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ABSTRACT 26 

The overall aim of physiological research is to understand how living systems 27 

function in an integrative manner. Consequently, the discipline of physiology has 28 

since its infancy attempted to link multiple levels of biological organization. 29 

Increasingly this has involved mathematical and computational approaches, typically 30 

to model a small number of components spanning several levels of biological 31 

organization. With the advent of omics technologies, which can characterise the 32 

molecular state of a cell or tissue (intended as the level of expression and/or activity 33 

of its molecular components), the number of molecular components we can quantify 34 

has increased exponentially. Paradoxically, the unprecedented amount of 35 

experimental data has made it more difficult to derive conceptual models underlying 36 

essential mechanisms regulating mammalian physiology.  37 

 We present an overview of state-of-the-art methods currently used to 38 

identifying biological networks underlying genome-wide responses. These are based 39 

on a data-driven approach that relies on advanced computational methods designed to 40 

‘learn’ biology from observational data. In this review, we illustrate an application of 41 

these computational methodologies using a case study integrating an in vivo model 42 

representing the transcriptional state of hypoxic skeletal muscle with a clinical study 43 

representing muscle wasting in COPD patients. The broader application of these 44 

approaches to modelling multiple levels of biological data in the context of modern 45 

physiology is discussed.  46 

 47 

 48 

INTRODUCTION 49 

Modelling in physiological sciences 50 
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Physiology has evolved as a series of sub-disciplines attempting to understand 51 

organismal function as a combination of interacting components and systems. The last 52 

decade or so has witnessed the development of Systems Biology as an investigative 53 

approach, and its application in different areas of biology, ranging from 54 

engineering/synthetic biology (e.g. design of bacterial strains with improved 55 

properties) to health sciences (e.g. disease biomarker identification). Despite the lack 56 

of a concise definition acceptable to the majority of the community (30, 32), Systems 57 

Biology is frequently understood to be the study of complex regulatory interactions in 58 

biological systems using a holistic approach. This is often achieved by integrating 59 

different experimental approaches within the conceptual framework of a 60 

computational model (i.e. a mathematical representation of a system that allows 61 

simulation of its behaviour). Physiology is probably one of the few research areas in 62 

biological sciences that have traditionally adopted such an approach. It has long 63 

sought to understand the behaviour of complex biological processes and cellular 64 

systems using an integrative approach, and has extensively adopted mathematical 65 

modelling in its tool set. Classical examples include August Krogh’s tissue cylinder 66 

model of oxygen transport to skeletal muscle (33), and Huxley’s two-state cross-67 

bridge model of muscle contraction (26), which are still used by investigators today. 68 

Indeed, this shows that using modelling to study a system as a whole has been a key 69 

component of physiology from its early days.   70 

As often happens when a distinct discipline branches out of another, there developed 71 

over time a separation of ideas based in part on confusion arising from use of esoteric 72 

terminology – similar concepts masked by unfamiliar language. There is therefore a 73 

need for an overview of this relatively new discipline, to both emphasise the essential 74 

links with basic physiological principles and de-mystify the approach such that the 75 
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available tools may become more widely adopted in physiological research. The 76 

overall aim of this opinion-based review is to describe, using concepts that will be 77 

intuitive to physiology researchers, different key methodologies available from the 78 

Systems Biology community. In addition, we provide a practical step-by-step guide 79 

for integrating multi-level data within an analysis pipeline based around inferred 80 

interactions of variables, modelled as a network based on statistical correlations, using 81 

a worked example in the field of physiological sciences. 82 

 83 

The advent of Functional Genomics: a challenge for physiological modelling 84 

It is now clear that much of the complex mammalian physiology or pathophysiology 85 

cannot be understood in sufficient detail through a reductionist approach alone. 86 

Although this approach has proved valuable in explaining broad phenomena and 87 

individual mechanisms, linking multiple mechanisms and effects has proved 88 

challenging. For example, a disease phenotype is rarely caused by a single 89 

dysfunctional gene or protein. Instead, genetic variability, epigenetic modifications, 90 

post-transcriptional regulation mechanisms etc. all act in concert to determine a 91 

specific high-level phenotypic response (43). The potential for such complex 92 

interaction makes data interpretation much more complicated than originally 93 

envisioned, highlighting the need to move away from the widespread  ‘candidate 94 

gene’ approach (39). 95 

Triggered by the advent of genome sequencing, inspired by the Human 96 

Genome Project, dramatic technological advances within the last decade or so have 97 

led to increased throughput in genome-wide molecular analyses (i.e. genomics, 98 

epigenomics, transcriptomics, proteomics, metabolomics). The comprehensive data 99 

acquisition tools developed to cope with large datasets have allowed investigators to 100 
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determine the molecular state of cells, tissues or even entire organs in a single 101 

experiment. Such cost-effective omics approaches are now becoming prevalent in 102 

biological and medical research, and consequently have been responsible for the 103 

generation of an incredibly large amount of multivariate molecular data. A large 104 

proportion of this data is available in the public domain via different online databases 105 

(e.g. NCBI Gene Expression Omnibus (5), EBI ArrayExpress (7), and PRIDE (29)).  106 

For example, mRNA microarray technology and more recently mRNA 107 

sequencing, has provided insight into the transcriptional response of skeletal muscle 108 

to prolonged endurance exercise training, highlighting a pronounced inter-individual 109 

variation at the molecular level that is consistent with the heterogeneous response 110 

observed in a population of individuals at the physiology level (31, 59). Statistical 111 

models built to explain such variation as a function of gene expression data can be 112 

exploited to identify underlying mechanisms controlling tissue homeostasis. The 113 

transcriptional signatures identified in such studies likely explain, at least in part, why 114 

some people show great improvements in aerobic capacity (VO2max) whereas others 115 

only experience smaller benefits, despite completing the same supervised exercise 116 

training program. Another example of applying omics technology to better understand 117 

human physiology concerns the quantification of individual levels of different 118 

proteins in health and disease; by use of proteomics methodology, Holloway et al. 119 

(24) were the first to investigate adaptations in human muscle protein content to long-120 

term exercise training on a large scale. 121 

While such omics-based studies hint at the potential of a data-driven approach, 122 

they also illustrate the difficulty in deriving conceptual models underlying the 123 

essential mechanisms regulating physiology, as most are restricted to only one aspect 124 

of regulation. Perhaps surprisingly, the exponential growth in publicly available omics 125 
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data (34, 37) has not resulted in a paradigm shift in our understanding of biology. The 126 

main reason is the continuing challenge of integrating multivariate datasets spanning 127 

multiple organization levels in a way that allows the identification of discrete, small 128 

biomolecular networks that are truly important in the context of a specific biological 129 

response (47). Such a task cannot be achieved simply using unaided human 130 

interpretation. Rather, complex computational techniques are needed that are able to 131 

integrate and automatically ‘learn’ the structure of a biological system. Such a 132 

modelling framework is very different from what physiological sciences have 133 

traditionally employed. 134 

 135 

Towards data-driven predictive biology 136 

Although the modelling approach traditionally used by physiologists has been 137 

extremely successful, it suffers from severe limitations when challenged with 138 

extensive omics data. For example, physiological modelling relies to various degrees 139 

on a mechanistic understanding of the biological system of interest (16), which 140 

automatically limits the number of components that can be included due to gaps in our 141 

current knowledge (19, 47). Moreover, estimation of model parameters, which is 142 

usually a challenging task because of experimental limitations (e.g. due to limited 143 

amount and quality of data), makes the approach difficult to scale up to a larger 144 

number of components and their interactions. Perhaps the most comprehensive 145 

example to date is modelling the cardiac cycle based on ion channel kinetics (44). 146 

With such large multivariate datasets, and little knowledge about the way 147 

biomolecules are connected with each other and to key phenotypic switches, the 148 

fundamental question is whether or not we can ‘learn’ the structure of biological 149 

interaction networks from high-throughput data. Clearly, there is a need for 150 
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sophisticated computational tools that are able to i) integrate genome-wide 151 

measurements spanning multiple levels of biological organization (ranging from 152 

subcellular to organ level), ii)  identify key biomolecular components of the system, 153 

and finally iii)  statistically infer the way that these biomolecules interact in a pairwise 154 

manner to generate an observed biological response.  155 

Central to these approaches is the concept of interaction networks, a 156 

mathematical representation of a system of biomolecules. Networks are commonly 157 

used to describe biological systems at different levels of complexity (e.g. metabolic 158 

and signal transduction networks). They can be descriptive models built using a wide 159 

spectrum of qualitative data (e.g. biological knowledge of protein-protein interactions, 160 

transcription factor binding, etc.) or they can be inferred from quantitative 161 

measurements using complex computational models. In this case they can be used to 162 

predict the behaviour of the system when perturbed.   163 

In the following section, we summarise specific methodologies that can be 164 

applied to achieve such tasks. 165 

 166 

COMPUATIONAL APPROACHES FOR THE ANALYSIS OF COMPLEX 167 

DATASETS 168 

The process of modelling a biological system from complex multi-level datasets can, 169 

for the sake of convenience, be divided into four conceptually distinct yet 170 

interconnected approaches (Figure 1).  171 

 172 

[Figure 1 to be inserted here] 173 

 174 
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The first approach is biomarker discovery (Figure 1A), which perhaps is most 175 

widely used in the analysis of functional genomics datasets. Here the objective is to 176 

identify measurable variables that are predictive of a given outcome (e.g. the response 177 

to physical training in a population of individuals). Such measurements can be 178 

molecular (e.g. gene expression, protein levels, metabolite concentrations, genetic 179 

mutations) and/or more traditional physiological endpoints (e.g. endurance, VO2max). 180 

The identification of predictive biomarkers can be achieved by use of univariate and 181 

multivariate variable selection strategies that aim to identify the most relevant 182 

explanatory measurement(s), while developing a computational model that can 183 

accurately predict an outcome (60). Univariate methods will test every variable (e.g. 184 

expression of a given gene) on its own, whereas multivariate methods test 185 

combinations of variables for their ability to explain a given outcome. Clearly, 186 

multivariate approaches better resemble the complex nature of biological networks, 187 

and therefore are more likely to provide insights into the mechanisms underlying a 188 

complex phenotypic trait. Consistent with this notion, multi-gene biomarkers are often 189 

required for robust predictions in independent datasets.  190 

The second approach (Figure 1B) consists of ‘reverse engineering’ 191 

biomolecular networks from observational data (i.e. infer regulatory interactions 192 

between quantified biomolecules based on mathematical principles). Here the overall 193 

aim is to reconstruct the underlying structure of interactions between biological 194 

molecules profiled using omics tools (ideally from multiple data sources) and rigorous 195 

statistics. Such a network inference framework can be achieved by applying a 196 

multitude of approaches with varying underlying data assumptions and modelling 197 

principles, including ordinary differential-equation (ODE)-based methods (3), 198 

probabilistic modelling techniques (e.g. Bayesian theory models) (42, 64), state-space 199 
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representation models (23), and correlation-based methods. Note, while the first three 200 

approaches are able to infer directed networks, their capability is currently limited to 201 

inferring smaller networks with few variables due to increased computational 202 

complexity than possible with correlation approaches. 203 

 Importantly, this network inference part may potentially benefit from a 204 

biomarker discovery phase, since it has been shown that identified predictive 205 

variables are more likely to be directly controlling important physiological processes, 206 

and therefore are good candidates to include in a network (47). Similarly, whole 207 

networks can be used as an input for biomarker discovery procedures. It has been 208 

shown that often the overall ‘activity’ of a biological network (e.g. a specific 209 

signalling pathway) is a better predictor than a few key individual genes, proteins 210 

and/or metabolites. This implies that in the coming years predictive biomarkers are 211 

more likely to consist of a relatively large panel of measurements, possibly spanning 212 

multiple levels of complexity within a pathway. Current omics platforms are 213 

experiencing a rapid development as well as drop in costs, making routine collection 214 

of large datasets a feasible option. Once a robust biological network has been inferred 215 

this may serve as a good basis for developing a more conventional modelling 216 

approach to provide explanations for observed phenomena that requires a mechanistic 217 

understanding of the system (Figure 1C).  218 

Finally, multiple computational models that initially were developed independently 219 

can be integrated into a larger and more complex models, which allow responses to 220 

physiological/pathological challenges to be simulated, thus integrating effects across 221 

multiple organs and/or pathways. These complex models are often referred to as 222 

decision support systems because of their potential to provide information about the 223 

expected outcome of a therapeutic intervention (Figure 1D). 224 
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Several large international projects aiming at the development of such 225 

technology into Systems Medicine integrated frameworks have been established so 226 

far, e.g. the Virtual Physiological Human (VPH) project funded by the European 227 

Commission 7th Framework Programme, which aims to aid clinically relevant 228 

research by establishing a framework for handling and integrating various mechanistic 229 

models spanning different levels of organizational complexity (ranging from 230 

molecular components to organ function). By unifying the modelling languages 231 

employed across the different mathematical models included, parameters of a 232 

particular model in the hierarchy can be processed by other appropriate models at a 233 

lower hierarchical level. These global initiatives should be considered long-term 234 

goals, aiming at understanding human physiology quantitatively as a dynamic system.  235 

Developing a comprehensive model of a biological system requires integrating 236 

mechanistic and probabilistic inferences. The mathematics for performing such a task 237 

is in its infancy, and more development is needed. However, a successful example is 238 

illustrated by the anatomically based model of human heart ventricles (44). In the 239 

following sections we aim to provide an overview of some of the methodologies that 240 

can be used to infer biomolecular networks, as well as introduce one particular 241 

approach we have found useful in our research. 242 

 243 

Inference of biological networks from observational data 244 

Reverse engineering is an evolving field within network-based Systems Biology. The 245 

rapid accumulation of omics data in the post-genomic era has made it possible to infer 246 

(aka ‘reverse engineer’) models of cellular systems with the overall aim of deducing 247 

the regulatory structure at a sub-cellular level. Most of the network-based approaches 248 

that have been developed are in fact general and can be applied to any type of 249 
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experimental data. However, because the mRNA expression profiling technology is 250 

the most mature omics discipline, most applications have been developed to 251 

reconstruct transcriptional networks (i.e. decode the mechanisms of transcriptional 252 

control). However, recently it has become apparent that, irrespective of the 253 

methodology used to generate data, in order to be able to recapitulate the complex 254 

behaviour of a biological system it is essential to integrate multiple types and scales of 255 

experimental data (e.g. transcriptomic, proteomic, metabolomic).  256 

 257 

Static vs. dynamic networks 258 

Biological networks can be reconstructed from two different types of experimental 259 

studies: either cross-sectional, e.g. representing a population of individuals at a given 260 

time (i.e. steady-state measurements following an experimental perturbation), or 261 

prospective, where the experimental data is available across a defined time-course. In 262 

reverse engineering, statistical inference of biological causality is an important goal 263 

(56). A simple example of causality could, for example, be a transcription factor 264 

regulating the expression of several target genes. Since determining cause and effects 265 

implies a direction (i.e. the cause precedes the effect), inference of causality from 266 

cross-sectional studies presents a challenge due to their static nature, one that is less 267 

difficult when a time-course is available. However, it must be stressed that both 268 

approaches are often used in combination to, for example, integrate clinical cross-269 

sectional studies (thereby providing the researcher with a static network 270 

representation) and experimental intervention studies that can provide dynamic 271 

(prospective) models of the process being studied. At present, most of the developed 272 

techniques infer regulatory networks without any causality information (likely due to 273 

the scarcity of time-course datasets due to their higher costs). However, a small 274 
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number of causality detection techniques have been proposed in the literature such as 275 

dynamic Bayesian networks (48) and Granger causality (46). It is also important to 276 

point out that true time-course datasets can only be developed when the sequence of 277 

events is measured within the same cells/tissues. This is for example achieved with 278 

imaging techniques that require complex molecular probes, and can typically be only 279 

applied to measure a relatively small number of system components (14). Omics 280 

technologies unfortunately are disruptive, so time course data derived using these 281 

approaches are in fact a sequence of independent snapshots, which clearly limits the 282 

potential use of dynamical modelling tools.   283 

 284 

A primer for network inference methods 285 

The simplest method for inferring statistical relationships between experimental 286 

variables is computing the pairwise correlation coefficient across a large collection of 287 

heterogeneous samples (8). Usually such an approach is not able to identify complex 288 

non-linear dependencies, and does not discriminate between direct and indirect 289 

connections. More complex methods, such as the mutual information (MI) based 290 

Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) (38), 291 

also aim at establishing a statistical relationship between pairs of variables but have a 292 

stronger theoretical foundation. Because of the added mathematical complexity they 293 

can capture a broader range of biologically relevant dependencies between variables 294 

including non-linear, non-monotonic relationships; importantly, they can distinguish 295 

between direct and indirect relationships. ARACNE is a free tool for which a Java-296 

based graphical user interface exists; hence investigators do not need any 297 

programming skills in order to use the software. 298 
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 ARACNE relies on estimating the probability that a variable (e.g. the 299 

expression of a gene or a protein) assumes a certain ‘state’ (i.e. abundance) given the 300 

state of another biomolecule (conditional probability). A number of alternative MI-301 

based implementations have been proposed during the last decade (e.g. Context 302 

Likelihood Relatedness (CLR) (13), Minimum Redundancy/Maximum Relevance 303 

Networks (MRNET) (41)), which mainly differ by the way inferred indirect 304 

relationships (so-called ‘edges’) are removed once the dependencies between all pairs 305 

of variables have been mathematically formulated. In such analyses, unwanted 306 

indirect interactions occur by default if there is strong correlation between 307 

biomolecule 1 and biomolecule 2, and between biomolecule 1 and biomolecule 3 in a 308 

three-node clique (i.e. a triplet of connected variables). 309 

 An MI value of zero means that there is no dependency (i.e. no information 310 

flow) between two variables, whereas an MI value of 1 indicates a perfect association 311 

between them, and therefore, a likely strong regulatory interaction between them. For 312 

each inferred dependency, a P-value is calculated based on the distribution of MI 313 

values between random permutations of the original dataset, thereby allowing the 314 

elimination of all non-statistically relevant dependencies by thresholding using an 315 

appropriate (user-defined) cut-off level. Importantly, the quality of the inferred 316 

interaction network depends on the arbitrarily selected probability cut-off. A small 317 

threshold (e.g. P=0.05) gives a high recall (i.e. fraction of true dependencies that 318 

could be inferred) but low precision, whereas a higher threshold (e.g. P=10-6) yields 319 

better precision (i.e. fraction of inferred dependencies that really are in the network) 320 

while suffering from a low recall. A further advantage of MI as an information-321 

theoretical measure of dependency between variables concerns its relatively low 322 

computational requirements for building an interaction network. Hence, MI is able to 323 
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handle very large data matrices with thousands of experimental variables, whereas 324 

most of the other more advanced techniques mentioned (e.g. Bayesian methods) can 325 

only deal with much smaller numbers of variables (<100) because of the high 326 

computational complexity.  However, in order to infer robust statistical associations 327 

based on MI a fairly large sample size is required (> 50-100 biological replicates), due 328 

to the required estimation of the (joint) frequency distribution of the connectivity. 329 

Interaction networks derived from such reverse engineering methodologies can be 330 

visualized and further analysed using various freeware software tools such as 331 

Cytoscape (55), Pajak (6), and BioLayout (18). A comprehensive list of visualization 332 

tools focused on interaction networks and their web-links has recently been reviewed 333 

(17). 334 

Up to now, these information-theoretic approaches have usually been 335 

employed on gene expression data only, due to the wealth of such data available. 336 

However, as physiologists have known for many decades, biological systems are 337 

usually more complex and multi-layered. Indeed, despite some popularist science 338 

writing to the contrary, genes on their own are merely permissive elements within 339 

biological systems (43). Further, it has been shown that when multiple types of data 340 

(e.g. copy number variants, protein or microRNA expression levels) are incorporated 341 

in the network inference pipeline, the accuracy of the learned network topology 342 

increases (49). Hence, at present there is a call for methodologies that can embed 343 

multiple data sources in a single computational framework. Our recent work has 344 

focused on methods that are able to handle large-scale, multi-dimensional genomic 345 

datasets (9, 21). 346 

 347 
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Topological analysis of inferred biological networks provides useful biological 348 

insight 349 

Up to now we have described some of the most widely used methodologies for 350 

inferring regulatory networks. However, an immediate challenge arises in interpreting 351 

these often large, complex networks that visually present as a ‘hairball’ (i.e. too dense 352 

a collection of connections to comprehend as a whole) (40). A simple solution, 353 

although not very objective, is to focus the analysis around a favourite gene(s). In this 354 

scenario, the investigator typically examines the manually selected sub-network in 355 

order to identify unknown or unexpected biological relationships, which in turn may 356 

be used to formulate new hypotheses. Such ‘discovery-led’ science may be useful 357 

when there is insufficient information to generate hypothesis. 358 

 Alternatively, the topological properties of the network can be used to identify 359 

interesting genes and sub-networks that can be interpreted. We and others have 360 

demonstrated the existence of a higher-level, modular organization in biological 361 

networks (47, 52, 54), i.e. components of biological systems that act in collaboration 362 

to carry out specific biological processes. Consequently, several modularization 363 

approaches have now been developed to help group subsets of cellular components 364 

based on a given property, such as topological structure or functional role. Such 365 

decomposition of a large complex network into relatively independent sub-networks 366 

(or ‘modules’) has been shown to be an effective way to deduce the underlying 367 

structure of the fully connected network containing many hundred variables (so-called 368 

‘nodes’), as each module can then be analysed independently. In addition, studies 369 

have demonstrated that such identified network modules can serve as better predictors 370 

of a physiological response than the classic biomarker discovery approach  (see 371 

Figure 1). 372 
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In biomolecular interaction networks, as well as sub-networks, nodes have 373 

different levels of connectivity (i.e. number of interactions with other nodes). It has 374 

been shown that such interaction networks have so-called ‘scale-free’ structure 375 

properties, as their node connectivity distribution fits a power law (4). Such a power 376 

law degree distribution implies that most of the connections between biomolecules is 377 

linked to a small number of highly connected nodes, such that a large proportion of 378 

the molecular state of a cell can be explained by a small subset of biomolecules (so-379 

called ‘hub’ nodes; e.g. a transcription factor that regulates many more genes than 380 

average). Hence, in biological networks a hub is often assumed to be a key component 381 

of a regulatory networks, hence important for the function of a cell/tissue under 382 

investigation. This assumption is supported by the fact that random node disruption 383 

does not significantly affect the network architecture, whereas deletion of hub nodes 384 

leads to a complete breakdown of the network structure (1). Hence, adjusting the 385 

spatial position of each node according to its interconnectivity has been shown to be a 386 

simple, yet effective way of visualizing large complex interaction networks (57). 387 

More advanced methods to extract information from complex networks exist 388 

that aim to identify functional modules (i.e. sub-networks of biomolecules that are 389 

linked to the same biological function), e.g. by integrating both physical interactions 390 

(i.e. experimentally validated protein-protein interactions) and mRNA expression data 391 

(27). In this context, an identified functional module represents a putative multi-392 

protein complex that is transcriptionally regulated in a specific experimental condition 393 

(e.g. treatment vs. control). Hence, by considering additional data on a different level 394 

of organization, one can potentially infer a clearer composite picture of the underlying 395 

biological function.  396 
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Finally, in order to generate objective hypotheses about biological processes 397 

controlled by a specific hub node or sub-network, functional enrichment analysis can 398 

be performed on all its direct neighbours (i.e. all the adjacent nodes that are directly 399 

connected to the hub) (25). Such enrichment analysis aims at reducing complexity by 400 

defining groups of molecules (represented by gene sets) that share similar biological 401 

functions (e.g. a class of adhesion molecules). To accommodate latest advances in 402 

knowledge, the different annotation databases used for this purpose (e.g. Gene 403 

Ontology (2) and KEGG (45)) are frequently updated by curators. Using software 404 

tools like the web-based application DAVID (11) or applications such as BiNGO (36) 405 

developed specifically for use with software visualization tools like Cytoscape, one 406 

can quickly determine whether any gene sets are statistically over-represented, thus 407 

generating hypotheses on the biological processes controlled by those factors outlined 408 

above. 409 

 410 

CASE STUDY: INFERENCE OF OXYGEN-DEPENDENT 411 

PATHWAYS IN SKELETAL MUSCLE 412 

The main purpose of this case study is to illustrate in a step-by-step manner the 413 

application of reverse engineering to integrate supra-cellular physiological measures 414 

and genome-wide expression profiling. From a more biological perspective we aim to 415 

identify a clinically relevant signature of hypoxia in skeletal muscles. 416 

This analysis uses two different datasets. The first is a publicly available dataset 417 

(GSE27536) representing a cohort of COPD patients and healthy controls matched for 418 

age and smoking history (10) (see Table S1 for subject characteristics), which 419 

includes gene expression profiling in vastus lateralis muscle and whole-body 420 

physiological variables (e.g. VO2max, minute ventilation, PaO2) (50)(61). The second 421 
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dataset represents an unpublished, genome-wide transcriptional response of mouse 422 

soleus muscle to a gradual decline in atmospheric oxygen concentration (GSE64076). 423 

Using the first dataset, representing the transcriptional state of skeletal muscles in a 424 

COPD cohort (Figure 2A), we first show how to infer connections between oxygen 425 

availability (e.g. VO2max), oxidative stress (protein carbonylation) and gene 426 

expression signatures (Figure 2A-C).  427 

Having defined an oxygen-related signature in the disease setting we then transpose 428 

these findings in a mouse model of gradual hypoxia (second dataset, Figure 2D-E). 429 

Here we use a different computational approach to develop a hierarchical dynamical 430 

model explaining the transcriptional response of oxidative leg muscles to a prolonged 431 

gradual reduction in blood oxygenation (hypoxaemia) (Figure 2F-G). The model we 432 

describe below validates the notion that the signature identified using the clinical 433 

study may be truly triggered by changes in oxygen availability. Moreover, the model 434 

contributes to the understanding of the transient events following oxygen depletion 435 

that cannot be observed using a cross-sectional clinical study. 436 

 437 

 438 

Step 1. Linking physiological measurements and gene expression data in the 439 

COPD cohort 440 

In order to reconstruct an interaction network spanning multiple levels of 441 

organization, we have utilised the following strategy that was developed earlier (61). 442 

1. Combining measurements from different data sources 443 

In order to combine gene expression data with whole-body physiological readouts, all 444 

variables need to have the same units of measurement (as the range of e.g. VEGF 445 

mRNA expression values is very different from that of VO2max). All such raw scale 446 
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units can be unified by simply ‘transforming’ each experimental variable to have the 447 

same dynamic range, e.g. this can be achieved by standardising measurements across 448 

samples to have a mean of 0 with a standard deviation of 1. Such an established 449 

approach, called z scoring, enables us to treat the physiological indicators as 450 

individual ‘nodes’ in the inferred interaction network with states (just as each gene on 451 

the array is treated). 452 

Definition of a biological framework for data-driven network inference   453 

The outcome of data-driven reverse engineering of biological networks, in the 454 

absence of any biological assumption(s), often provides results that are difficult to 455 

interpret due to the large number of inferred significant interactions. Thus, to reduce 456 

complexity of the problem, we decided to focus the analysis on the set of 457 

physiological parameters and genes encoding for enzymes in the central bioenergetic 458 

pathways (i.e. TCA cycle, oxidative phosphorylation, glycolysis) (see Table S2 for 459 

the full list of variables). The latter choice is reasonable considering the paramount 460 

importance of these molecular pathways in skeletal muscle adaptation. The overall 461 

strategy is therefore to identify biomolecules that are highly correlated (based on MI) 462 

with biologically important experimental variables. Such a focused analysis will 463 

generate multiple network modules of interacting biomolecules, each with a 464 

bioenergetic hub gene or physiological measurement at its centre. Two modules will 465 

be linked together if a specific gene is statistically linked to both hubs. 466 

 467 

2. Reverse engineering. 468 

In order to infer robust regulatory relationships between variables in the integrated 469 

multi-level dataset, we used the ARACNE algorithm. This choice was based on the 470 

large number of measured variables to be considered by the mathematical framework. 471 
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By combining all genes expressed in human skeletal muscle (>10,000 mRNAs) with 472 

the list of physiological variables we far exceed the number of variables that can be 473 

handled by more advanced network inference methods (e.g. Bayesian methods). 474 

Hence, we infer a static network without any obvious hierarchical organization. The 475 

result of an ARACNE run is an ‘adjacency matrix’ containing MI values for all 476 

pairwise interactions above the specified MI threshold, which can be visualized 477 

automatically in Cytoscape. 478 

 After calculating MI-based dependencies between all the different variables in 479 

our multi-level data matrix, all those inferred regulatory interactions with an MI value 480 

below 0.22 (corresponding to a P-value cut-off of 10-6) were removed. Such filtering 481 

of weaker statistical dependencies is an important step in the generation of a more 482 

sparse interaction network, which can more easily be interpreted by the investigator. 483 

The stringent P-value cut-off means that the remaining associations have been 484 

inferred with high precision at the cost of a lower recall rate. 485 

 486 

3. Network visualization  487 

Data visualized as a network are often easier to interpret than long lists of 488 

biomolecules and their associated statistical dependencies. Hence, the numeric output 489 

of ARACNE, which contains MI values for all pairwise associations, was imported 490 

into Cytoscape for visualization, a conventional way of analysing interaction 491 

networks. Briefly, we reconstruct the network neighbourhood of each of the 492 

bioenergetic ‘seed’ genes listed in Table S2 (i.e. all variables directly connected to 493 

them). The neighbouring variables can either be genes expressed in muscle and/or 494 

physiological variables. Figure 3 summaries key regulatory associations (based on 495 

MI) between this seed set of genes and their immediate neighbours.  496 
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 497 

4. Functional analysis of the network hubs 498 

We further explored whether the direct interacting neighbours of each central 499 

metabolism pathway mapped to functional categories (i.e. GO terms) as well as 500 

KEGG pathways. Notably, a marked enrichment of the different bioenergetic 501 

compartments was observed (Figure 3, boxes A-C) that clearly highlights the 502 

interconnected nature of the bioenergetic machinery, i.e. functionally related genes 503 

appear to be co-expressed. 504 

 505 

[Figure 3 to be inserted here] 506 

 507 

5. Biological interpretation 508 

The most important finding of the current analysis is that among the direct neighbours 509 

to each bioenergetic pathway, particularly the two oxidative ones, we noted a 510 

statistical over-representation of genes encoding histone deacetylase enzymes (i.e. 511 

HDAC and SIRT mRNAs). This observation is consistent with previous studies that 512 

have highlighted the importance of sirtuins in regulating metabolism (15, 22, 28). 513 

Further, the protein deacetylase SIRT3 that primarily is localized in the mitochondrial 514 

matrix was also significantly positively correlated to both arterial oxygen tension 515 

(PaO2) and oxygen uptake (VO2max). In support of deacetylation being an important 516 

control point, it was recently shown that Sirt3 knockout mice exhibit decreased 517 

oxygen consumption, thus affecting cellular respiration (28). Hence, besides the 518 

obvious oxygen-driven effect on aerobic pathways (as indirect measures of oxygen 519 

availability such as VO2max are linked to key genes in oxidative phosphorylation), the 520 

present network-based Systems Biology approach points to tissue hypoxia as being a 521 
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potential important player in modifying expression of deacetylase modifying enzymes 522 

in severe COPD patients with a muscle wasting phenotype. Our Systems Biology 523 

approach also negatively links protein carbonylation (an established proxy measure 524 

for oxidative stress; (58)) to Complex 1 and 3 in the electron transport chain (Figure 525 

3, bottom left part). The validity of such an association is further strengthened via 526 

functional enrichment analysis using DAVID, as a significant fraction of direct 527 

neighbouring genes to protein carbonylation is statistically associated to gene 528 

ontology (GO) terms representing cellular respiration. 529 

If we then focus on the genes in the glycolytic pathway (Figure 3, top right 530 

part), a high proportion of pro-inflammatory mediators/receptors (e.g. IL1B, IL1R1 531 

and TNFRSF21) are among the direct neighbours, as indicated by the enrichment of 532 

the ‘inflammatory response’ GO term (Figure 3, box A). Hence, hypoxia is pro-533 

inflammatory, as seen by more traditional observation methods (20). 534 

 Multi-scale network inference approaches, similar to that illustrated in Figure 535 

3, have proven very effective in generating robust hypotheses (e.g. 45). However, 536 

statistical associations may not represent causality, particularly when the inferred 537 

associations stem from steady-state measures. Thus, in order to validate our 538 

hypothesis that varying oxygen levels (represented by VO2max and PaO2) control the 539 

expression of epigenetic modifiers, we used a more sophisticated network inference 540 

algorithm that can learn the structure of networks from time-course data. We applied 541 

this dynamic inference approach to a murine model of hypoxia (Step 2).  542 

 543 

Step 2. Gene expression dynamics in response to tissue hypoxia 544 

Animal models are commonly used for studying the in vivo effects of hypoxia, for 545 

ethical reasons, where severe or prolonged hypoxaemia is induced and invasive 546 
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samples are required to explore mechanisms. Importantly, hindlimb skeletal muscles 547 

have been reported to alter metabolic phenotype and reduce fibre size in response to 548 

prolonged hypoxic stress in mice (53, 63), highlighting their potential relevance as a 549 

pre-clinical model of muscle wasting in COPD patients. In order to experimentally 550 

test the hypothesis derived from the clinical COPD network presented in Figure 3, we 551 

therefore exposed adult male C57/Bl6 mice to chronic systemic hypoxia for up to 2 552 

weeks, in order to simulate levels of hypoxaemia reported in COPD patients with 553 

advanced respiratory insufficiency. To capture the temporal effect of reduced oxygen 554 

tension on gene regulation, we sampled and gene profiled the soleus muscle (n=4) at 3 555 

different time-points (day 3, 7 and 14) following initiation of the gradual hypoxic 556 

insult (i.e. the O2 level was gradually lowered to 10% over the first week and kept 557 

stable during the second week) (Figure 2, bottom part). 558 

First, a high-level representation of the temporal transcriptional changes was 559 

performed using a variable reduction technique called principal component analysis 560 

(PCA) (Figure 4B). When plotting replicates of two variables against each other, it is 561 

relatively easy to see which is a better discriminating factor; visual inspection 562 

becomes increasingly difficult as the number of variables increase, hence the need for 563 

PCA. In essence, this method aims at ‘tilting’ the axes through the multidimensional 564 

data space, such that the first principal component accounts for as much of the 565 

variation in the original dataset as possible (the assumption is that the most important 566 

dynamics in the dataset are the ones with the largest variation). Our PCA revealed that 567 

the early dynamics of hypoxia is captured by the first principal component whereas 568 

the 2nd most important principal component (in terms of variance captured) separated 569 

the later time-points. Further, functional enrichment analysis of the differentially 570 

expressed genes (ANOVA, P<0.05) using DAVID (Figure 4A), highlighted several 571 
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important pathways/ontologies. Most striking was the enrichment of protein catabolic 572 

process and ubiquitin-mediated proteolysis among genes up-regulated at day 7 and 14, 573 

clearly suggestive of a transcriptionally regulated muscle wasting phenotype driven 574 

by the experimentally induced hypoxaemic state. 575 

State space models (SSMs) are a class of probabilistic graphical models  576 

(Koller and Friedman, 2009). SSM provides a general framework for analyzing 577 

deterministic and stochastic dynamical systems that can be measured/observed 578 

through a stochastic process. The SSM framework has been successfully used for the 579 

analysis of gene expression data (23, 51). In its simpler application the model 580 

formalises the effect of hidden, unmeasurable factors in specifying observed gene 581 

expression changes over time. The inclusion of these hidden factors is important since 582 

we cannot hope to measure all possible factors contributing to genetic regulatory 583 

interactions (e.g. levels of regulatory proteins as well as effects of mRNA and protein 584 

degradation).  585 

The next step was to apply state-space modelling to reverse engineer transcriptional 586 

network modules (i.e. representing discrete temporal dimensions) from our replicated 587 

murine time-course dataset. Such module-based reduction in complexity allows 588 

analysis of hundreds or even thousands of genes, as those with a similar temporal 589 

expression profile are aggregated into a transcriptional module. To allow construction 590 

of a near genome-level model, we took advantage of a newer approach that 591 

incorporates this concept of modularization (23). 592 

A state space model can reconstruct the topology of a network representing the 593 

systems dynamics, despite a relatively small number of time-points, by using 594 

biological replicates for each time-point (23). In order to reduce complexity, variables 595 

that do not change significantly are excluded from the modelling process. In this case 596 
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study, genes deemed to be significant by ANOVA at a 1% significance level, as well 597 

as all hub genes listed in Table S3, were included (931 variables in total). The hub 598 

genes were chosen to represent the different components in our interpretative model 599 

derived from the clinical COPD dataset (Figure 3). Finally, the experimentally set 600 

oxygen level was used as an independent variable. 601 

 602 

[Figure 5 to be inserted here] 603 

 604 

 Based on unsupervised clustering using HOPACH within the software 605 

programming environment R (35), we identified 8 distinct gene clusters with similar 606 

expression profiles. Hence, to model the effect of hypoxaemia on the skeletal muscle 607 

transcriptome the hidden state dimension was set to 4, as each inferred module 608 

contains both a positive (+) and a negative (-) component.  609 

The hierarchical dynamic model in 4 temporal dimensions shows that modules 610 

1 and 2, which sit on the highest level of hierarchy (i.e. precede others in time), were 611 

enriched in GO terms related to muscle contraction, bioenergetic pathways, and 612 

inflammation among others (Figure 5). Interestingly, the experimental oxygen 613 

concentration was represented in module 1(-) whereas two deacetylases SIRT3 and 614 

SIRT5 were found in module 2(-). A negative influence is observed of module 1 on 615 

module 3, which is located further down the temporal hierarchy. Module 3(+) is 616 

highly enriched in inflammatory processes whereas its negative counterpart mainly 617 

represents two key signalling pathways (mTOR and insulin). At the lowest temporal 618 

level we find module 4, which is enriched in GO terms related to muscle 619 

differentiation, tissue remodelling and blood vessel development. Interestingly, three 620 

HDACs are represented in module 4(+) (Figure 5). Figure 6 represents a more 621 
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focused version of Figure 5, highlighting the most significant interactions between 622 

components in the four inferred modules from Figure 5. 623 

 624 

[Figure 6 to be inserted here] 625 

 626 

 We therefore conclude that the inferred dynamic model using a state space 627 

modelling approach appropriately recapitulates the interpretative model advanced in 628 

Figure 3. In addition, it identifies oxygen at the highest level of hierarchy, whereas 629 

key effector functions controlled by oxygen such as inflammation and muscle 630 

differentiation are downstream in the temporal hierarchy. 631 

 632 

CONCLUSIONS 633 

The aim of this brief review is to provide an intuitive overview on data-driven 634 

‘learning’ of biological pathways, linking molecular and physiological readouts. We 635 

used a case study to make it easier for experimental biologists to see the potential of 636 

computational biology to provide interpretative models of complex patterns, and 637 

stress that the identification of general properties of a system from a genome wide 638 

analysis of a molecular state of a system is a very powerful approach. 639 

The ability to generate omics data with relatively accessible technologies offer an 640 

unprecedented opportunity to study how genetic information is used to control 641 

complex biological processes and their interaction. Until now we have only been able 642 

to understand a fraction of that complexity. The computational methods described in 643 

this review are designed to support this effort in the measure that they help isolate 644 

from these large datasets molecular signatures that correlate to phenotypic outcome. 645 

With the help of computational biology, we are therefore able to develop hypothesis, 646 
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which can be experimentally validated. In this context data-driven biology is not in 647 

contraposition with hypothesis-driven research. Instead it is a tool that support 648 

hypothesis generation in the event that the data is too complex to be interpreted solely 649 

using common sense. This approach is well developed in other areas of science, such 650 

as cancer biology where there is a vast literature showing that important hypothesis 651 

can be generated from modelling of these large datasets (12, 62). 652 

In this manuscript, we demonstrate the development of an integrative workflow that 653 

incorporates measurements from different levels of cellular and molecular 654 

organization using a case study representing muscle wasting in COPD. The outline 655 

provides an exemplar where individual steps can be modified according to the type of 656 

data at hand and addition data types added. For example, in contrast to established 657 

gene expression microarrays, techniques for proteomics and especially metabolomics 658 

are still under development. Once it is possible to measure the whole proteome and 659 

metabolome of a sample, systems identification pipelines will clearly benefit from 660 

these omics techniques. 661 

The specific findings in the case study relate to the definition of an oxygen dependent 662 

signature in COPD. Such signature (exemplified in Figure 3) is static and entirely 663 

based on statistical inference. The model is therefore based only on correlation 664 

between a series of patient biopsie snapshots, and therefore does not allow any 665 

inference of causality. The use of a mouse model of gradual hypoxia allowed us to 666 

demonstrate that a signature inferred from the clinical cohort is indeed modulated by 667 

experimental reduction in oxygen levels. Moreover, the development of a 668 

mathematical model identifies oxygen as the most upstream event as an emergent 669 

property. This may appear an obvious finding but, from a methodological perspective, 670 

validates the analytical approach. 671 
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The data we have used in this case study is gene expression profiling, and as such is 672 

representative of available datasets. This has several limitations. The first is that 673 

models including multiple levels in the expression of genetics information (e.g. 674 

epigenetics, microRNA, proteomics, metabolomics, etc.) may better represent 675 

biological complexity. However, current computational methods are inadequate to 676 

represent properly the interaction between these levels. Moreover, time course data 677 

that rely on disruptive sampling strategies are not true time course experiments. As 678 

the new functional genomics technologies develop further, as well as novel 679 

approaches to model the interaction between different layer of biological organisation, 680 

we expect that the efficacy of data-driven approaches will increase further. 681 

  682 



 29 

Figure legends 683 

Figure 1: Schematic representation of the process involved in modelling a biological 684 

system by integrating knowledge from various sources, and complex multi-level 685 

datasets. The process can be conceptually subdivided into four distinct yet 686 

interconnected approaches (A-D). The experimental data used can either be novel 687 

multivariate data generated in your own (wet) laboratory or taken from a public 688 

repository. These may then be used to identify predictive biomarkers, i.e. variables 689 

that are predictive of a defined outcome (e.g. response to exercise training), and also 690 

to inform development of important networks that infer such outcomes; experimental 691 

data and other source of biological knowledge may also be useful in refining these 692 

representation of complex interactions. Such networks may in turn aid biomarker 693 

discovery, but are an essential precursor to computational models that are able to 694 

explore underlying molecular mechanisms; again, knowledge of specific biological 695 

issues may help in their refinement. Finally, incorporation of these models into larger 696 

scale analyses offer the potential for in silico experimentation, whereby e.g. the effect 697 

of different therapeutic interventions on disease outcome may be tested. 698 

 699 

Figure 2: Schematic representation of the analysis strategy used in the case study, 700 

highlighting how the inferred static multi-scale network from the clinical COPD 701 

cohort (Fig 2A-C) can be bridged to the inference of a dynamical network 702 

representing the temporal progression of events following an experimental challenge 703 

(hypoxic exposure) in a murine animal model (Fig 2D-G). Having identified a clinical 704 

condition with known outcome (exercise intolerance in patients with respiratory 705 

disease), we could target unknown mechanisms by focussing on one likely source of 706 

functional limitation  (skeletal muscle dysfunction ± central limitation on O2 supply), 707 
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and generate data characterising the phenotype. Both genomic and physiological 708 

readouts were used to construct a network of inferred interactions, which was then 709 

interrogated to identify statistically robust linkages among broad biological functions. 710 

While very useful in providing a list of useful biomarkers, there remains a potential 711 

limitation with single point associations. The dynamic nature of relationships is 712 

captured by repeated measures across a suitable time scale (which will vary for 713 

different molecular, physiological and structural responses) using an animal model of 714 

respiratory distress, where the transcriptome-based model demonstrated the central 715 

importance of oxygen in the response. 716 

 717 

Figure 3: Graphical representation highlighting putative regulatory associations 718 

(significant correlation between two factors is shown as a dotted line) that likely 719 

represent robust interactions, based on high mutual information values. The focus is 720 

on central metabolism pathways (i.e. glycolysis, TCA and OXPHOS, respectively) 721 

and their immediate neighbours. The grey boxes define functional enrichment of the 722 

different bioenergetic compartments based on direct neighbours. Individual genes of 723 

relevance are grouped into modules with others of related function, as are 724 

physiological readouts that may be treated in a similar manner for statistical analysis. 725 

C1-5: the different complexes in the electron transport chain. The value of such an 726 

approach is in providing a detailed overview of a complex interaction network, 727 

reducing the huge number of potential factors into groups of defined function, and 728 

offering a limited number of candidates whose utility as biomarkers or therapeutic 729 

targets may be experimentally verified. 730 

 731 
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Figure 4: High-level representation of temporal transcriptional changes in the murine 732 

model of hypoxia. A) Graphical representation of the pre-clinical experimental design. 733 

The oxygen level was gradually decreased from 21% to 10% during the first week and 734 

mice were housed for another week at this oxygen concentration. B) Principal 735 

component plot highlighting the transcriptional dynamics caused by the hypoxic 736 

challenge. C) Hierarchical clustering using mRNA expression levels of genes 737 

modulated by hypoxia (P<0.05). Each row represents a transcript and each column 738 

represents a sample. Red and green colours indicate expression levels above and 739 

below the median value of the distribution of signal, respectively. Using solid yellow 740 

lines we have subdivided genes into overall trends in order to help the reader. 741 

Enriched functional terms within these are listed next to the heatmap. 742 

 743 

Figure 5: The hierarchical dynamic state-space model identified 4 modules (x-axes 744 

define length of hypoxic exposure), each characterised by two separate transcriptional 745 

profiles: plus and minus, representing up- and down-regulation, respectively. The 746 

hierarchical position of the modules represents the estimated temporal structure of the 747 

network. Functionally enriched GO terms  (regular text) as well as key genes (italics) 748 

are identified next to the relevant module. Blue arrows represent temporal repression 749 

whereas red arrows represent temporal induction. The numeric value next to each 750 

arrow represents the estimated coefficient. 751 

 752 

Figure 6: A higher resolution representation of Figure 5, highlighting the most 753 

significant gene interactions between components in the four inferred modules. Lines 754 

represent factor interactions based on mutual information (blue represents temporal 755 

repression, red represents temporal induction). Genes are colour coded for broad 756 
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functional categories (red=cytokines; blue=epigenetic modifiers; green=aerobic 757 

metabolism; purple=muscle differentiation; yellow=cell-interaction). 758 

 759 

  760 
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