fig. 2. Wave modes
in this type of structure are usually divided into several groups,
e.g. sausage modes (m = 0) and kink modes (m = 1). In the
observed oscillations (see Sect. 3), there is no indication that the
centre of the pore is moving, therefore, we assume that the ob-
served oscillations are axisymmetric and we only study axisym-
metric sausage modes (m = 0).

In a photospheric context, sausage modes can be divided into
two groups, i.e. fast and slow sausage modes. This division is
based on the phase speed of the wave modes. Fast modes have
phase speeds higher than the internal sound speed, while slow
modes have phase speeds lower than the internal sound speed.
Moreels et al. (2013) described a method to distinguish between
fast and slow sausage modes by looking at the phase difference
between the area variations and the Lagrangian intensity varia-
tions. We rely here on the calculations by Moreels et al. (2013).
The main conclusion of Moreels et al. (2013) is that fast and
slow modes have a different phase behaviour, namely that slow
modes have an in-phase behaviour (i.e. 0 degrees phase differ-
ence between the area and the Lagrangian intensity oscillations),
while fast modes have an anti-phase behaviour (i.e. 180 degrees
phase difference between the area and the Lagrangian intensity
oscillations). Throughout most of the paper we are talking about
Lagrangian intensity variations, i.e. the intensity variations when
following the motion of the plasma.

After having identified the wave mode, we want to estimate
the phase speed. Estimating the phase speed is important for sev-
eral reasons. First, since the observations are taken at one height
we cannot know the vertical propagation speed of the wave, i.e.
we have no information about the rate at which energy can be
transported upwards in the solar atmosphere. Second, together
with the period of the wave we can deduce information about
the vertical wavenumber k and the vertical wavelength. This in-
formation can help explain the either standing or propagating
nature of the observed oscillations. Third, the phase speed, to-
gether with the value kR, can be used to estimate the equilibrium
parameters of the flux tube in which we observe the wave mode
(see Sect. 4). The value kR is comprised of the radius of the
flux tube R and the longitudinal wavenumber of the oscillation
k. Using Eqs. (9) and (10) from Moreels et al. (2013), we find
that

ω

k
= cs

√√√
±
δI/I0
δS/S0

− 1

±
δI/I0
δS/S0

− 1 + (γ − 1) hν
kBT

, (1)

where ω/k is the phase speed, cs is the internal sound speed,
δI is the amplitude of the intensity perturbation, δS is the am-
plitude of the area perturbation, I0 is the mean intensity, S0 is
the mean area, γ is the ratio of specific heats, h is the Planck con-
stant, kB is the Boltzmann constant, T is the temperature of the
plasma inside the flux tube, and ν is the frequency at which the
observation was taken. The ± in the formula arise since this is a
quadratic equation, but a unique solution is found when also us-
ing the phase differences. The most important parameter, from
an observational point of view, is the dimensionless amplitude
ratio A, which is given by

A =
δI/I0

δS/S0
· (2)
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Table 1. A summary of the key steps in the data analysis method.

Step Description
1 Thresholding the intensity image resulting in area and

intensity time series.
2 Performing wavelet analysis on the area and intensity

time series and identifying time intervals with strong
oscillatory power.

3 Performing a FFT on each of the time intervals with
strong power resulting in a phase difference between the
area and intensity perturbation and the amplitude ratio
A of the perturbations.

4 Using the phase difference to determine the wave mode
(i.e. fast or slow).

5 Using the amplitude ratio A in combination with Eq. (1)
to infer the phase speed.

This parameter is very important since it relates the amplitude of
the oscillation directly to the phase speed using Eq. (1).

2.2. Data analysis method

In this section, we describe the data analysis method and after-
wards test the validity using synthetic data. The first step is the
thresholding routine in which we calculate both the area and the
intensity of the magnetic pore. The magnetic pore is constituted
by the pixels that have a photon count of less than 3σ of a quiet-
Sun region within the same field of view (FOV; Morton et al.
2011; Dorotovič et al. 2014). The total intensity is the sum of all
the photon counts within the magnetic pore at each time step. We
have summed the intensity over all the pixels inside the pore at
each time step and we implicitly assume that the magnetic pore
consists of the same plasma elements at each time step, there-
fore we are working with a Lagrangian intensity variation. This
thresholding routine results in both an area and intensity time
series. The next step is to use a wavelet analysis on the area and
intensity time series to identify time intervals of strong oscilla-
tory power in both the area and intensity time series. These time
intervals of strong power are then processed by a fast Fourier
transform (FFT) to find the phase difference between the area
and intensity time series and the amplitude of the perturbations
in both time series. The phase difference is used to identify the
wave mode, i.e. fast or slow. The amplitude is used to find the
phase speed by using Eq. (1). This entire method is summarised
in Table 1.

2.3. Synthetic data

To test the validity of this method we generated a set of data
using the cylindrical model representing a magnetic pore in the
photosphere. This data set consists of a series of intensity images
with a pore in the FOV with a noise of 10% of the pixel value,
as can be seen in Fig. 1. This synthetic data set is not intended to
be an accurate representation of the solar photosphere. Therefore
there is no granulation present in this data set. This synthetic data
set represents a uniform flux tube in a uniform atmosphere super-
posed with linear MHD waves and synthetic noise. Hence, this
data set is an ideal example to test the validity of the data analysis
method since the structure we analyse is identical to the struc-
ture we studied analytically. The generation of the data is car-
ried out by the following steps. First, we generate a fixed (x0, y0)
grid with a uniform spacing of about 50 km. On each of the
grid nodes we compute the Lagrangian displacement ξx(x0, y0)
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Fig. 1. One slice from the synthetic data set representing a magnetic
pore in a model solar photosphere. The colour scale is the intensity.
The hatched region at the top indicates the region that was used as the
quiet-Sun region for the thresholding routine.

and ξy(x0, y0) and the Eulerian intensity perturbation I′(x0, y0).
The Eulerian intensity perturbation I′ can be found in e.g.
Moreels et al. (2013) in their Eq. (5) when applied to uniform
flux tubes. Second, we construct an advected grid (x1, y1) by
moving the grid nodes according the Lagrangian displacement ξx
and ξy, i.e. (x1, y1) = (x0, y0) + (ξx(x0, y0), ξy(x0, y0)). The inten-
sity perturbation I′(x1, y1) is not changed, and it moves with the
grid node. Third, the advected grid (x1, y1) is linearly interpo-
lated to a new fixed (x2, y2) grid with a uniform grid spacing of
about 50 km since solar observations use a fixed grid. Linear in-
terpolation is used to minimise the amount of smoothing near
the pore boundary. The intensity perturbation I′(x1, y1) is also
linearly interpolated to the new fixed grid. Fourth, a Gaussian
noise is added to each pixel indepently per time step. The stan-
dard deviation of the noise was set at 10%. The reason for choos-
ing 10% noise level is that the variations in the actual observed
intensity (see Fig. 5) are of the order 5−20%. To ensure that
the conclusions from the synthetic data were applicable to the
observations, we used a magnetic pore with a similar radius as
in the observations and a similar resolution. In this data set,
we modelled different oscillations, i.e. slow/fast modes and sur-
face/body modes. The amplitude of the different oscillations is
chosen such that the density perturbation is approximately 5%
of the background density. This ensures that the wave modes are
in the linear regime. The perturbation amplitude resulted in ra-
dial changes at the flux tube boundary between 1−10 km, i.e.
well below the resolution of the data, which is about 50 km.
Intuitively we expect that our data analysis method will overes-
timate the change in area since the pore might have crossed a
pixel boundary, while not having moved the complete length of
the pixel.

There are several physical effects we investigate. First, does
the wavelet analysis identify the correct time intervals of strong
power? Second, how could the effect of the sub-resolution area
change be observed? Third, what are the errors on the inferred
phase speed? Fourth, what is the effect of clouds on the thresh-
olding routine? This is a relevant question because the obser-
vations we want to study are ground-based (see Sect. 3). This
question is addressed in Appendix A in detail.
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Fig. 2. Top image: time series for the area (left) and intensity (right), bottom: wavelet power spectrum of the time series. The grey area is the region
where boundary issues from the wavelet process can occur, known as the cone of influence. The coloured lines indicate the time intervals used in
the Fourier analysis and are placed at the period found from Fourier analysis.

To test the validity of the data analysis method described, we
focussed on the data set with no clouds. We first discuss step 2
from Table 1, i.e. the wavelet analysis. We determined the area
from the thresholding routine and determined the Lagrangian in-
tensity at time t by summing the intensity over all the pixels in-
side the flux tube at that time (i.e. pixels with intensity below the
threshold). Since the intensity is calculated by summing over a
group of pixels, the noise effects are very small. The resulting
time series are first analysed with a wavelet analysis to find time
intervals of strong power in both area and intensity. The results
can be seen in Fig. 2. The top of the figures show the raw time
series. As mentioned, there is little noise in the intensity and
the oscillations are clearly visible with the naked eye. The area
has a lot more noise for two reasons. First, there is no summing
over pixels when measuring the area and, therefore, the noise
is not cancelled in that way. Second, the radial displacement is
smaller than the resolution, meaning that there is only a very
small change in the measured area.

The coloured horizontal lines in Fig. 2 coincide with the
time intervals of strong power of the intensity time series.
The time intervals of strong power in the area mostly coincide
with time intervals of strong power for the intensity, i.e. all pe-
riods around or below 10 min in the area time series match with
corresponding regions in the intensity time series. There are sev-
eral regions in the intensity time series with periods around or
below 10 min that do not have a counterpart in the area time se-
ries, which happens because the noise dominates over the small
radial displacement. For periods above 10 min there are no cor-
responding regions in both area and intensity time series, i.e. no
spurious solutions were found. It is appropriate to mention here
that the thresholding routine did have some problems because
of the sub-resolution nature of the area change, namely the rou-
tine did not correctly detect the contraction of the pore; it only
detected the expansion of the pore. In other words the magni-
tude of the area perturbation has been underestimated by a factor
of 2. This is due to the sub-resolution change of the area as well
as the generation process for the synthetic data. In generating

the synthetic data, we have interpolated the intensity at the pore
boundary, which smooths the sharp jump at the boundary. We
believe this also contributes to not detecting the contractions of
the pore. This concludes the discussion of step 2 from Table 1.

Next, we discuss step 3 from Table 1, i.e. the Fourier analy-
sis. The time series are divided into the time intervals of strong
power, based on the intensity time series since this has less noise.
In total we now have 14 time series, 7 for intensity and 7 for area,
each representing a different oscillation mode. Before Fourier
analysing these 14 time series, we mention the actual input pa-
rameters of the simulations, see Table 2. Table 2 lists the type
of wave, the time interval where it appears, the period, the am-
plitude ratio A, and the phase speed. Of course, the theoretical
period is the same for both the intensity and the area oscillation.
The phase speed mentioned in the table is the actual input value
and not the result of using Eq. (1) on the amplitude ratio A. If,
however, we calculate the phase speed using the amplitude ratio,
we find a very good agreement with a difference of about 1%,
which can be explained by numerical round-off errors.

The results from the Fourier analysis can be found in Table 2.
As expected, the Fourier analysis performed well on the inten-
sity time series, with a clear peak in the power spectrum. This
period matches the value of the input, in Table 2, with a maxi-
mum error of about 10%. The Fourier analysis did not perform
as well with the area time series. For certain time intervals there
was no peak present around the expected period (there were also
no clear peaks at other periods). We denoted those time inter-
vals with “not found”. In one other case, the noise was domi-
nant over the perturbation and we had to ignore the periods un-
der 60 s to find the appropriate peak in the power spectrum; that
case is indicated with an asterix. The error estimate for the pe-
riod is based on the broadness of the peak in the Fourier power
spectrum.

We continue with step 4 from Table 1, i.e. the wave mode
identification. As mentioned before, the phase difference be-
tween the area and the intensity perturbations for slow modes
should be around zero degrees and around 180 deg for fast
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Table 2. The input parameters of the wave modes in the synthetic data, combined with the results of the FFT analysis on the synthetic data.

Time interval Period intensity Period area Phase diff. Mode type A Phase speed
(Min.) (Min.) (Min.) (degrees) (km s−1)

True value [0, 8.1] 2.5 2.5 ±180 Fast surface 37.9 7.67
Inferred value [0, 8] 2.67 2.7* −178 Fast 50.4 7.5
Error estimate − − [2.5, 2.8] [−153,−203] − [33.5, 51.9] [7.56, 7.68]
True value [8.1, 45.9] 9.2 9.2 0 Slow body 28.8 6.93
Inferred value [8, 46] 9.5 Not found − − − −

Error estimate − [7.5, 11.5] − − − − −

True value [45.9, 76.9] 7.4 7.4 0 Slow surface 9.71 6.27
Inferred value [46, 77] 7.7 7.7 0 Slow 69.1 7.2
Error estimate − [6.2, 9.2] [6.7, 8.7] 4 − [69, 99] [7.18, 7.23]
True value [76.9, 95.4] 4.9 4.9 ±180 Fast surface 14.9 7.77
Inferred value [77, 95] 4.6 Not found − − − −

Error estimate − [3.1, 5.1] − − − − −

True value [95.4, 114.4] 5.4 5.4 0 Slow body 56.5 7.13
Inferred value [95, 114] 4.8 3.2 70 Not found 82.8 7.2
Error estimate − − [0.8, 5.6] [−30, 170] − [68, 97] [7.1, 7.23]
True value [114.4, 135.9] 5.6 5.6 0 Slow body 27.5 6.85
Inferred value [114, 136] 5.4 Not found − − − −

Error estimate − [3.9, 6.9] − − − − −

True value [135.9, 171] 9.8 9.8 0 Slow surface 9.94 6.30
Inferred value [136, 171] 8.8 8.8 −6 Slow 64.0 7.1
Error estimate − [5.8, 11.8] [5.8, 11.8] − − [47, 67] [7.10, 7.17]

modes. The phase difference found from the synthetic data in-
deed exhibits the correct behaviour, except for the slow body
mode, which is 70 deg, although it should be zero degrees.
Using cross-correlation to analyse the area and intensity for that
slow body mode, we found that there was a phase differences
of 45 deg. We further analysed this case to find out why the
phase difference is clearly non-zero. When we did the analysis
again with less noise, 1% of the pixel value, cross-correlation
showed a phase difference of zero degrees. This, again, con-
firms the problem that determination of the area is very sensi-
tive to noise effects and care needs to be taken in analysing the
observations.

Finally, we discuss step 5 from Table 1, i.e. determining the
phase speed. From a seismological point of view the most impor-
tant value is the amplitude ratio A, since this value determines
(together with the equilibrium parameters) the phase speed of
the oscillation. On the Sun, however, the equilibrium parameters
and the driver of the wave determine the phase speed and thus
finding the phase speed reveals information about the structure
of the magnetic pore. If we compare the amplitude ratio A from
the Fourier analysis with the exact input values, we find that the
values have similar orders of magnitude with errors up to a factor
of 10 for the slow surface modes. The Fourier analysis also un-
derestimates the magnitude of the area perturbations. For some
cases, the Fourier analysis reported a magnitude of only 1 pixel,
while it should have been 10 pixels. This is caused by the effects
of noise on the area time series. The combination of underes-
timating the area variations in both the Fourier analysis and in
the thresholding routine results in area amplitudes that compare
with the actual input values, while we expected the amplitudes
to be overestimated. The error for the amplitude parameter is
quite high. However, how does this error propagate into the in-
ferred phase speed (using Eq. (1))? Looking at the phase speed
and comparing with the actual values, we find that the values
match with a maximum error of 15%. This is, in our opinion

certainly a very acceptable margin for error, especially consid-
ering the 10% noise level. The largest errors are both for slow
surface modes, for which the actual phase speed is not in the
error estimate interval. Other modes, i.e. slow body modes and
fast modes, do not have this error. The actual input phase speed
is for all cases inside the error estimate interval. An explanation
for this behaviour is yet to be found, but that is beyond the scope
of this paper.

Because this data analysis method is not completely auto-
mated, i.e. the time series have to be divided into smaller time
series manually, it is very time consuming to use a Monte Carlo
method to estimate the uncertainty of the data analysis method.
However, when only simulating one wave mode, the time se-
ries does not need to be divided and the data analysis method
is fully automated. We chose a fast surface mode and a slow
body mode to calculate the uncertainty interval using a Monte
Carlo method. The fast surface mode occurs in the synthetic
data during the time interval [0, 8.1] and the slow body mode
occurs during the time interval [95.4, 114.4]. For both the fast
mode and the slow body mode, 1000 time series are generated
each with their independent noise as described above. The data
analysis method (without steps 2 and 3) is applied to each time
series. Thus, there are 1000 values values for both the fast sur-
face mode and the slow body mode for the area and intensity
periods, the phase difference, the amplitude ratio, and the phase
speed. These 1000 values are then sufficient to establish a mean
value and a proper uncertainty estimate, which are reported in
Table 2. There is no uncertainty estimate for the intensity pe-
riod because the perturbation is very clear, also with the naked
eye, and as such the Fourier analysis picks out the same period
in all 1000 time series. As can be seen in Table 2, the uncer-
tainty intervals for the fast surface mode are quite narrow. The
uncertainty intervals for the slow body mode are wider. The area
period is not the most important parameter because the intensity
period is clear. The phase difference has a wide spread, but this
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Fig. 3. Observed active region. The large pore at the top of the FOV
is the subject of this article. The contour shows the area of the thresh-
olded pore boundary. The hatched region is the quiet-Sun region used
in calculating the threshold for intensity.

slow body mode is the case that was discussed earlier in which
the phase difference was clearly non-zero because of noise ef-
fects. The phase speed still has a limited uncertainty interval.

Our results from the synthetic data clearly show that the
method we described in Table 1 works with an acceptable mar-
gin of error on the resulting phase speed.

3. Data collection

We collected the ground-based data analysed here with
the CRisp Imaging SpectroPolarimeter (CRISP) instrument
(Scharmer et al. 2008), situated at the 1-m Swedish Solar
Telescope (SST), La Palma between 07:23 UT and 08:28 UT
on 2012 June 22. The region observed was within NOAA 11510,
centred on a large pore. We took the data in Hα with a core line
position at 656.3 nm, and returned the line scans to the left and
right of the line core with a −0.1032, −0.0774 and 0.1032 shift.
The FOV covers 68′′ by 68′′. Next, we reconstructed the
data with the Multi-Object Multi-Frame Blind Deconvolution
(MOMFBD) technique (for details see van Noort et al. 2005)
giving an overall cadence of two seconds and a spatial resolu-
tion of 0.12′′.

Following Morton et al. (2011) and Dorotovič et al. (2014),
and as explained in Sect. 2.2, we defined the pixels that consti-
tute the magnetic pore as pixels that have a photon count less
than 3σ of the quiet-Sun region within the same FOV. Figure 3,
shows the boundary of the pore that was calculated by the algo-
rithm and the hatched region is the quiet-Sun region used to de-
fine the threshold limit. The darker region just to the right of the
pore boundary is a feature that decays in time and is therefore
not a part of the pore. The thresholding method is not entirely
accurate because the pore boundary is reasonably continuous,
and there tends to be a region of several pixels between the pore
and the quiet-Sun. Despite this limitation, this is a more natu-
ral method of calculating the area of magnetic structures than an
arbitrary intensity limit. The total intensity is the sum of all the
photon counts within the magnetic pore at each time step.
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Fig. 4. Area time series of the full 1 h data set. Notice the almost dis-
continuous jumps in the first 10 min of the time series.

Figure 4 shows the area time series, which is a result of ap-
plying the thresholding routine on the observational data. Clearly
noticeable are the almost discontinuous jumps at the start of the
time series. We are confident the cause for these jumps were
clouds passing over the telescope. When comparing the jumps
in Fig. 4 with those in Appendix A (Fig. A.2), it becomes clear
that clouds could indeed explain the jumps at the start of the
observations. Therefore, while for the majority of the time win-
dow, the seeing was considered to be very good, the first 10 min
and the last 15 min had highly variable seeing. As is explained
in Appendix A and, as can be seen from Fig. 4, this introduced
artifacts into the cross-sectional area and total intensity signals.
For this reason, we trimmed the data leaving just over 35 min of
high-quality data.

To extract the relevant information required, i.e. both the
phase and magnitude of the wave perturbations in the area and
intensity time series, wavelets were used in conjunction with
the FFT. We used the wavelet algorithm to identify the dominant
periods within the area and intensity, and when these periods ap-
pear and disappear from the time series. Then, the two signals
were divided into segments that contained these dominant peri-
ods and the amplitudes of the oscillations were calculated using
the FFT for these segments individually. This approach is also
summarised in Table 1.

4. Analysis of the observations

We now apply the method outlined in Table 1 to the actual obser-
vations. The wavelet power spectrum is shown in Fig. 5 for both
the area and intensity perturbation time series. The black line
shows the 95% confidence limit and the grey region is where
wavelet edge effects become important and is referred to as the
cone of influence (COI). We focus on the time intervals outside
the COI.

When studying both wavelet plots different regions of strong
power are obvious. We now list all the regions we selected for the
Fourier analysis: 8 to 20 min with 6.5 min period, 10 to 17 min
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Fig. 5. Top image: time series for the area (left) and the intensity (right), bottom: wavelet power spectrum of the time series for the observed pore.
The grey area is the region, known as the cone of influence, where boundary issues from the wavelet process can occur. The blue lines indicate the
time intervals used in the Fourier analysis and are placed at the period found from Fourier analysis.

Table 3. Results of the data analysis on the observations.

Time interval (Min.) Period (Min.) Phase diff. (deg) A Phase speed (km s−1) kR Wavelength (Mm)
[8, 20] 6.5 [5.5, 7.5] −4 3.4 [1.7, 6.8] 4.8 [3.1, 5.9] 8.1 [6.6, 12] 1.9 [1.2, 2.3]
[10, 17] 3 [2.7, 3.3] 2 3.7 [1.8, 7.3] 4.9 [3.4, 6.0] 17 [14, 25] 0.90 [0.61, 1.1]
[10, 35] 2 [1.9, 2.1] −4 5.2 [2.6, 10.5] 5.5 [4.3, 6.4] 23 [20, 30] 0.67 [0.52, 0.76]
[10, 35] 1.5 [1.4, 1.6] 5 3.6 [1.8, 7.2] 4.9 [3.3, 6.0] 35 [29, 52] 0.45 [0.30, 0.54]

with 3 min period, 10 to 35 min with 2 and 1.5 min periods,
and 25 to 35 min with 2 and 1.5 min periods. The last time in-
terval is not mentioned in Table 3 because the results are almost
identical to the time interval of 10 to 35 min with 2 and 1.5 min
periods. The regions have been indicated by blue coloured hor-
izontal lines in Fig. 5. Table 3 shows the results of the Fourier
analysis on all these time intervals. It is immediately clear that
all phase differences are close to zero, meaning that we are ob-
serving slow waves (cf. Moreels et al. 2013).

Using Eq. (1) and the amplitude ratio A, we also calculated
the phase speed. In cases with multiple solutions, we chose the
phase speed corresponding to a slow mode. There were also
cases with no real solution to Eq. (1). We remedied this by di-
viding the amplitude of the area perturbations by two. Dividing
the area amplitude by two is not a random choice. In the ob-
servational data we found that the change in radius of the ob-
served pore is smaller than one pixel, i.e. the change in radius
is sub-resolution. This was also the case for the synthetic data
in Sect. 2.2, although the difference between the spatial reso-
lution and the radial displacement of the pore boundary in the
observational data is not as extreme as in the synthetic data. In
Sect. 2.2 we mentioned that we expected the area amplitude to
be overestimated because the radial displacement is smaller than
the resolution of the intensity image. We also mentioned that the
thresholding routine did not detect the contractions of the syn-
thetic pore, which resulted in underestimating the synthetic area
amplitude by a factor of two. This underestimation of the syn-
thetic area amplitude in the thresholding routine led to correct

phase speed values for the synthetic data. We believe this un-
derestimation in the synthetic data is caused by our method of
generating the synthetic data, i.e. using interpolation at the pore
boundary. Of course, in the observational data there is no in-
terpolation of intensity at the pore boundary, therefore the un-
derestimation of the area amplitude does not occur and the area
amplitude is overestimated. To correct for the potentially mis-
leading results on the phase speed this can have, we divided the
area amplitude by a factor of two. The error bars in Table 3 are
due to this uncertainty in the amplitude of the area perturbation.
The lower values (of the amplitude ratio A) are taken with δS,
the middle values (of the amplitude ratio A) with δS/2, and the
upper values (of the amplitude ratio A) with δS/4.

The resulting phase speeds are of the order 5 km s−1, which
are smaller than the internal sound speed, as should be the case
for slow modes. However, we do not know if these waves are
standing or propagating, therefore the phase speed does not nec-
essarily represent an upwards propagation speed. If we look at
the period, or the kR values, or the wavelength, it is easy to get
the impression that we might be observing overtones of a fun-
damental mode with period 6.5 min. As explained in Dorotovič
et al. (2014) the use of an ideal flux tube would lead to harmonic
period ratios as P1/P2 = 2, P1/P3 = 3, and so on. We indeed
have the same harmonic period ratios. There has also been re-
search done to see how the period ratios change under the influ-
ence of more realistic equilibrium models (Luna-Cardozo et al.
2012), which shows that certain density profiles can increase or
decrease the harmonic period ratios.
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Fig. 6. Phase speed diagram of wave modes under photospheric condi-
tions. We use as equilibrium parameters cA,i = 1.3cs,i, cA,e = 0.1cs,i, and
cs,e = 1.1cs,i. The external Alfvén speed is not indicated in the graph be-
cause no modes with real frequencies appear in that vicinity. The modes
with phase speeds between cT,i and cs,i are body modes and the other
mode is a surface mode. We only plotted four body modes, while there
are infinitely many radial overtones. There are no non-leaky fast modes.
The blue circles indicate the location of the observations and the blue
triangles are the uncertainty bars.

Before using the oscillations as a tool for seismology we
first discuss a physical mechanism to generate these standing
waves. A possible mechanism for these standing waves is that
of the chromospheric resonator above sunspot umbrae (Botha
et al. 2011). We have already mentioned that magnetic pores be-
have in a very similar manner to sunspot umbrae, meaning that
there could also be a chromospheric resonator above magnetic
pores. The chromospheric resonator or chromospheric cavity is
the region above the photosphere up to the transition region, i.e.
about 2 Mm in length. This length scale matches the wavelength
of the fundamental mode in the observations, see Table 3. The
theory of a chromospheric resonator has also been used as a pos-
sible explanation for the observed long period waves in the solar
corona (Yuan et al. 2011).

Finally, we can use the phase speed and the kR values of
the observed waves to estimate equilibrium parameters of the
magnetic pore, i.e. using MHD seismology. Using harmonics for
seismology has been carried out by, e.g. Andries et al. (2005),
on kink oscillations in the corona. Since we know the position
of the observations in the phase diagram of MHD waves in a
magnetic cylinder, we know that one or more of the dispersion
curves need to overlap with the observations. In Fig. 6 we plotted
the observations with their uncertainties both in phase speed and
in kR value. Next, we obtained a set of equilibrium parameters
such that all of the observations agree with one of the disper-
sion curves, and in this case the curve for the slow surface mode.
A possible, but not unique, set of equilibrium parameters that
fits with the observations are cA,i = 1.3cs,i, cA,e = 0.1cs,i, and
cs,e = 1.1cs,i. From the observations we already knew the dif-
ference between internal and external sound speed, but we now
also have an estimate for the Alfvén speeds. This set of equi-
librium parameters means a plasma β around 0.7 inside the flux
tube and around 150 outside the flux tube. The high value outside
just indicates that there is a very weak magnetic field outside the
flux tube. This is certainly not the only possible combination of
equilibrium parameters that fit the observations. We investigated
different combinations of equilibrium parameters and found

that the external Alfvén speed cA,e between [0.0, 0.7cs,i], exter-
nal sound speed cs,e between [cs,i, 1.5[cs,i, and internal Alfvén
speed cA,i between [cs,e, 2.0cs,i] yielded reasonable fits to the data
points (which have large uncertainties). Most of these combi-
nations have in common that the observations are slow surface
waves rather than body waves. Also common in the possible
parameters is the low external Alfvén speed, which indicates a
weak magnetic field outside the magnetic pore. The generation
of slow surface sausage modes could be related to the excita-
tion by slow downdrafts, such as those simulated by Kato et al.
(2011). These slow downdrafts also explain the surface nature
of the waves, since the driver of the waves is situated mainly
outside the flux tube. The generation of slow sausage modes can
also be caused by other phenomena, e.g. granular buffeting or
convective cell motions (Fedun et al. 2011a,b).

5. Conclusions

We investigated axisymmetric modes in solar magnetic pores.
For the first time, we estimated the phase speed of waves in so-
lar magnetic pores using only intensity images at one height. In
the literature we only found estimates of phase speeds when us-
ing multiple heights in observations or using LOS velocity or
LOS magnetic field information. The observations were taken
using the CRISP instrument located at the SST in La Palma.
Using a thresholding routine, we obtained both the cross-
sectional area of the pore and the Lagrangian intensity pertur-
bation. With a combination of wavelet and Fourier analysis, we
identified several oscillations in both area and intensity. Using
MHD theory, we discovered that the oscillations are standing
slow surface modes with a phase speed around 5 km s−1. The
standing nature of these modes can be explained by the chromo-
spheric resonator model and the three harmonic overtones of the
fundamental 6.5 min period. The wavelength of the fundamental
mode also matches with the length scale of the chromospheric
cavity, i.e. about 2 Mm. Using the phase speed and kR value in
combination with the dispersion diagram we were able to iden-
tify ranges of plausible equilibrium parameters. We found the
external Alfvén speed cA,e between [0.0, 0.7cs,i], external sound
speed cs,e between [cs,i, 1.5[cs,i, and internal Alfvén speed cA,i
between [cs,e, 2.0cs,i]. For most of these equilibrium configura-
tions this shows that the observed waves are surface waves with
a weak magnetic field outside the pore.

We verified our proposed data analysis method (see Table 1)
using synthetic observations. The synthetic observations are nor-
malised such that the density perturbation is about 5% of the
background density, i.e. linear perturbations. This resulted in
small radial displacements well below the spatial resolution of
the data. We investigated three effects, namely the detection
of oscillations in the data using wavelet and Fourier analysis,
the accuracy of MHD seismology, and the effect of clouds on
the thresholding routine. This last effect has been explained in
Appendix A. We also mention that our proposed data analy-
sis method could easily be tested on more realistic numerical
simulations.

First, we tested the accuracy of the wavelet and Fourier anal-
ysis. We discovered that the analysis does not result in the detec-
tion of all area oscillations present in the data, but there are also
no spurious oscillations found from the analysis. The fact that
we did not detect all oscillations present is purely because, in
some cases, the radial displacements are ten times smaller than
the spatial resolution of the observations. This means that the
pore boundary has not shifted an entire pixel and therefore this
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shift is hard to detect. We did find all oscillations in intensity be-
cause we summed over all the pixels that are inside the pore and
noise effects are strongly reduced. Second, we checked how ac-
curate the seismology was in distinguishing the wave mode and
in determining the phase speed. Investigating the cases where an
oscillation was identified, we found that in all but one case the
method correctly identified the wave mode (i.e. fast or slow), ex-
cept for the slow body mode. This happened because of noise
effects, showing that noise can also change the phase behaviour
of the wave mode. Determining the phase speed was quite suc-
cessful with errors up to 15% of the original input value. This
is a good result because the uncertainty due to seismology is at
the same level of the noise in the data (10%). Finally, we inves-
tigated the effect of clouds passing over the telescope since this
occurred during the observation. The result was very clear: the
clouds dramatically interfered with the thresholding routine and
resulted in unphysical data for both intensity and area. We found
no way to account for this process and, therefore, dropped the
data where clouds passed over the telescope.

We believe this work forms the basis of a future time-
dependent and dynamical magneto-seismological study of mag-
netic pores. This work can be used as a basis for modelling how
time and space dependent magnetic fields, density structures,
pressure changes, etc. influence both the wave modes and the
observables (i.e. periods, cross-sectional area, intensity, etc.) of
those wave modes.
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Appendix A: The influence of clouds
on the calculation of the area

In Sect. 2.3 we examined the effect of changing seeing condi-
tions, i.e. clouds. We modelled the clouds as having two ef-
fects, namely a decrease of the intensity due to scattering, and
a smoothing over pixels also due to scattering. The decrease in
intensity due to clouds is 10% of the pixel value and the pixels
are linearly smoothed over the neighbouring pixels only. This
cloud was then turned on and off in a periodic fashion. The vi-
sual result can be seen in Fig. A.1. The result is as expected, the
image looks blurry when compared to the non-cloudy image,
i.e. Fig. 1. However, does this have an effect on the thresholding
routine determining the area of the pore? The result can be seen
in Fig. A.2. One can clearly see that clouds have a major im-
pact on the thresholding routine. We tried to remedy this, but the
smoothing over pixels is very hard to correct for. We realise that
the clouds employed are unrealistic in the sense that they spon-
taneously appear in the entire FOV and that they are periodic.
However the fact that clouds spontaneously appear is not a real
concern since the small viewing aperture results in an almost im-
mediate the cloud cover. Clouds are non-periodic but even one
cloud is enough to deteriorate the data at that time. This is the
reason that we decided to discard certain time intervals in the
observations.
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Fig. A.1. One slice from the data set representing a magnetic pore in the
solar photosphere with a cloud introducing seeing effects. The colour
scale is the intensity.
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Fig. A.2. Area of the simulated magnetic pore based on the thresholding routine. Left: area without cloud effects. Right: area with cloud effects.
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