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Abstract Numerical layout optimization provides a compu- 1 Introduction
tationally efficient and generally applicable means of iden

tifying the optimal arrangement of bars in a truss. Whe ) o . -
fying P 9 nNumerlcal layout optimization provides an efficient means

the plastic layout optimization formulation is used, a wide _". . .
P y P of identifying (near-)optimal truss layouts. The ‘ground

variety of problem types can be solved using linear pro- ructure’ | t optimization procedure was first or
gramming. However, the solutions obtained are frequentlS ucture ayout op ation procedure was first progbse

. . . : . : y Dorn et al(1964) and more recently was made more effi-
quite complex, particularly when fine numerical discretiza " ) . .
cient for single and multiple load case problems respdgtive

tions are employed. To address this, the efficacy of two.rabyGiIbert and Tya$2003 andPritchard et (2009, In the
latter contributions an adaptive ‘member adding’ alganth

tionalization techniques are explored in this paper: (¥) in
troduction of ‘joint lengths’, and (ii) application of geem .
J g (i) app ¢ was proposed which meant that much larger scale layout op-

etry optimization. In the former case this involves the use, . " . -
- Lo . . timization problems could be solved; this and similar tech-
of a modified layout optimization formulation, which re-

mains linear, whilst in the latter case a non-linear optaniz

tion post-processing step, involving adjusting the |lcoadi

of nodes in the layout optimized solution, is undertakere Th
two rationalization techniques are applied to example prob
lems involving both point and distributed loads, self-weig

and multiple load cases. It is demonstrated that the introdu

tion of joint lengths reduces structural complexity at ingig|

ble computational cost, though generally leads to inciebas
volumes. Conversely, the use of geometry optimization ca
ries a computational cost but is effective in reducing bot

structural complexity and the computed volume.
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nigues are helping to provide new insights on a wide range
of problems (e.gDarwich et al 2010 Sokbt and Rozvany
2012 Pichugin et al 201 However, whilst fine numerical
discretizations are needed in order to obtain highly accu-
rate numerical solutions, the associated truss bar layauts
become very complex. Therefore identifying means of ra-
tionalizing such layouts is potentially of significant irgst.
Various rationalization approaches are possible, for exam
le: (i) the problem formulation can be modified to ensure
solution complexity is addressed directly from the outset;
or (ii) a standard layout optimization solution can be subse
guently modified in a post-processing step.

In the case of (i), directly addressing complexity within
the formulation, a range of optimization methods can be ap-
plied (e.g. mixed integer linear programming, MILP, or non-
classical optimization methods such as genetic algorithms
the downside of such procedures is that they are generally
comparatively computationally expensive, so that onlgel
tively small problems can be tackled. However, simple for-
mulations are also available, and here the efficacy of the sim
ple ‘joint length’ method proposed Barkeq1979 will be
explored. A key benefit of this method is that the linear char-
acter of the standard linear programming (LP) based layout
optimization formulation is retained.
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In the case (ii), addressing complexity via a post-numerical examples are solved to demonstrate the efficacy
processing step, it can be observed that the solutions olof the rationalization methods considered, and conclission
tained from the layout optimization procedure will gener-are drawn.
ally comprise far fewer bars than are present in the initial
‘ground structure’. This is significant as it means that any
post_processing Step need on|y deal with a Comparative|g Rationalization of |ay0Ut Optimization solutions USing
small number of bars. joint lengths

One optpn IS o use the truss Iayou.t denvgd from theI'he first rationalization technique considered is one pro-
layout optimization process as the starting point for a ge-

N . . posed byParkeg1975. According to his formulation, a no-
ometry optimization post-processing step. Integratiggles . L :
N . Y tional joint lengths, is added to the length of each bar. Thus,
optimization with geometry optimization has been exam-,

. . the computed volume of the truss structure under consider-
ined before (e.gBendsge et al 1998endsge and Sigmund _. P o .
.~ ation becomesV = 1"a, whereV is the total computed
2003 who pose the problem as one of non-smooth optimiza- . - .
volume of the truss structuréjs a vector containing modi-

tion). Gil and Andreu(2001) combined size and geometry fied truss bar lengths (i.dly + 5,15 + 5, ..., L + s}, for a

optimization, obtaining solutions to small-scale probéem . . . L
. - - . : problem involvingm bars), andh is a vector containing the
by using optimality criteria and conjugate gradient meth- )
bar cross-sectional areas.

ods in successioMartinez et a(2007) proposed a ‘growth Note that though this can simplify the truss layout, the

method, in which geometry optimization was carried out in : .
. . . e - . calculated structural volume will clearly alwaygreasebe-
conjunction with a heuristic ‘node adding’ algorithm, alo . . . 7
cause of the inclusion of additional joint lengths. However

ing an mcrgasmglly'(.:omplex truss structure to evolvg.frc.)m %tter the optimization has been completed, the ‘standard’
relatively simple initial layout. Although not of specifin-i

. . volume can be calculated by summing up the volumes of
terest in the present study, their ‘growth’ method allowed y g up

. . : all bars, excluding the joint lengths from this calculat
a limit to be placed on the number of joints in the result- 9 J d (afi

. -y . olumes reported herein were calculated in this way).
ing optimized truss to be controlled, thereby ensuring thaY b S y_)
The updated layout optimization problem, now includ-

the resulting optimized trusses could be rationalized as de_ . . i
. Y o ..._1Ing joint lengths, can therefore be stated as:

sired. (Limiting the number of joints was also of specific

interest toPrager(1978 and, more recentlyMazurek et al

(2011); Mazurek(2012.) However, the focus of most work min V =1Ta (1a)
in this field has been on single load case problems, and most ;‘:

of the aforementioned methods cannot easily be extended
to treat multiple load cases. An exception is the combined
topology/layout and geometry optimization procedure put
forward byAchtziger (2007, which was recently extended a>0 (1c)
by Descamps and Filomeno Coel@013 to allow small-

. . whereW contains self-weight coefficients, here assum-
scale multiple load case problems to be considered. How- . . -
. o ) Ing self-weight to be lumped at the nod&3;is an equilib-
ever, in general, geometry optimization requires the start . . - . . . .
. ) . rium matrix comprising direction cosineg;is a vector con-
ing layout to quite closely resemble the true optimal so-

lution in order for it to work effectively. Furthermore, the taining the intermal bar forces arfuis a vector containing

Lo . the external forces. Alse™ ando~ are limiting tensile and
geometry optimization process can be computationally ex-

. ) : compressive stresses respectivBly: {1,2, ..., p} is aload
pensive, particularly when general purpose nonlineaesslv : : o
. Lo case set, where is the load case identifier andrepresents
are used. Here the efficacy of a geometry optimization post-

: . L . the total number of load cases.
processing step will be explored, which involves starting L : .
. o . . The optimization variables are the cross-sectional areas
with a layout optimization solution comprising a reduced.

number of nodes and bars, and then using a highly officiert & and the internal forces iq. It can be observed that the

L . . . coefficient matrices are determined by the positions of the
interior point method to solve the resulting non-linear op-

L . : nodes and the connectivity of the truss bars; therefore the
timization problem. This approach is general, and can be

applied to a wide variety of problems, including those in_opt|m|zat|on formulation{) is an LP problem.
volving multiple load cases and self-weight.

The format of the paper is as follows: firstly the general3 Post-processing rationalization using geometry
layout optimization problem is considered and then revise@ptimization
to incorporate ‘joint lengths’; secondly, the geometryiopt
mization problem is mathematically defined and extension3he second technique considered involves the use of geom-
and implementation issues discussed; finally a number adtry optimization as a post-processing step to rationalize

Bq® + Wa = ¢

A< qt < a+a}f0r alaeF (1b)
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lutions obtained using layout optimization. Initially toe- 101 Dread c(L,1) D
ometry optimization process will be considered in isolatio V =2875PL/o
subsequently practical issues related to combining gagmet C(1,0.25)
optimization with layout optimization will be considered. 0.5 — A B
>

3.1 Basic geometry optimization formulation ”Xﬁ) '7 B(1.0) b

' V =2.993PL/o
Initially consider an unbounded 2D design domain, where P

.y . . —U.o B
the z, y positions of the nodes in a truss are considered as 0.0L 05L 10L 151 C(0.803, —0.019)
optimization variables. (For sake of simplicity, formulae

3D trusses are not explicitly provided in the paper; hovv,evelFig- 1 Four-bar truss illustrating non-convex nature of geometry-opti

. - mization. The optimum position of node C is sought; contours show
the reIevz.int florm.ulae can be d(?rlved.S|m|IarIy.) the variation of the structural volume for differing positiafaode C.
Considering first a problem involving a single load case,

without self-weight, gives:
two zones(?; and (2, in which node C can potentially be-
come trapped, leading to different optimum solutions. b fa

. T
Jin V=1(x,y)"a (28)  node C must be positioned in zofk, at (1.00, 0.25), in or-
st. B(x,y)q="f (2b) derto obta.in the globally optimal .soluti(.)n. .
o a<q<o'a (20) Assu'mlng that a truss Iayput |s.ava|IabIe, various meth-
ods of improving the solution via geometry optimiza-
a>0 (2d)

tion techniques are possible, though some methods ap-
ghear to have inherent limitations. For example, the geom-
etry optimization step in the ‘growth’ method proposed by

itis evident that the objective functio@4) and equality con- I\./Iart.mez e_t a(2007 requires thgt the -trus.s undgr considera-
tion is statically determinate. With this stipulation, ttate

straint b) are both now non-linear. Also, if the objective "~ bi be eliminated by taking — B-'f. si
function is expanded using a Taylor series expansion comariableq can be eliminated by taking =  Sim-
prising up to second-order terms, the second-order coeﬁpl'fymg the underlying optimization problem. Howeveryfo

cient matrix cannot be identified as positive definite, or-pos,,prObIemS with multiple load cases, this stipulation carieot

itive semi-definite. This means that the optimization prob-'mpOSEd' As both single and multiple load case problems are

lem is likely to be non-convex. Without loss of generality, considered here, a more general approach is required, with

problem @) can be categorized as a non-linear non-conve%:atica"y indeterminate truss structures allowed. To/esol
optimization problem ' the resulting non-linear problem efficiently, first-orderda

Also, although problem) can be considered as a com- second-order derivatives of the objective function and-con

bined layout and geometry problem, similar to the approacﬁtramts in £) With respect to optimization variables are ob-
put forward byAchtziger(2007), and developed further by tained analytically. ) o )
Descamps and Filomeno Coelf13, in this paper geom- Note that the entire geometry opt|m|za.1t|on formulatlgn
etry optimization is considered asaparate processvhich for a truss structure can be assembled using locally derived
is carried out only after an initial layout optimization so- formulae for each truss bar. Also, the derivatives can be as-
lution has been performed, and active bars in the optimurﬁemble_d similarly. In the following se.ct_lon local formulae
truss have been identified. Advantages of this approach steffi’ @ Single bar are introduced, permitting the problem for
from the fact that the layout optimization formulation:giy ~ the whole structure to be constructed.

lows a globally optimal solution to be obtained for a given
ground structure, typically very close to the true optimal _ ) i

solution: (i) can be be solved extremely rapidly. Thus the3-1.1 Mathematical expressions for a single truss bar
layout optimization solution provides an excellent stagti )

point for a subsequent geometry optimization, which, alFOr the truss bar connecting nodes:A(y4) and B, ys)

though capable of rationalizing the structure, is fundamenSnoWn in Fig.2, let X' = B~ TA andY' = yp A The
tally non-convex and may be computationally expensive. €Ngth of this bar ig = v.X* + 12 and volumeV™" = la.

Figure 1 illustrates the non-convex nature of a simple The contribution to the equilibrium matrix of this single
four-bar truss problem. Suppose that the truss shown iRar can be stated as:

Fig. 1 has only one free (movable) node C, whose position -
can be optimized in the-y plane. In this case there exists BAP = [— cosf —sinf cosf sin 9} 3)

wherel is a vector containing the lengths of the trus
bars. The optimization variables in this case®&rg, « andg;
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thatv?f,, = v2f,, = Vf., = V2f,, = 0. The Hes-
sian matrix of each of the constraints can readily be derived
For instancey?(q cos #) is shown in ), and the mathemat-
ical expression for2(¢sin §) can be obtained in a similar
manner. Also, as the inequality constraigt)(is linear, its
second-order derivative term is zero.

Fig. 2 Notation used for a truss bar

3.2 Geometry optimization formulation with self-weight

Assuming the optimization variables are defined
as [za,ya,rB,ys,a,q], the first-order derivative term,
namely, the gradient of the objective function is written as

The basic formulation can be extended to account for self-
weight. For a single truss bar AB, the corresponding self-
weight coefficient matridW B is given as:

T
X Y X Y
Al e e e @ W

The Jacobian matrix of the equality constraipb)(can
be derived as:

_pyl
== (8)

In which p and g are respectively the material density
and acceleration due to gravity. The Jacobian mak{i%,

0 10 1"

can be derived as:

aY?  _gX¥ _g¥? gXY (_X]
I J ] l ! 0 0 0 000
XY X? XY X?
B R L
JAB? = (5) gjaB _ P9 9)
_aY? gXY gY? _qXY o X Wa ™ 9
13 13 13 13 1 0 0 0 000
XY _gX? gXY ¢X? 4 Y _aX _aY aX a¥Y |
L 3 3 13 3 [ L l l l l -

The stress inequality constrairtd is linear; therefore Also, the Hessian matrix can be obtained by considering
the coefficients directly form the Jacobian matrix. only the second and fourth (i.e. non-zero) termsvefE.

For a single truss bar, first-order derivatives of the objecNote that the relevant terms in both cases are:
tive function and associated constraints can also be agtain
To ensure rapid convergence of the non-linear optimization -

qv?  gXY _ gqY? g¢XY 0_X
process, second-order terms are also derived analytically r A A A l
. . o AR
the HeISS|an matrix of the objective functidin®*® = la can XY e Xy oy
be derived as: I3 13 13 13 7
-, , -
alﬁg _a)l(;’Y _al}; a)ng _% 0 —qYQ gXY qy? _ gXY 0 X
w2 gty = 29 R B B I
Ly i
2 2 2 2
—eXY o’ oV X' X XY o XY o v
3 3 I3 I3 1
y?2 XY y? Xy X
T B e e S 0o 0 0 0 00
vEVEE = (6) X Y X Y o0
aXY _aX? _aXY aX? Y 0 t t t t
3 3 3 13 l L n
10
X  _Y X Y 0 0 (10)
l l l l . . .
With respect to the geometry optimization probleah (
0 0 0 0 00 analytical expressions for the first- and second-ordewaeri

tives have been derived. Thus simple problems (e.g. the
problem in Fig.1) can now be optimized without difficulty
comprises four constraints:gcos 6 — f,, =0, —¢gsind —  (though without any certainty of obtaining the global op-
fya = 0,qcosd — f,, = 0andgsind — f,, = 0, where timum). However, when dealing with structures involving
feasr fyar s and fy, are external loads applied at nodeslarge numbers of nodes, various practical issues might pre-
A and B. Also note that the magnitude of external loads areent the process obtaining a satisfactory solution; these i
assumed not to change during the optimization process, sues are considered in the next section.

For equality constrainBABq — fAB = 0, note that this
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3¢XY? qY (—2X°%4+Y?) 3¢XY? qY (—2X2%4+Y?) 0 v2 ]
- 15 - 15 15 15 ER
_aY(—2X°4Y?) gX(—=X?42Y?) qY (—2X%4Y?) gX(—=X%42Y32) 0 XY
15 15 15 - 15 13
3¢XY? qY (—=2X%4+Y?) _3¢XY? _aY(—2X°4Y?) 0 Y2
ls lS l:’ ls l3
v2(gcos ) = (7)
aY (—2X24Y?) aX(=X242Y?) Y (=2X?4Y?) X (=X242Y?) 4 XY
15 - 15 - 15 15 E
0 0 0 0 0 O
Y XY Y? XY
L B 3 el E 0 0 |

3.3 Practical issues

A number of practical issues which must be considered in
order to develop a robust and flexible geometry optimization
procedure are now considered.

3.3.1 Node move limits

It has been shown that geometry optimization will in gen-
eral lead to a non-convex mathematical optimization prob-
lem, which can cause issues when applying convex opti- -

mization methods. To try to avoid such issues it is convefig. 3 Node move limit zone: shaded circular zones indicate node
nient to impose upper and lower limits on nodal positiens Move limits

andy. However, it is worth pointing out that imposing such

limits will mean Fhat only Ioca}lly optimal solutions will be . 5 7ero length bar may be implied. To prevent this occur-
found. Considering the evolving nature of the geometry ofing, a gap of length is created between zones, such that the
the ;tructu.re during the optimization process, rU|es,Can_bFestriction for node A becomeﬁuA _ V?\HE < (rap—e).

applied which ensure that the structure always remains sifps js an extra constraint compared with those in the stan-

ilar in form to the initial structure. Hence the starting ipipi dard formulation ). Its Jacobian matrid® and Hessian
or initial condition, for the problem is crucial as it dirgct matrix HA can be obtained as:

determines which local optimum zone the solution lies in.

For instance, considering the structure shown in Ejgas Jh =2 [SEA — X, YA — yfox] (11)
node C lies on the edge of zotfig, it is likely that imposed A 2 0
move limits will eliminate the possibility of this node begin = {0 2} (12)

moved to zone&?;. However, whether node C is restricted to
lie within zone2; or {2, depends upon the initial position ) R
cient to assure the non-linear, non-convex, optimization p

of C, and upon the imposed move limits. is stable. i dditional restricti P
To describe node move limits concisely, coordinates of goss s stablé, In some cases additional restrictions b

given node in a 2D truss are written in column vector form:gwgosetihThus, a prograrg parameﬁeri |fntr0(|::ucedd W_h.'dt]h.
v =[z,y, 1]T in R3. (Note that although nodal positions lie elinés the maximum node move imit for afl nodes, in this

in R?, the redundant ‘1’ inv is used solely to condense the case the above restriction is modified to:
mathema'ucal'expressmn.) o HVA _ V%H; < (r)? (13)
Now consider the node move limits. Suppose that each
node is allowed to move within a circular zone, determinedvherer* = min{r,,r7ag} — € is the modified node move
according to the distance from a given node to adjacertmit. In this paperr, is taken as the x- or y-distance be-
nodes. Figure3 shows adjacent nodes A and B, which aretween the nodes used in the original layout optimization
originally located at, andv respectively. Two circular process. When the non-linear optimization fails to converge
zones(2, and(2g, with radiusrap = % ||vg — v ||,. are  rapidly, this parameter can be reduced with a view to sta-
defined to restrict nodal movements. et andvg repre-  bilizing the non-linear problem. Also, from a computatibna
sent the positions of node A and B respectively. Whgn=  point of view it is useful to impose relatively tight bounds o

Although restriction shown in Fig3 is normally suffi-
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the variablesr andya representing movements of a given whereT® contains coefficients of all domain boundary lines
node A, for simplicity applying these limits in the Cartesia close to node A (each row 'Y comprises coefficients of a

directions: single boundary line):
29 —r* <azp <2l +r* - c
y(‘)A < y: <_yoA+ - (14) Ty TP 1Y Ti
AL TR ™ = |T2| = |T5 T, T5 (17)

However, restricting nodal movements means that the fi-

nal solution will normally not be obtained in a single step,  Note that for a domain boundary line, its normal direc-

and an iterative solution scheme is therefore requiredin t tjo (j.e. the sign ofl') matters as it determines which side
scheme all nodes are moved to optimum positions within thgg the Jine is ‘inward’ facing.

prescribed move limit zones; these zones are then updated
based on the new nodal positions. The optimization proces - .
proceeds iteratively, until all nodes are stationary (tthimi 5'3'2 Modified formulation

a specified tolerance). . ) , Consider a truss comprisil§y = {1, 2, ...,n} nodes, with
Note that the aforementioned constraints are defined USibsets of nodes™ andNP denoting nodes lying on lines

ing the nodal distances between adjacent nodes. Therefoge g6 o domain boundaries respectively. The full opti-

when a node is quite close to another, each node is rEStriCt‘?ﬁization problem, taking account node move limits and self-
from moving a significant distance. This might affect Con'weight can now be written as:

vergence speed, especially when particular nodes lie in an
extremely small region, with a radius not significantly

larger thare. As a consequence these nodes can become ef- min V =1Ta (18a)
fectively locked, and cannot be moved further. z’y’“£q“
S.t.

Additionally, various design limitations may need to be
taken into account. The first is the line constraint, which re
stricts certain nodes (e.g. nodes on supported boundaries)

Bq® + Wa = ¢

0a<qa<a+a}foralla€IF (18b)

to move only along given line paths. The second of these |v; — I/?Hz < (r*)* forallj e N (18c)
is the Qegign domair'llconstra.lint, Which res’gricts all nodes TL v, =0 forallj, € NE (18d)
to lie within the specified design domain. It is only neces- L

sary to apply this constraint to nodes which have the po- ngij >0 forall jp € N° (18e)
tential to move outside the domain (this can conveniently a>0 (18f)
be determined by taking account of the move limit for each xP < x < xub (180)
node). For sake of simplicity, polygonal design domains and yP <y < yb (18h)

straight line supports are considered in this paper, so that
only linear constraints need to be formulated for these tWo  tha new constraintsl8d) and (188 are linear, so coef-

types of design constraint. ficient matricesT® andT" directly form the Jacobian ma-

A line in R? can be written asTz + Ty +T° =0,  trices. (The Hessian matrices are zero matrices in this)case
whereT?®, TY and T are coefficients of the line; its vec-

tor form is then written asTv = 0, in which, T =
[T*,TY,T°. Thus the line constraint for a given node A
can be written as:

3.3.3 Merging nodes

During the geometry optimization process some nodes may
migrate towards one another (this phenomenon was also ob-
served byAchtziger(2007), who addressed this by adding
Thva =0 (15) the possibility for nodes to ‘melt’ (i.e. merge togetheris
proposed procedure). In this paper, it can be observed that
whereTY is the coefficient vector for the line node A is pre- the_gaps included in con;t_ramﬂ(s) will prevent npdes from

. . . : ... taking up the same position, and hence merging. Therefore
scribed to lie on. Also, the domain constraint can be written ; .
as: an approach is needed to merge nodes into a concentrated
' node; here this involves two major steps.

In the first step, nodes to be merged are identified and
grouped, based on a program parameter, the node merge ra-
TRuvA >0 (16) diusry. A node merge group contains candidate nodes to
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ce I .. o nodes; this loop terminates when a prescribed termination
) ’ ) criterion has been met; (ii) outer loop: this carries out the

. process of creating crossover nodes when the inner loop
c ends. The outer loop terminates when no more crossover
. . . S R nodes need to be created, also terminating the entire opti-
S e e mization procedure.

(@) (b) This approach is based on the assumption that, whenever
) _ _ _an inner loop terminates, the form of an optimized layout
Fig. 4 Merging a group of nodes: (a) a large merge radius results Irbas been identified, and the number of crossover points has
a group containing the three nodes, A, B and C, which can then b N ’ A
merged into a single node; (b) a small merge radius results in a grouge€n significantly reduced. Note that when considering 3D
consisting of nodes A and B, which can then be merged, whilst node Gtructures, bars are less likely to intersect one anotimee s
remains as-is. for this to occur both bars must lie on the same plane. How-

ever, often a bar in a 3D structure can pass very close to one

be merged. For a given node, adjacent nodes lying within r2f more other bars. This indicates that crossovers should be
diusry; are added to the same group; an example is shown iiflentified approximately, using a tolerance which is pregre
Fig. 4. Whenr is greater than the distance between node§ively increased from zero to a prescribed value.
A and C (Fig.4a), a single group containing all three nodes
Is created, and th_en merged to a single node. Wli;ems. 3.3.5 Extracting nodes and bars from the layout
greater than the distance between nodes A and B, but is Ieg%)timization solution
than the distance between A and C (Hf), one group is

created, and the two nodes in this group are then merged. A viable structural layout, obtained using layout optimiza

In the second step, aII. nodes in a given node merge groutPon, is the starting point of the geometry optimizatiorséa
are merged to the centroid of the nodes in the group. Due to.

. " - : ationalization process described here. However, ergarin
its heuristic nature, the validity of this process needsdo b P e

. . . . viable layout is obtained requires various steps to be taken
numerically validated; the merging process is deemed to bg described in this section

successful if the resulting structure has the same compute . . L . :
- . Conventionally, when using an interior point-based lin-

volume as before (within a prescribed error tolerance). . . "
ear programming solver, an optimum truss layout is ‘ex-

Al ste.ps in thg merging node process are illustrated irlracted’ by identifying bars which have an area above a
the following alggrlthm. given filter threshold. Though this typically provides a ua

Node merge algorithm itatively reasonable layout, it can mean that one or more
1. Select an initial prescribed node merge raditig, small but structurally important bars are filtered out. Te en

2. Create node merge groups. sure this does not happen, the ‘extracted’ structure can be

3. For every group, check whether a valid merge can be unasrtak . N
4. If a valid merge can be carried out for all groups go to 6, else 5 US€d as the basis of a new layout optimization, and the vol-

T ot

5. If invalid group can be split, redueg; and go to 2, else 6. ume compared with that obtained originally; if these are not

6. End of node merge process. within a prescribed tolerance then the filter threshold &hou
be reduced and the process repeated until a viable layout is
obtained.

3.3.4 Considering crossovers Finally, chains of in-line bars should be merged into sin-

) o gle bars to avoid intermediate nodes from moving freely
In a truss layout derived from layout optimization, bars,qng their axis without improving the solution (thoughsthi
will very often intersect / crossover one another. HOWeverig o required in cases when intermediate nodes are either

crossover points do not normally coincide with nodes. Aoaded or supported, or when self-weight is being consid-
crossover creation process can be carried out to creats ”Odr?red)

at these points, thereby splitting the intersecting bairigh W

these newly created nodes, there is scope to further reduce

structural volume. However, creating new nodes also lead8.3.6 Dealing with structures which are in unstable

to a growth in problem size, which becomes significant inequilibrium with the applied loads

the first few iterations, when a large number of crossover

points are typically observed. To avoid significantly irese Layout optimization may identify structures which are in
ing problem size, the crossover creation process is therefounstable equilibrium with the applied loads. When dealing
not carried out initially. This is achieved by using innedan with such structures in the geometry optimization ratienal
outer loops in the main procedure as follows: (i) inner loopiization technique, it will normally be observed that the ob-
the optimization is progressed without creating crossovejective function is very sensitive to the position of cemtai
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[ Layout extracted J It is worth pointing out that, when merging nodes, the
from layout optimization coordinates of the new merged nodes will be obtained ap-
g PR RRRREERRREREEEEEEEES proximately. As a consequence the calculated volume may

| Filter and merge bars | in some cases be very slightly higher than in the previous

3 ] step.

L v

i i | Merge nodes |

| 4 Numerical examples

§ | Get node move limits | The efficacy of the two rationalization techniques consid-
ol & ered in this paper, i.e. (i) introduction of ‘joint lengthend,
G — (i) application of geometry optimization, are now demon-
g P | Geometry optimization | strated through application to a range of example problems.
! Unless stated otherwise, a reference lengik used to de-

o S fine the size of a given problem, a lodtlis applied, and

' ' ermination . i

! ! criterion . the limiting material stresses are taken@s: = o~ = o.

3 met? Also, in cases where advantage is taken of symmetry (or

R - anti-symmetry), the volume quoted is that of the full struc-

3 ture. With respect to the optimization solvers employel, al

Create LP layout optimization problems are solved usM@SEK

Crossover (2017 and the non-linear geometry optimization problems

3 nodes solved using IPOPT 3.11.0vigerske and Wachter 20),3
. with default settings except for the maximum iteration num-

ber which was set to 500. All calculations are carried out
using MATLAB2013a running on an Intel i5-2310 powered
Fig. 5 Flow chart of the two phases’ geometry optimization procedured€sktop PC with 6G RAM, and running Windows 7 (64bit).
For many of the problems considered a known analytical

solution is available. In these cases the errors in the numer
nodes. This can cause numerical issues in the non-linear ofgal solutions can be quantified, and are dengigd:; and
timization solution process. To address this, virtual sufsp £ for the percentage errors of the layout optimization, joint
are added and connected with all unsupported nodes by colength and geometry optimization rationalized solutiogs r
nections which incorporate large joint length penaltiesrto  spectively. Alsogy denotes the percentage error in the solu-
sure they are not present in the final optimized structure. (Ition obtained using the software described\srtinez et al
the case of 2D trusses two virtual pinned supports are rg2007). Also, as the geometry optimization procedure will
quired to ensure that every node is adequately constrainegenerally improve on the layout optimization solution, it
whilst in the case of 3D trusses three virtual supports arés also useful to quantify this improvement, here denoted
required.) n= “Lgifc) x 100%.

Termination

4.1 Hemp cantilever
3.4 Overall procedure

The first example is a cantilever truss considereddeynp
The overall procedure is shown in Fif. As indicated in  (1974. The problem involves application of a point load at
the figure, initially the geometry optimization steps are-pe mid-height between two pinned supports, as illustrated in
formed within an inner loop, starting with the layout dedve Fig. 6(a). (Note that only half of the domain needs to be con-
from layout optimization. Within this loop the form of the sidered due to the anti-symmetrical nature of the problem.)
structure will gradually change, due to moving and mergHemp(1974 quoted the analytical volume to Be84PL /o,
ing of nodes; crossover points, if present, are completgly i but Lewifiski (2005 repeated the calculations using greater
nored in this loop. The maximum movement of any nodeprecision to obtain a more accurate solutibB82168PL/o.
is used as the termination criterion (takenlag 10~* in A sample layout optimization solution and correspond-
this paper). Thereafter, crossover points are considered ing rationalized solutions are also shown in Faglt is ev-
the outer loop. The process then continues as indicateld unident that both rationalization techniques allow simptifie
no crossover points are identified, with the entire optimizasolutions to be obtained. However, whereas the volume as-
tion process then terminating. sociated with the solution obtained using joint lengtha-ati
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ing joint lengths = 0.006L, V = 4.3863PL/o (£5 = 1.49%); :‘

(c) rationalized solution obtained using geometry optimizatid = Ze el X

4.3318PL/o (€c = 0.23%). Eﬁﬁ‘é&?“;ﬁ‘ﬁ‘\“"
SSSissmaamtly ““

:
\‘

-
nalization is1.49% above the exact value, the solution ob- ()

tained using geometry optimization rationalization isyonl 8 H il @ ¢ optimizati \ution obtained
P . 1g. emp cantilever: (a) layout optimization solution obtained us-
0.23% above the exact value, a significant improvement or’?}g 150 x 75 nodal divisionsV = 4.3258PL/c (¢, = 0.09%) ;

the original layout optimization value 0£75% (7 = 69% (p) rationalized solution obtained using geometry optimizatis —
in this case). 4.3228PL/o (éc = 0.03%)

4.1.1 Factors affecting the joint length rationalization

technique solution, at least in terms of volume. Figshows the start-

ing layout (obtained using a layout optimization involving

With the joint length rationalization technique, adding anl50 * 75 nodal divisions) and the corresponding rational-
additional lengths to the real length of each bar has the ef-12€d Solution obtained using geometry optimization, demon
fect of modifying the solution by effectively penalizingesh strating that this rationalization technique can be appiee
bars. For the Hemp cantilever shown in Féga), the influ- relatively large-scale problems. However, as indicated on
ence of the value of on the layout and corresponding vol- 1aPle 1, the computational cost associated with the non-
ume is illustrated in Fig7. It is evident that the the volume !In€ar optimizations employed in the geometry optimizatio
tends to increase as the joint length is increased, and al@§cess does increase markedly with problem size (num-
that the form of the solution is generally simpler when anper of nodes). Also, it is evident that the structure shown in

increased joint length is used. Note that the CPU times werE'd- 8(0) is still quite complex compared with that shown in
similar for all joint length cases considered. Fig. 6(c), suggesting that more practically useful solutions
will often be obtained when using coarse nodal discretiza-

4.1.2 Factors affecting the geometry optimization tions.

rationalization technique
(i) Influence of node merge radius)sing a smaller node

The geometry optimization rationalization technique is af merge radiug:; can be expected to allow more detail from

fected by several factors, two of which are now consideredthe original layout optimization solution to be retained i

(i) influence of starting structural layout; (ii) influencé o plying also that a better quality solution can be expected to

node merge radius. be obtained in this case. However, disabling the merging of
nodes altogether can lead to problems (for example some

(i) Influence of starting structural layoutGeometry opti- nodes can become effectively locked in position when the

mization is here viewed as a post-processing technique amtbde move limits are applied). Takiteshows the influence

a better starting layout, obtained using a finer numerical di of the choice of node merge radius for the Hemp cantilever

cretization, will naturally be likely to result in an impred  problem shown in Fig6(a). It is clear that the choice of
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Error (%)

0.5
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
Joint length (xL)

Fig. 7 Hemp cantilever: influence of joint length on numerical soluémd layout (using0 x 15 nodal divisions)

Table 1 Hemp cantilever: solution and non-linear optimization CPU émsvarying layout optimization nodal densities

Layout optimization Geometry optimization rationalization

\olume Error \olume Error CPU
Nodal divs No. of bars No. of nodes No. of bars timef
(PL/o) €. (%) (PL/o) & (%) (gae)
30 x 15 74655 4.3541 1.26 92 163 4.3318 0.23 5
60 x 30 892702 4.3350 0.31 324 605 4.3258 0.09 58
90 x 45 3149297 4.3296 0.18 774 1480 4.3235 0.04 358
120 x 60 7004968 4.3274 0.13 1302 2519 4.3232 0.03 1279
150 x 75 12456601 4.3258 0.09 2192 4244 4.3228 0.03 4875

fTotal CPU time expended on non-linear optimization, as reported by thersolv

Table 2 Hemp cantilever: solution and non-linear optimization CPU émsvarying nodal merging radiB0 x 15 nodal divisions)

Merge No. of nodes in No. of bars in Volume Error CPU timé'
radius* resulting structure resulting structure  (PL/o) & (%) (sec.)
0.50 37 64 4.3318 0.23 5
0.25 57 102 4.3304 0.20 15
0.10 108 199 4.3283 0.15 76
0 274 489 4.3295 0.18 203

*Expressed as a multiplier of the layout optimization nodal spacing.
fTotal CPU time expended on non-linear optimization, as reported by thersolv

node merge radius has a significant influence on the CPW.2 Centrally loaded Michell beam
time, and also does affect the solution slightly (and, fer th

reason outlined above, the use of a zero node radius does nt{e problem shown in Figl0 is similar to the problem

lead to the best solution). Thus in this paper a merge radiugiginally considered byMichell (1904, though here the
v Which equals half the- or y-distance between the nodes jnclination of the midspan point load is allowed to vary.
used in the original layout optimization process is pragmatpor comparative purposes numerical solutions obtained us-
ically utilized unless specified otherwise. ing the ‘growth’ method described bylartinez et a2007)
are also provided (using software downloaded using the link
given in the paper).

Finally, in Fig. 9 the progress of the entire iterative so-  Numerical solutions are shown in Tat8eNote that in
lution procedure is shown for the Hemp cantilever exam-order to ensure that the geometry optimization rationaliza
ple shown in Fig.6(a). The optimization process stays in tion technique produced forms which were anti-symmetric
the inner loop (see Fich) until the end of the 7th iteration. about the line of load application, similar to those obtdine
Crossover nodes are then created and the inner loop is ewhen using layout optimization, it was necessary to pre-
tered for a second time. The layout of the structure evolvescribe that the horizontal reaction forces at the two pinned
further, until the termination criterion is met. supports were equal in magnitude (though opposite in sign);
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this was achieved by replacing one of the supported de-
grees of freedom with an equivalent reaction force, of mag-
nitudep%s(@. (However, this approach did not allow sen-
sible solutions to be obtained using the method proposed by
Martinez et a(2007), because Maimez’s method appears to
‘grow’ either the top or the bottom part of the structure, butFig: 11 Hemp cantilever with self-weight: (a) problem definition and
layout optimization solution using0 x 30 nodal divisions,V =

not both simultaneously.) Also, to avoid nodes being mergega5_894PL/U; (b) rationalized solution obtained using joint length

in the geometry optimization phase in the vicinity of the-sin s = 0.06L, vV = 38.150PL/c; (c) rationalized solution obtained
gularities at the supports and load position, the node mergesing geometry optimizatio’y/ = 34.608 PL /o

radiusry; used was taken as half the standard value (being

a quarter of thex- or y-distance between the nodes used in o

the original layout optimization process). 4.3 Hemp arch with distributed load

Details of the arch problem investigated bgemp (1974

It is apparent from Table8 that for this problem the are provided in Figl3(a). Hemp proposed an analytical so-
geometry optimization rationalization technique progide lution but found that this was in fact non-optimal. However,
the best all-round solutions, successfully simplifying th what is likely to be a very close estimate of the volume of
standard layout optimization layouts. Also, although thethe exact layoutl|( = 3.151631”7’32) was recently put for-
‘growth’ method proposed bylartinez et al(2007 pro-  ward byPichugin et a{2012. This was obtained using the
duces the most accurate solution for the= 90° case, in  “Type III’ uniformly distributed loading pattern proposég
most other cases it fails to capture important detail preserbarwich et al(2010, which is also used here. Additionally,
in the (near-)optimal layouts, leading to less accurata-sol due to the sensitivity of the computed volume to the position
tions and to higher computed volumes. of particular nodes, virtual supports are utilized in themge
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Table 3 Centrally loaded Michell beam: volumes P L /o) and layouts obtained using various methods vs. inclined logie@. Minimum
volume shown in boldface.

Rationalized layout optimization solutions

Load angle  Layout optimization with ‘Growth’ method by Using joint length: Using geometry optimization
¢ 60 x 60 nodal divisions Martinez et a2007) s =0.01L 99 yop
0° V=10 V=10 V=10 V=10

10°

V =1.3448 V =1.3478 V =1.3333

22.5°

ST
=‘|_Iliil"!~{';‘\\
=1 '/,\l’\\ )

W 222Ny
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N
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©
Jhart

e,

SR
X775

67.5°

| 9,
V =2.5443 V = 2.5439 V = 2.5202

% Z //A\\\\\\>

V =2.5703 V = 2.5662 V = 2.5860 V = 2.5657

<P

V =25771 V =2.5711 V = 2.5856 V =2.5740

80°
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etry optimization rationalization technique. Also, to &/o 1.5L
nodes being merged in the geometry optimization phase in
the vicinity of the singularity at the support, the node neerg
radiusry; used was half the standard value (being a quarter
of the z- or y-distance between the nodes used in the origi-
nal layout optimization process).

Considering the layouts shown in Fit)3, it is clear that
only the geometry optimization rationalization technidsie ve
capable of simplifying the layout whilst maintaining key @)
features of the original form. The geometry optimization ra
tionalization step also reduces the error frorbl% in the
original layout optimization solution t0.10% (n = 81%).

4.4 Hemp cantilever with self-weight

The Hemp cantilever shown in Fig(a) is revisited, though (®) ©
now taking account of self-weight, with x ¢ = 1.50/L.  Fig. 12 Chan cantilever with two load cases: (a) problem definition
The solutions are shown in Figl. (Q = P) and layout optimization solution obtained usi8g x 20

. ‘e odal divisions,V = 5.2450PL/c (&, = 0.30%); (b) ratio-
Although a relatively large joint length has been useonnalized solution obtained using joint length = 0.015L, V' =

in an attempt to derive a suitably simplified structure, it iS5.2712pL/U (¢5 = 0.80%): (c) rationalized solution obtained us-
evident that the resulting layout is significantly more com-ing geometry optimizatiorly = 5.2344PL /o (¢é¢ = 0.10%)

plex than the equivalent layout obtained using the geometry

optimization technique. , . . L I
be derived using superposition principles. Thus with given

dimensionR = 0.5L, the optimal volume can be calculated

4.5 Chan cantilever with two load cases to be:V = (46.052 + 10.000)PL/o (refer to Fig.15 for
further details).
The problem shown in Figl2(a) is a variation on the Due to the relatively coarse nodal discretization em-

cantilever truss considered byhan (1962, though now ployed inthis case, comparatively little rationalizatiwfithe
in\/o]\/ing two load cases (and two force$, and Q, initial Iayout optimization solution is required. Howeytre
which are each active in on|y one of the load cases)geometry optimization rationalization cIearIy simplif'rﬂme
For the case whenP? = Q' the exact solution can Iayout and also reduces the err@r(: 80%) in this case.
be calculated using superposition principles (e.g. se€Also note that for this problerfy, and¢c are both relatively
Nagtegaa| and Prager 1978p|||er5 and Lev 19m in this hlgh, partly because the circular SUppOft is modelled with
case the ‘sum’ problem clearly gives a volume)afPL/o; only 18 nodes and, in this paper, these are non-movable in
and the ‘difference’ problem takes the form of a ‘Michell’ the geometry optimization phase. i.e. a curved nodal move-
truss (ewinski etal 199% whose volume is given by ment pathis beyond the scope of the present paper).
Graczykowski and Lewfiski (2010 as4.729085649PL/c.
Therefore the exact solution can be calculated to be
(4.729085649 + 0.5)PL /0. 4.7 Michell sphere

It can be observed from Fid.2 that both rationaliza-
tion techniques described here successfully simplifydlye | The Michell sphere is the minimum volume 3D structure
out, with the geometry optimization rationalization tech-t0 support a pair of axial torques/{chell 1904. Though
nique also reducing the error in the Computed Vo|ume, frorﬁhe exact solution to this prOblem has been derived theoret-

0.30% t0 0.10% (error reduction) = 66.7%). ically (e.g.Michell 1904 Hemp 1973 Lewinhski 2009, ex-
isting numerical solutions are not satisfactory. For ex@mp

in Czarnecki2003 the difference between the quoted com-
4.6 Flower truss with two load cases puted and exact volumes was found to be 40.6%njhski
2004). Here, using anti-symmetric boundary conditions, the
To further demonstrate the capability of the rationaliza-problem can be modelled using a reduced domain; in this
tion techniques, another problem involving two load casegsase one eighth of a cube was used, as shown inlb(g).
will be considered; details of the problem are shown inThe torque on one side is modelled by applying point loads
Fig. 14(a). The analytical solution for this problem can againto 20 circumferentially positioned nodes in the full prob-
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Fig. 14 Flower truss with two load cases: (a) problem definition
(P = Q), circular support modelled using 18 nodes; (b) layout op-
timization solution obtained using0 x 50 nodal divisions,V =
57.387PL/o (&1, = 2.38%); (c) rationalized solution obtained using
using joint lengths = 0.05L, V' = 57.801PL/o (§5 = 3.12%);

(d) rationalized solution obtained using geometry optimizatid =
56.324PL/c (£q = 0.49%)
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L 2 2
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& ’ & )
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Fig. 13 Hemp arch with distributed load: (a) problem definition and

layout optimization solution obtained usidg x 40 nodal divisions, 0 Q

V = 3.1679wL? /o (&L = 0.51%); (b) method byMartinez et al 2y 2y

(2007, using 20 nodal divs as software failed to yield reasonable re- @) (b)

sults when 40 nodal divs were employ&d= 3.2736wL? /o (ém =

3.86%); (c) rationalized solution obtained using joint length = Fig. 15 Flower truss with two load cases: equivalent single load case
0.01L, V = 3.2044wL? /o (5 = 1.66%); (d) rationalized solution  problems using superposition principle (a) ‘sum’ problem= 1 x
obtained using geometry optimizatio, = 3.1550wL? /o (éc = 5log (055) x 2 x 4PL/o = 46.052PL /o (Michell 1904; (b) ‘dif-
0.10%) ference’ problen’ = 1 sin? () x 5 x 4PL/o = 10.000PL/o

lem (i.e. to 20/4 + 1 = 6 nodes in the reduced problem)in Fig. 16(b), also reducing the error in the volume in this
The analytical solution i9/ = “'logcot § (after Hemp  case from.24% to 0.43% (error reduction; = 90%).
1973 Lewinski 2004. For the given dimensiongi(= 50L,
¢ = 18° andT = 100PL), the exact volume is therefore
737.09PL/o. 5 Conclusions

The results of the geometry optimization rationalization
technique are shown in Fid.6(c), (d). It is clear that the Numerical layout optimization provides an efficient means
rationalization technique does an excellent job of simplif of identifying (near-)optimal truss topologies for a vayie
ing the complex initial layout optimization solution shown of problem types. However, the solutions obtained are of-
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ten complex in form, and effective means of rationalizing
the output are often needed. In this paper two rationatinati
techniques are explored:

— Rationalization by including joint lengths in the layout
optimization problem is computationally efficient since
it simply requires minor modification of the underly-
ing linear programming (LP) problem. The solutions ob-
tained are often simplified effectively, according to the
joint length utilized. However, the solutions are normally
lessefficient (i.e. have a higher structural volume) than
solutions obtained using the standard layout optimiza-
tion procedure. Also, in some cases this method fails to
simplify the truss topology effectively.

— Rationalization by performing geometry optimization
is a post-processing step which involves the solution
of a non-linear optimization problem. This approach
has been found to be effective in simplifying the solu-
tion obtained via layout optimization for a wide variety
of problem types, including those involving distributed
loads, self-weight, multiple load-cases and 3D geome-
tries. Starting with a layout optimization solution, which
typically comprises relatively few bars, means that the
subsequent geometry optimization phase is relatively
computationally inexpensive (cf. the integrated layout
and geometry optimization strategies proposed by oth-
ers). Also, the solutions are normaltyoreefficient (i.e.
have a lower structural volume) than the original layout
optimization solutions. However, the non-linear, non-
convex, nature of the geometry optimization formulation
means that there can be no guarantee as to the proximity
of the solution obtained to the global optimum; thus its
use primarily as a rationalization technique, as proposed
in this paper, appears appropriate.

NS
oy =

NS

References

Achtziger W (2007) On simultaneous optimization of truss
geometry and topology. Structural and Multidisciplinary
Optimization 33:285-304

Bendsge MP, Sigmund O (2003) Topology optimization:
theory, methods and applications. Springer, Berlin

Bendsge MP, Ben-Tal A, Zowe J (1994) Optimization meth-
ods for truss geometry and topology design. Structural
Optimization 7:141-159

(d) Chan ASL (1962) The design of Michell optimum struc-
) _ - tures. Tech. Rep. 3303, Aeronautical Research Council

Fig. 16 Michell spherg: (a) problem deflnltlan( = 50L,T = Reports and Memoranda, London

100PL, ¢ = 18°), torsional load modelled using 20 nodes in the full > ! o

problem; (b) layout optimization solution obtained usitigx 10 x 10~ Czarnecki S (2003) Compliance optimization of the truss

nodal divisions,V = 768.34PL /o ({1 = 4.24%) (showing half structures. Computer Assisted Mechanics and Engineer-
of the full structure); (c) rationalized solution obtainedngsgeometry ing Sciences 10:117-137

optimization,V = 740.26 PL /o ({c = 0.43%) (showing half of the

full structure); (d) alternative view of solution shown in (shfwing

full structure)




16 L. He, M. Gilbert

Darwich W, Gilbert M, Tyas A (2010) Optimum structure to Pichugin AV, Tyas A, Gilbert M (2012) On the optimal-
carry a uniform load between pinned supports. Structural ity of Hemp’s arch with vertical hangers. Structural and
and Multidisciplinary Optimization 42:33-42 Multidisciplinary Optimization 46:17-25, DOI 10.1007/

Descamps B, Filomeno Coelho R (2013) A lower-bound s00158-012-0769-5
formulation for the geometry and topology optimization Prager W (1978) Nearly optimal design of trusses. Comput-
of truss structures under multiple loading. Structural and ers and Structures 8:451-454
Multidisciplinary Optimization 48(1):49-58 Pritchard T, Gilbert M, Tyas A (2005) Plastic layout op-

Dorn WS, Gomory RE, Greenberg HJ (1964) Automatic de- timization of large-scale frameworks subject to multi-
sign of optimal structures. Journal deébhnique 3:25-52 ple load cases, member self-weight and with joint length

Gil L, Andreu A (2001) Shape and cross-section optimisa- penalties. Proc of 6th World Congresses of Structural and
tion of a truss structure. Computers & Structures 79:681— Multidisciplinary Optimization, Rio de Janeiro, Brazil
689 Solot T, Rozvany GIN (2012) New analytical benchmarks

Gilbert M, Tyas A (2003) Layout optimization of large- for topology optimization and their implications. part
scale pin-jointed frames. Engineering Computations i: bi-symmetric trusses with two point loads between
20(8):1044-1064 supports. Structural and Multidisciplinary Optimization

Graczykowski C, Lewiski T (2010) Michell cantilevers 46(4):477-486
constructed within a half strip. Tabulation of se- Spillers WR, Lev O (1971) Design for two loading con-
lected benchmark results. Structural and Multidis- ditions. International Journal of Solids and Structures
ciplinary Optimization 42(6):869-877, DOl 10.1007/ 7(9):1261-1267

s00158-010-0525-7 Vigerske S, Wachter A (2013) Introduction to IPOPT: a tu-
Hemp WS (1973) Optimum structures. Clarendon Press, torial for downloading, installing, and using IPOPT. URL
Oxford http://www.coin-or.org/lpopt/documentation/

Hemp WS (1974) Michell frameworks for uniform load be-
tween fixed supports. Engineering Optimization 1:61-69

Lewifski T (2004) Michell structures formed on surfaces of
revolution. Structural and Multidisciplinary Optimizati
28(1):20-30, DOI 10.1007/s00158-004-0419-7

Lewifski T (2005) Personal communication

Lewinski T, Zhou M, Rozvany GIN (1994) Extended exact
solutions for least-weight truss layouts - part i: cantiev
with a horizontal axis of symmetry. International Journal
of Mechanical Sciences 36(5):375-398

Martinez P, Maiit P, Querin OM (2007) Growth method
for size, topology, and geometry optimization of truss
structures. Structural and Multidisciplinary Optimizati
33(1):13-26

Mazurek A (2012) Geometrical aspects of optimum truss
like structures for three-force problem. Structural and
Multidisciplinary Optimization 45:21-32, DOI 10.1007/
s00158-011-0679-y

Mazurek A, Baker WF, Tort C (2011) Geometrical aspects
of optimum truss like structures. Structural and Multidis-
ciplinary Optimization 43:231-242

Michell AGM (1904) The limits of economy of material in
frame-structures. Philosophical Magazine 8:589-597

MOSEK (2011) The MOSEK optimization tools manual.
URL http://docs.mosek.com/6.0/tools/index.html

Nagtegaal JC, Prager W (1973) Optimal layout of a truss
for alternative loads. International Journal of Mechahica
Sciences 15:585-592

Parkes EW (1975) Joints in optimum frameworks. Interna-
tional Journal of Solids and Structures 11(9):1017 — 1022


http://docs.mosek.com/6.0/tools/index.html
http://www.coin-or.org/Ipopt/documentation/

	Introduction
	Rationalization of layout optimization solutions using joint lengths
	Post-processing rationalization using geometry optimization
	Numerical examples
	Conclusions

