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Abstract—Due to the difficult characterization of the propa-
gation model, most studies on tracking of mobile nodes assume
the correct knowledge of the power-distance gradients or the
path-loss exponents (PLEs). In this paper, we first investigate the
impact of erroneous PLEs on positioning of a wireless nodes when
both distance and bearing measurements are available. Thus, an
analytical expression of the mean square error (MSE) in location
estimation is derived in case of erroneous PLEs. Second, we
propose a novel online PLE estimation and tracking algorithm
in dynamic environments. The proposed algorithm estimates the
PLE of individual links at every time-step using the generalized
pattern search (GenPS) algorithm. The PLE estimates update
the observation vector which is used in a Kalman filter (KF)
and a particle filter (PF) for tracking. Simulation results show
that the tracking performance degrades drastically with an
incorrect assumption for the PLE values. Further simulations
show that tracking with PLE estimation performs considerably
better compared to tracking with incorrectly assumed PLEs.

I. INTRODUCTION

Mobile target tracking is an important research topic that has

become essential for many new applications. The observations

from fixed sensor nodes (SNs) with known locations can

be used for bearing and distance estimation. The simplest

technique for distance estimation is the received signal strength

(RSS) technique as no additional hardware is required. The

accuracy of the location estimate via RSS is highly dependent

on knowledge of the path loss exponents (PLEs) of individual

target node (TN) to SN links. Indeed, the PLE value for free

space is two. However in highly cluttered environments this

value could range from two-five [1]. The assumption of having

the correct information about PLEs is an oversimplification.

Practically this information is not available, especially in

uncertain propagation environments. One way to estimate the

PLE is via an offline measurement campaign. This however

is impractical in dynamic environments i.e., environments

in which the PLEs change constantly in time e.g., due to

mobility of the TN. Some recent studies jointly estimate the

location coordinates and the PLE for localization [2], [3], [4]

for RSS observations only. However, these studies assume

the same PLE value for every SN-TN link, this again is an

oversimplification of real conditions. In this paper, we assume

unknown and different PLEs for each SN-TN link. We use

a hybrid angle of arrival-received signal strength (AoA-RSS)

signal model, presented in our previous work in [5]. The

angle of arrival of the received signal can be estimated by

a rotating beam of radiation [6] or by using a multi-element

array antenna [7] and using techniques such as Multiple Signal

Classification (MUSIC) [8] or estimation of signal parameters

via rotational invariance techniques (ESPIRT) [9].

In order to underline the impact of incorrect PLE assump-

tion on location estimates, we first derive a closed form ex-

pression of the mean square error (MSE) of location estimates

with different and incorrect PLE values. Secondly, we propose

an online joint PLE and tracking technique when both bearing

and RSS measurements are available. This is achieved by mod-

ifying the observation model into a multivariable optimization

problem and then applying the generalized pattern search

(GenPS) algorithm to estimate the PLEs. The estimated PLEs

are assumed to be changing at every time step and tracking is

performed via a Kalman filter (KF) [10] and a particle filter

(PF) [11]. Although, the observations are linearized before fil-

tering, the noise in the linearized observation does not remain

Gaussian. Extensive simulations are performed to compare the

performance of both filters with inaccurate PLE assumption

and with estimated PLEs. It is shown via simulations that

the online PLE estimation considerably improves the tracking

performance of both KF and PF. However, due to the non-

Gaussian nature of the linearized observation model the PF

outperforms the KF.

The rest of the paper is organized as follows: Section

II presents the linearized hybrid AoA-RSS signal model.

In section III, we derive the MSE expression on location

estimation for incorrect PLEs. In section IV, we present the

tracking algorithms. PLE estimation via the GenPS algorithm

is presented in section V. Finally simulation results are dis-

cussed in section VI which are followed by conclusion in

section VII.

II. THE LINEARIZED HYBRID AOA-RSS SIGNAL MODEL

In this section the linearized AoA-RSS signal model is

briefly reviewed.

For later use, we define the following notations. Rn repre-

sents the set of n dimensional real numbers; Z
n represents

the set of integers of dimension n; ‖ . ‖ represents the

Euclidean norm; tr(M) represents the trace of the matrix M;

(.)T represents the transpose operation; En(.) represents the

expectation operation with respect to n; (M)ij represents the

element at the ith row and jth column of matrix M; In is the



identity matrix of dimension n; N (µ, σ2) denotes the normal

distribution with mean µ and variance σ2; U [a b] represents

a uniform distribution between a and b.
With both distance and angle measurements at hand, the

coordinates of the TN at the tth time step can be computed

as follows

x̂t = x̄i + d̂it cos θ̂itδi, (1)

ŷt = ȳi + d̂it sin θ̂itδi, (2)

where x̄i, ȳi are the coordinates of the SNs for i = 1, . . . , N.
The estimated distance d̂it can be readily extracted from the

received path-loss at the ith SN at time-step t, Lit.

Lit = L0 + 10αit log10 dit + nit, (3)

For ease of understanding we will drop the subscript t.
In (3), L0 is the path loss at reference distance d0, nor-

mally taken as 1m. αi is the PLE associated with ith SN .

di =

√

(x̄i − x)
2
+ (ȳi − y)

2
, ni is the zero mean Gaussian

random variable representing the log-normal shadowing i.e.,

ni ∼ N
(

0, σ2
ni

)

. The path-loss is the difference between the

transmit power P at the TN and the received power Pi at the

ith SN and is given by

Li = 10 log10 P − 10 log10 Pi. (4)

The observed path-loss ẑi from d0 to di is given by Li −L0,

and can be represented as

ẑi = γαi ln di + ni, (5)

for γ = 10
ln 10 . To obtain the unbiased distance estimate from

the observed path-loss, (5) can be written as

d̂i = di exp

(

ni

γαi

)

κi, (6)

where κi is the unbiasing constant for range estimate and is

given by

κi = exp

(

−
σ2
ni

2 (γαi)
2

)

. (7)

On the other hand, the estimated angle of arrival θ̂i of the

impinging signal is given by

θ̂i = arctan

(

(y − ȳi)

(x− x̄i)

)

+mi, (8)

where mi is the zero mean Gaussian random variable repre-

senting the noise in angle estimate i.e., mi ∼ N
(

0, σ2
mi

)

.
With the above observations, (1) and (2) can be written in a

vector form as

u =A†b̂, (9)

where u = [x̂ ŷ]
T

is the TN coordinates, A† is the

Moore–Penrose pseudo-inverse of A and A = diag (e1, e1)
where e1 is a column vector of N ones. The observation matrix

b̂ is given by

b̂ =
[

b̂x b̂y

]T

, (10)

b̂x=







x1 + d̂1 cos θ̂1δ1
...

xN + d̂N cos θ̂NδN






, b̂y=







y1 + d̂1 sin θ̂1δ1
...

yN + d̂N sin θ̂NδN






,

where δi is the unbiasing constant for the hybrid AoA-RSS

signal and is given by

δi = κiρi, (11)

where ρi is the unbiasing constant for angle estimate given by

ρi = exp

(

σ2
mi

2

)

.

III. THEORETICAL MSE FOR ERRONEOUS PLES

In this section, we derive the theoretical MSE to observe the

impact of incorrect PLE assumption on location estimation.

First we use the observed path-loss (5) to extract the range

between SN and TN when the true values of PLEs are not

known. Using the erroneous PLE values we have from (5)

zi
γα̌i

=
αi

α̌i

ln di +
ni

γα̌i

, (12)

where α̌i is the incorrect PLE for the ith SN i.e., α̌i =αi+ei,
and ei represents the error in PLE associated with ith SN.

Taking exponential on both side of (12), the unbiased distance

estimate using and erroneous PLE is obtained as

ďi = dβi

i exp

(

ni

γα̌i

)

Λi, (13)

where βi = αi/α̌i and Λi = exp

(

−
σ2

ni

2(γα̌i)
2

)

.

For the aforementioned hybrid AoA-RSS signal model, (13)

is taken as the distance estimate in (10) i.e., we use ďi instead

of d̂i. Also the unbiasing constant δi is changed to δ̌i = Λiρi.
The theoretical MSE is then given by [12]

MSE= tr

{

En,m

[

(ǔ− u) (ǔ− u)
T
]}

, (14)

where ǔ is the estimated location using noisy angle estimates

and noisy range estimates and incorrect PLEs, while u is the

location with no noise and correct PLE values. Thus (14) can

be simplified to

MSE (u) = A†Cα (u)A†T , (15)

where Cα (u) = En,m

[

(

b̌− b
) (

b̌− b
)T
]

, for b repre-

senting the noise-free observation, b̌ representing the noisy

observation and incorrect PLEs and En,m is the expectation

w.r.t. shadowing and noise associated with angle estimates.

The covariance Cα (u) can be partitioned into separate sub-

matrices as follows

Cα (u) =

[

Cα (x) Cα (xy)
Cα (xy) Cα (y)

]

. (16)

Cα (x), Cα (y) and Cα (xy) reduces to (17), (18) and (19),

respectively, for i = j and (20), (21) and (22), respectively

for i 6= j. Derivation is given in the Appendix.



Cα (x)ii = d2βi

i

(

σ2
ni

(γα̌i)
2 + σ2

mi

)

+
d2βi

i

2
cos (2θi) exp

(

σ2
ni

(γα̌i)
2 − σ2

mi

)

+ (di cos θi)
2 − 2did

βi

i cos2 θi (17)

Cα (y)ii = d2βi

i

(

σ2
ni

(γα̌i)
2 + σ2

mi

)

−
d2βi

i

2
cos (2θi) exp

(

σ2
ni

(γα̌i)
2 − σ2

mi

)

+ (di sin θi)
2 − 2did

βi

i sin2 θi (18)

Cα (xy)ii = d2βi

i cos θi sin θi exp

(

σ2
ni

(γα̌i)
2 − σ2

mi

)

− 2dβi

i cos θi sin θi + d2i cos θi sin θi (19)

Cα (x)ij =
(

dβi

i d
βj

j − dβi

i dj − did
βj

j + didj

)

cos θi cos θj (20)

Cα (y)ij =
(

dβi

i d
βj

j − dβi

i dj − did
βj

j + didj

)

sin θi sin θj (21)

Cα (xy)ij =
(

dβi

i d
βj

j − dβi

i − d
βj

j + didj

)

cos θi sin θj (22)

IV. TARGET TRACKING

A target moving in a two dimensional field can be described

by its position and velocity in the x, y plane. Numerous motion

models are proposed in the literature, these include random

walk model, the constant velocity model and Singer types

models [13]. In this paper, we consider the basic constant

velocity model to describe the motion of the TN. Both the KF

and PF consist of the prediction and the measurement step.

A. Prediction Step

The motion of the TN in a network is represented by the

state equation

v̄t = Sv̂t−1 + rt, (23)

where S is the transition matrix given by

S =









1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1









. (24)

v̄t = [xt, yt, vx, vy]
T

is the state vector, where x and y
are the coordinates, vx and vy are the velocities in x and

y direction respectively at time step t. v̂t−1 is the output

of measurement step at time step t − 1; rt represents the

process noise, which we assumed to be a zero mean Gaussian

white noise with covariance Qt i.e., rt ∼ N (0,Qt). Ts is the

sampling time interval between two consecutive time steps.

B. Measurement Step

Measurements at the SNs are represented by

b̂t = Hv̄t + ct. (25)

For an AoA-RSS signal model, H = [diag (e1, e1) ,

diag (e0, e0)] , e1 and e0 are the column vectors of N ones

and N zeros, respectively and

b̂t =
[

x1 + d̂1t cos θ̂1tδ1, . . . , xN + d̂Nt cos θ̂NtδN

y1 + d̂1t sin θ̂1tδ1, . . . , yN + d̂Nt sin θ̂NtδN

]T

(26)

which is the same observation matrix as (10). Thus d̂it, θ̂it
are the distance and angle estimates respectively at time step

t. ct represents the measurement noise with zero mean and

covariance Ct, given by

Ct =

[

Ct (x) Ct (xy)
Ct (xy) Ct (y)

]

, (27)

Ct (x), Ct (y) and Ct (xy) are given by (32), (33) and (34),

respectively for i = j and their values are zero for i 6= j, and

are derived by the authors in [5]. In the measurement step,

the output of the predicted step is refined by exploiting the

observations b̂t and the covariance Ct.

C. Kalman Filter

The KF is one of the most important and common data

fusion algorithms in use today. The KF uses the fact that the

state of the system at time t is evolved from the prior state at

time t − 1 according to (23). In the prediction step, starting

from the initial state v̂0 and initial error covariance matrix

W0, the KF propagates and updates v̂0 according to (23) and

W0 according to (28) at each time step.

W̄t = SWt−1S
T +Qt. (28)

The measurement step is also two fold, the Kalman gain is

calculated using

Kt = W̄tH
T
(

HW̄tH
T +Ct

)

. (29)

Once the Kalman gain is calculated, the estimates from

predictions step are updated using

v̂t = v̄t +Kt

(

b̂t −Hv̄t

)

(30)

and

Wt = (I4 −KtH)W̄t, (31)

where I4 is a 4 × 4 identity matrix. Equation (31) becomes

the input for the prediction step at time step t+ 1.



The KF is an optimal estimator when the observation model

is linear and all noises are Gaussianly distributed. In case

of nonlinear models several variants of KF like extended KF

(EKF) and unscented KF (UKF) [14] are used.

The step by step operation of the KF is shown in

Algorithm∼2.

D. Particle Filter

The PF is a recursive sequential Monte Carlo estimation

algorithm. The PF approximates the posterior probability den-

sity function (PDF) of the state vector with random samples,

called particles and updates it iteratively as new information

(observation) is received. The estimation accuracy is directly

proportional to number of particles Ns. PF does not require the

observation model to be linear nor the noise to be Gaussian.

The recursive Bayesian formula to obtain the posterior PDF

p (v1:t | b1:t) from p (v1:t−1 | b1:t−1) is given by

p (v1:t | b1:t) =
p (bt | vt) p (vt | vt−1)

p (bt | b1:t−1)
p (v1:t−1 | b1:t−1) ,

(35)

where b1:t is the set of observation from time step 1 to time

step t. The posterior PDF is approximated by a set of Ns

weighted particles.

p (vt | bt) = ΣNs

j=1w
j
t δ
(

vt − v
j
t

)

, (36)

where vjt and wj
t are the particles and weights, respec-

tively. These particles are generated from the proposal density

f (vt | bt) and the weights are given by

wj
t =

p
(

v
j
t | bt

)

f
(

v
j
t | bt

) . (37)

The proposal density is chosen as

f (vt | bt) = f (vt | vt−1,bt) f (vt−1 | bt−1) . (38)

From (35), (37) and (38) we have

wj
t ∝

p
(

bt | v
j
t

)

p
(

v
j
t | v

j
t−1

)

f
(

v
j
t | v

j
t−1,bt

) wj
t−1. (39)

If the prior p (vt | vt−1) is selected as proposal density then

(39) is reduced to

wj
t ∝ p

(

bt | v
j
t

)

wj
t−1. (40)

The marginalized density p (vt | b1:t) is given by

p (vt | bt) = ΣNs

j=1w
j
t δ
(

vt − v
j
t

)

, (41)

which gives us the state vector at time step t.
PF faces degeneracy problem in which most of the particles

are given negligible weights. As a results only a few particles

are available to approximate the posterior PDF. In order to

avoid degeneracy, a resampling technique is used. If the

number of effective particles Neff given by (42) drops below

a certain threshold Nthr, resampling selects Ns particles from

the current particles with repetition, such that particles with

higher weights are selected more frequently than the particles

with lower weights. These particles replace the current set of

particles and all weights are equated to 1/Ns.

Neff =
1

ΣNs

j=1

(

wj
t

)2 . (42)

The step by step operation of the PF is shown in algorithm

3.

V. PLE ESTIMATION

In this section, we propose a novel approach that estimate

the PLEs for all links, at every time step, in a dynamic

environment. For the observation vector b̂ in (9), the cost

function, for unknown PLE vector is given by

Ω (u,α) =‖ Au− b ‖2, (43)

where α is the unknown PLE vector given by, α =
[α1, ..., αN ]

T
. The linear least squares (LLS) solution of u

is given by u = A†b. After replacing it in (43) we obtain

Ω (α) =
[

[bx by]
(

I2N −AA†
)

[bx by ]
T
]

, (44)

where bx =
[

exp
(

ẑ1
γα1

)

cos θ̂1δ1, ..., exp
(

ẑN
γαN

)

cos θ̂NδN

]T

and by =
[

exp
(

ẑ1
γα1

)

sin θ̂1δ1, ..., exp
(

ẑN
γαN

)

sin θ̂NδN

]T

and I2N is an identity matrix of dimension 2N. Equation (44)

now consists of only one unknown vector i.e., α. Solution to

which is obtained as follows

α̂ = argmin
α

{Ω (α)} . (45)

Equation (45) is a N dimensional optimization problem, which

can be solved by conventional brute force method. However,

it has a high computational cost especially for large number

of SNs. To avoid this cost, in this paper we minimize (44) by

the generalized pattern search (GenPS) technique [15] which

is described in the following sub-section.

A. Generalized Pattern Search

Here we briefly describe the GenPS method in the context

of PLE estimation. GenPS belongs to the family of the direct

search or derivative-free optimization techniques originally

proposed in [15]. Initializing from an initial bounded guess

α0 ∈ [2 5] and an initial step size ∆0 > 0, the GenPS

iteratively updates the α
k such that Ω

(

α
k+1
)

< Ω
(

α
k
)

.
Each update evaluates the cost function at a point on the

mesh Mk with the updated mesh point closer to the minimum

of Ω (α) . The iterated steps could operate as a SEARCH

(optional) or POLL step. The mesh centered at αk is defined

as follows

Mk =
{

α
k +∆kDz : z ∈ Z

q
}

, (46)



Ct (x)ii =
d2it
2

exp

(

σ2

ni

(γαit)
2
+ σ

2

mi

)

+
d2it
2

cos (2θit) exp

(

σ2

ni

(γαit)
2
− σ

2

mi

)

− (dit cos θit)
2

(32)

Ct (y) ii =
d2it
2

exp

(

σ2

ni

(γαit)
2
+ σ

2

mi

)

−

d2it
2

cos (2θit) exp

(

σ2

ni

(γαit)
2
− σ

2

mi

)

− (dit sin θit)
2

(33)

Ct (xy)ii=d
2

it cos θit sin θit

[

exp

(

σ2

ni

(γαit)
2
− σ

2

mi

)

− 1

]

(34)

Ct (x) ij = 0, Ct (y)ij = 0, Ct (xy)ij = 0

Algorithm 1 : Initialization and GenPS

for time step t = 1,...
for i = 1, ..., N

estimate the path-loss ẑti and the AoA θ̂ti .
end

for k = 1, ...
i. Initialize α0 ∈ [2 5], ∆0,τ, ξ, ν.
ii. Evaluate cost function with all poll points from poll

set
{

α
k +∆kd̄, d̄ ∈ D

}

.
iii-a. If improved poll point is found, accept αk+1, set

∆k+1 = ξ∆k.
iii-b. If improved poll point cannot be found, set

α
k+1 = α

k, set ∆k+1 = ∆k

ξ
.

Repeat until Ω
(

α
k+1
)

− Ω
(

α
k
)

< τ.
end

Goto algorithm 2 or algorithm 3.

end

where D ∈ R
n is a matrix whose columns positively span R

n,

q is the cardinality of D. Also D must be a product D = GZ,
where G ∈ R

n and is non singular while Z ∈ Z
n×q. For

the present problem, we have G = 1
ν
I
N

where ν > 1 and

represents the precision of the mesh. At the kth POLL, the

objective function is evaluated at neighboring poll points given

by

Poll points =
{

α
k +∆kd̄, d̄ ∈ D

}

. (47)

If the evaluation of the cost function at any of the poll points

during the kth iterations decreases its value then the poll αk+1,

is accepted and the length of the step size is increased ∆k+1 =
ξ∆k for any scalar ξ > 1. Otherwise if the poll is rejected then

α
k+1 = α

k while the length of the step size is reduced by the

same factor i.e., ∆k+1 = ∆k

ξ
. The algorithm is repeated until

a stopping condition is reached e.g., Ω
(

α
k+1
)

−Ω
(

α
k
)

< τ ,

where τ is some small value.

By exploiting the GenPS technique, the computational load

significantly decreases and (44) is minimized with a few

iterations. Once the estimated PLEs are available, they are

used to update (26) which in turn serves as the updated

observation for KF or PF for tracking of the TN. The step

by step procedure for tracking using estimated PLEs is shown

in algorithms 1, 2 and 3.

Algorithm 2 : Kalman Filter

Generate initial state v0 and initial Covariance matrix W0.

i. Prediction.

Predict v̄t by propagating v0 through the motion model.

v̄t = Sv̂t−1 + rt

Predict W̄t by

W̄t = SWt−1S
T +Q

ii. Measurement update

Estimate Kalman gain

Kt = W̄tH
T
(

HW̄tH
T +C

)

Update the predicted state vector and predicted error covari-

ance matrix.

v̂t = v̄t +Kt

(

b̂t −Hp̄t

)

Wt = (I4 −KtH)W̄t

Set t = t+ 1. Go to Algorithm 1.

VI. SIMULATION RESULTS

We consider a fully connected 2-dimensional network of

150m × 150m with a single TN, with unknown velocity,

direction and coordinates. We also consider N SNs at the

boundary of the network. All simulations are run ǫ times

independently.

In Fig.1, the theoretical root-MSE (RMSE) and simulation

RMSE of location estimates are compared in a scenario

for erroneous PLE values. For simplicity only two SNs are

considered. Two different values i.e., α1 = 2.5 and α2 = 3 are

considered for each SN-TN link. The error e1 = α̌1 −α1 and

e2 = α̌2−α2 in the PLEs are shown in the x and y coordinates

in the figure while the z coordinates represents the RMSE

in location estimate. The shadowing variance is σ2
ni

= 1 dB
∀ i while the error in angle estimates is σ2

mi
= 10 ∀ i. The

simulation results are averaged over ǫ = 500 independent runs.

It is clear from the plot that even a small error in PLEs has

a significant impact on localization accuracy. It is also seen

that incorrect PLE assumptions that are underestimated have

a greater impact on location inaccuracy than overestimated

values. Futhermore, it is evident from Fig. 1 that the theoretical

MSE accurately predicts the system performance.

Fig. 2 shows the true trajectory of TN motion and per-



Algorithm 3 : Particle Filter

Initialization:

Generate samples
{

v
j∗
0 ∼ N

(

µ0, σ
2
0

)

}

, j = 1, ..., Ns. Set

wj∗
0 = 1

Ns
.

i. Prediction:

For j = 1, ..., Ns, predict according to

v
j
t = p

(

vt | v
j∗
t−1

)

ii. Weight update

Update the weights according to

wj
t = p

(

bt | v
j
t

)

wj
t−1

Normalize weights by

w̃j
t =

wj
t

ΣNs
j=1w

j
t

iii. Estimate Output

The state is estimated by the mean of posterior i.e

v̂t = E [p (vt | bt)]

or

v̂t =
1

Ns

ΣNs

j=1w̃
j
tv

j
t

resample if required. Set t = t + 1 and wj
t = 1

Ns
. Go to

algorithm 1.
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Fig. 1. Performance comparison between simulation and analytical MSE.

TN = [36 19]T , SNs = [0 0, 0 50]T , ei = α̌i − αi, α1 = 2.5, α2 = 3,
N = 2, σ2

ni
= 1 dB∀ i , σ2

mi
= 10 ∀ i, ǫ = 500.

formance comparison of tracking via KF for erroneous PLE

values and estimated PLEs. The true values of the PLEs

are considered to be changing at every time step and drawn

randomly from a uniform distribution i.e., α ∈ U [2 5] . The

erroneous PLEs are generated by adding a random noise with

a Gaussian distribution of variance σ2
α and mean zero at every

time step. However, it is assumed that the realization of the

added noise does not change within each time step. For Fig.

2, σ2
α = 0.2. The estimated angle and the shadowing variance

is kept fixed at σ2
mi

= 50 and σ2
ni

= 5 dB ∀ i respectively.
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Fig. 2. Performance comparison of KF using erroneous PLEs and estimated
PLEs. Ts = 1sec, σ2

mi
= 50 ∀ i, σ2

ni
= 5 dB ∀ i , α ∈ U [2 5] , σ2

α = 0.2,
ǫ = 1, ∆0 = 0.1, v = 10, ξ = 2, τ = 3, ǫ = 1, N = 4.
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Fig. 3. RMSE comparison of tracking via KF using estimated and erroneous
PLE values. Ts = 1 sec, σ2

mi
= 50 ∀ i, σ2

ni
= 5 dB ∀ i , α ∈ U [2 5] ,

σ2
α = 0.5, ∆0 = 0.1, v = 10, ξ = 2, τ = 3, ǫ = 30, N = 4.

The GenPS algorithm estimates the PLEs before the filtering

process at every time step of Ts = 1s, the parameters of

the GenPS algorithm are given at the bottom of Fig. 2. It

is evident from the trajectories in Fig. 2 that KF with PLE

estimation via GenPS performs considerably better than the

KF with incorrectly assumed PLEs.

Fig. 3 keeps the same parameters as in Fig. 2 and compares

the RMSE at every time step using KF with an erroneous

and estimated PLE vector. The RMSE values are an average

over ǫ = 30 independent runs. Fig. 3 presents a quantitative

comparison of KF performance with erroneous and estimated

PLEs. The significant performance improvement of KF with

estimated PLEs is evident from the figure.

Fig. 4 shows the true trajectory of the motion of the TN,

the estimated trajectory with PF using erroneous PLEs and the

trajectory of the PF with estimated PLEs. The estimated angle

and the shadowing variance is kept fixed at σ2
mi

= 50 ∀ i and

σ2
ni

= 5 dB ∀ i respectively. Similar to Fig. 2 and Fig. 3, α ∼
U [2 5] and α̌ ∼ U [2 5] . For the PF, we consider Ns = 2000
particles. Following the pattern set by the KF in Fig. 2, the

PF with PLE estimation exhibits superior performance to the

same with erroneous PLEs.

Keeping the parameters the same as in Fig. 4, Fig. 5
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Fig. 4. Performance comparison of tracking via PF while using erroneous
and estimated PLE values. Ts = 1 sec, Ns = 2000, Nthr = Ns/4, σ2

mi
=

50 ∀ i, σ2
ni

= 5dB ∀ i , α ∈ U [2 5] , σ2
α = 0.2, ∆0 = 0.1, v = 10, ξ = 2,

τ = 3, ǫ = 1.
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Fig. 5. RMSE in location estimate utilizing PF, using estimated and erroneous
PLE values. Ts = 1 sec, σ2

mi
= 50 ∀ i, σ2

ni
= 5 dB ∀ i, Nthr = Ns/10,

α ∈ U [2 5] , σ2
α = 0.5, ∆0 = 0.1, v = 10, ξ = 2, τ = 3, ǫ = 30.

compares the RMSE between of the PF with and without

PLE estimation. The simulations are run ǫ = 30 times. For

both cases, two different sets of particles i.e., Ns = 1000
and Ns = 2000 are used. It is seen that the performance

of PF with incorrect PLEs does not vary with different Ns

values, this is because the incorrect PLEs induces such a

large error in the observation vector that the PF does not

converge even with a large numbers of particles. On the other

hand, it is seen that while estimating the PLEs with GenPS,

considerable performance improvement is achieved with an

increased number of particles.

In Fig. 6 we compare the performance of both KF and PF

using GenPS for PLE estimation. Two different values of the

number of particles i.e., Ns = 1000, and 2000 are taken for PF

tracking. Also two sets of shadowing variance and angle noise

variance i.e., σ2
n = 5dB, σ2

m = 50 and σ2
n = 10dB, σ2

m =
100 are considered for both KF and PF. In both scenarios

the PF performs better than the KF. The reason behind this

improved performance of the PF over KF is the non-Gaussian

distribution of the observation vector b̂.
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Fig. 6. Performance comparison between PF and KF using estimated PLE.
Ts = 1 sec, Nthr = Ns/10, Nthr = Ns/10, α ∈ U [2 5] , σ2

α = 0.5
∆0 = 0.1, v = 10, ξ = 2, τ = 3, ǫ = 30.

VII. CONCLUSION

In this paper we presented a novel online algorithm for joint

PLE and tracking when both distance and bearing measure-

ments are available. First, a closed form expression MSE is

derived to highlight the impact of incorrectly assumed PLEs

on location estimation. Second, the GenPS algorithm is used

to estimate dynamic PLEs for every SN-TN link at each time

step. Once the PLEs are estimated they are used in both KF

and PF for tracking. In the simulation section, we showed

that the tracking performance degrades when the PLE values

is incorrect. The performance can be considerably improved

when the PLEs are estimated online.
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APPENDIX

The submatrices in (16) are given by

Cα (x) = En,m

[

(

b̂x − bx

)(

b̂x − bx

)T
]

(48)

Cα (y) = En,m

[

(

b̂y − by

)(

b̂y − by

)T
]

(49)

Cα (xy) = En,m

[

(

b̂x − bx

)(

b̂y − by

)T
]

(50)

for b̂x=
[

dβ1

1 exp
(

n1

γα̌1

)

cos θ̂1δ̌1, ..., d
βN

N exp
(

nN

γα̌N

)

cos θ̂N δ̌N

]T

and b̂y=
[

dβ1

1 exp
(

n1

γα̌1

)

cos θ̂1δ̌1, ..., d
βN

N exp
(

nN

γα̌N

)

cos θ̂N δ̌N

]T

.

Proof of (17) : For the diagonal terms i.e i = j, putting

value in (48)



C (x)ii=Eni,mi

[

(

dβi

i exp

(

ni

γα̌i

)

cos (θi+mi) δ̌i − di cos θi

)2
]

,

= Eni ,mi

[

d2βi

i exp
( 2ni

γα̌i

)

cos2(θi+mi) δ̌
2
i +

(

dicos θi

)2

− 2δ̌i

(

di cos θi

)(

dβi

i exp
( ni

γα̌i

)

)

cos (θi +mi)

]

,

(51)

C (x)ii = Eni,mi

[

d2βi

i exp
(2ni

γα̌i

)

(

1

2
+

1

2
cos (2θi + 2mi)

)

δ̌2i

+

(

di cos θi

)2

−2δ̌idid
βi

i exp
( ni

γα̌i

)

cos (θi+mi) cos θi

(52)

Equation (52) is obtained from (51) by using trigonomet-

ric half angle identity, cos2 (t) = 0.5 + 0.5 cos (2t). Also

using trigonometric sum-difference formula, cos (a+ b) =
cos a cos b+ sin a sin b, (53) is obtained

C (x)ii = Eni,mi

[

d2βi

i exp
( 2ni

γα̌i

)

(

1

2
+

1

2

(

cos 2θi cos 2mi

+ sin 2θi sin 2mi

)

)

δ̌2i +

(

di cos θi

)2

−2δ̌idid
βi

i exp
( ni

γα̌i

)

(

cos2 θi cosmi + sin θi sinmi

)

(53)

Finally, using expectations

Emi

[

cos (mi)
]

=exp
(

−0.5σ2
mi

)

, Emi

[

cos (2mi)
]

=exp
(

−2σ2
mi

)

(54)

Emi

[

sin (mi)
]

= 0, Emi

[

sin (2mi)
]

= 0 (55)

Eni

[

exp

(

ni

γα̌

)]

=exp

(

σ2
ni

2 (γα̌)
2

)

,

Eni

[

exp

(

2ni

γα̌

)]

=exp

(

2σ2
ni

(γα̌)
2

)

(56)

we conclude the proof by obtaining (17).

The proof of (18) and (19) is similar to (17) except for the

fact that b̂x is replaced by b̂y .

Proof of (20) : For the non-diagonal terms i.e i 6= j,

putting values of b̂x and b̂y in (48)

C (x)ij

=Eni,mi

[

{

dβi

i exp

(

ni

γα̌i

)

cos (θi+mi) δ̌i − di cos θi

)}

{

d
βj

j exp

(

nj

γα̌j

)

cos (θj+mj) δ̌j − dj cos θj

)}

]

(57)

C (x)ij

= dβi

i d
βj

j exp

(

ni

γα̌i

+
ni

γα̌j

)(

cos θi cosmi cos θj cosmj

+ cos θi cosmi sin θj sinmj + sin θi sinmi cos θj cosmj

+ sin θi sinmi sin θj sinmj

)

δ̌iδ̌j − dβi

i dj exp

(

ni

γα̌i

)

cos θi cosmi cos θj δ̌i − d
βj

j di exp

(

nj

γα̌j

)

cos θj

cosmj cos θiδ̌j + didj cos θi cos θj . (58)

Equation (58) is obtained using (57) using half angle identity

and sum-difference formula. Finally using expectation given

by (54), (55) and (56) we obtain (20).

The proof of (21) and (22) is similar to the other proofs

except for the fact that b̂x is replaced by b̂y.

REFERENCES

[1] S. Haykin, Communication Systems, 5th ed. Wiley Publishing, 2009.
[2] N. Salman, A. H. Kemp, and M. Ghogho, “Low complexity joint estima-

tion of location and path-loss exponent,” IEEE Wireless Communications

Letters,, vol. 1, no. 4, pp. 364–367, 2012.
[3] N. Salman, Y. J. Guo, A. H. Kemp, and M. Ghogho, “Analysis of

linear least square solution for RSS based localization,” in International

Symposium on Communications and Information Technologies (ISCIT),,
Oct 2012, pp. 1051–1054.

[4] X. Li, “RSS-based location estimation with unknown pathloss model,”
IEEE Transactions on Wireless Communications,, vol. 5, no. 12, pp.
3626–3633, 2006.

[5] N. Salman, M. W. Khan, and A. H. Kemp, “Enhanced hybrid positioning
in wireless networks II: AoA-RSS,” in International Conference on

Telecommunications and Multimedia (TEMU), July 2014, pp. 92–97.
[6] A. Nasipuri and K. Li, “A directionality based location discovery

scheme for wireless sensor networks,” in Proceedings of the 1st ACM

International Workshop on Wireless Sensor Networks and Applications.
ACM, 2002, pp. 105–111.

[7] P. Kulakowski, J. Vales-Alonso, E. Egea-López, W. Ludwin, and
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