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Abstract—Surveillance systems require advanced algorithms
able to make decisions without a human operator or with
minimal assistance from human operators. In this paper we
propose a novel approach for dynamic topic modeling to detect
abnormal behaviour in video sequences. The topic model de-
scribes activities and behaviours in the scene assuming behaviour
temporal dynamics. The new inference scheme based on an
Expectation-Maximisation algorithm is implemented without an
approximation at intermediate stages. The proposed approach for
behaviour analysis is compared with a Gibbs sampling inference
scheme. The experiments both on synthetic and real data show
that the model, based on Expectation-Maximisation approach,
outperforms the one, based on Gibbs sampling scheme.

I. INTRODUCTION

The amount of CCTV cameras has significantly grown

over the last decades. The rough estimates indicate that there

are about 5 million cameras in the UK alone. However, the

processing of data generated by CCTV systems is inefficient

due to the vast volume. The automatic video analytic systems

are required to help in analysing this data. There are a number

of requests which ideally should be answered by such systems:

“What is going on in the area? What are the typical motion

patterns? What kind of abnormality is observed?” The latter

question has to be answered in real-time to warn a human

operator to respond.

The area of abnormal behaviour detection has become very

attractive to the researchers over the last decade. One of the

challenges is to determine what abnormality is. Some authors

elicit exact patterns for normal behaviours and consider ev-

erything that is not similar to those patterns as abnormal.

In [1] the normal patterns are built by clustering the visual

features extracted from the video. The anomaly decision rule

is then based on the comparison between a new observation

and the nearest pattern. In [2] the similar approach based on

the Hidden Markov Model for each of the normal cluster is

presented. The Sparse Reconstruction Cost measure for abnor-

mality is proposed in [3]. The idea is that normal behaviour

is well represented on the basis built from the training data

(consisting only of the normal behaviour patterns) and has a

sparse coefficient vector. It is assumed that abnormal behaviour

description cannot be explained with the normal patterns and

it has a dense coefficient vector.

Another approach to determine the abnormality is to con-

sider a statistically rare event as abnormal. The models then

rely on statistical regularities, training one-class classifiers

such as one-class Support Vector Machine (e.g. [4]) or topic

models (e.g. [5]). Topic models identify features appearing

together, forming typical activities of the scene. A number

of variations of the convential topic models were proposed

recently. In [6] the authors assume that distributions over these

activities can be clustered. Temporal dependence among the

activities is considered in [7], [8]. The continuous model for an

object velocity is proposed in [9]. The comparison of different

abnormality measures for such kind of models is presented

in [10].

The advantage of the topic modeling approach for the abnor-

mal behaviour detection is that topic models can automatically

discover meaningful activities [11]. The detection of abnormal-

ity can be performed within a probabilistic framework, where

events which cannot be explained by learnt probability model

are considered as abnormal.

Topic modeling was originally developed for text min-

ing [12], [13]. The idea is that documents can be represented

as distributions over topics where topics are distributions

over words. In video applications clips can be treated as

documents and features extracted from the video are treated as

visual words. Discovered topics can be interpreted as activities

supposing that there is a fixed number of such activities shared

by all the clips.

In [7] the authors propose the Markov Clustering Topic

Model assuming that there is an abstract behaviour class

determining an activity distribution for each video clip. The

inference of the model is done by collapsed Gibbs sampling,

but collapsing of one of the parameters is intractable, so

an approximation is used. There are two base topic models



Figure 1. Visual feature extraction process: from an input frame (on the left)
an optical flow is calculated (in the centre); the optical flow is averaged within
the cells and quantised into four directions to get the feature representation
(on the right)

– Latent Dirichlet Allocation (LDA) [13] and Probabilistic

Latent Semantic Analysis (PLSA) [12]. In [7] the LDA-

based model is developed. We propose the PLSA-based model

for behaviour analysis and abnormality detection with the

similar generative model. The abnormality measure is based

on the likelihood of new observations calculated with learnt

probabilistic distributions. The proposed inference scheme is

based on the maximum likelihood approach. The derivation

of the proposed approach can be done without additional

approximations.

This paper goes beyond the current state-of-the-art in several

directions: (i) a PLSA-based model for behaviour analysis is

proposed; (ii) a new inference scheme is designed based on the

maximum likelihood approach. An Expectation-Maximisation

(EM) algorithm is developed for the optimisation problem.

(iii) The proposed EM-algorithm for behaviour analysis is

compared with the Gibbs sampling algorithm presented in [7].

More accurate results for the EM-algorithm are demonstrated.

The rest of the paper is organised as follows. First the

description of the visual features treated as visual words is

presented in Section II. Section III provides the brief review

of Markov Clustering Topic Model proposed in [7] while

Section IV explains the proposed model. The abnormality

detection procedure and summary of the whole approach is

discussed in Section V. Section VI demonstrates the exper-

imental results. The conclusion of the paper is presented in

Section VII.

II. VISUAL FEATURES

In this paper the local motions are treated as the visual

features. Each frame is divided into small cells of size N ×N
pixels. For each of the cells the mean optical flow over

all pixels forming this cell is calculated. If the optical flow

is higher than a threshold (in order to remove noise false

detections) this cell is considered as moving and its motion is

quantised into four directions. The visual word is then formed

by a position of the moving cell and a direction of its motion

(Fig. 1). Thereby the vocabulary size is Number of cells × 4.

The documents for the topic model are the short video clips

of 1 second length uniformly selected from the whole video

sequence.

III. MARKOV CLUSTERING TOPIC MODEL

The authors of Markov Clustering Topic Model

(MCTM) [7] propose two novelties compared to the standard

Latent Dirichlet Allocation (LDA) topic model [13]. First,

the topic distributions for the documents are considered to be

exactly the same for the different documents. Moreover, there

are only a limited number of the different topic distributions,

called behaviours in [7], and each document within a

dataset corresponds to one of these behaviours. The topics

representing visual word distributions are assumed to explain

simple actions while the behaviours are assumed to explain

more complex interactions within a scene. Furthermore, the

behaviour contains all information about the scene as it is

responsible for all the actions appearing within the scene

and the actions determine the visual words composing the

scene. Second, the MCTM assumes that changes between

the different behaviours happen relatively rarely, that each

behaviour lasts for some time (during some number of

sequential clips). This assumption is modelled with the

Markov property.

The motivation of these assumptions can be seen with the

following data. Let us assume that we have a fixed camera on

a road junction regulated by traffic lights. Video data obtained

from this camera has strict periodical motions. Each traffic

light regime corresponds to a behaviour as these regimes

follow each other with the given order and they explain all

the actions happening within the scene.

Let X denote the set of all the visual words, i.e. locations

and directions of primitive motion, Y – the set of all the

actions (topics), distributions over the visual words, i.e. some

simple small group motion like motion to the right in the

small area of the scene, Z – the set of all the behaviours,

distributions over the actions (topics), i.e. some complex

motion like general right-flow traffic or turning to the left on

the junction governing by the particular traffic light regime. Let

φ denote the matrix of the visual word distributions for the

actions (topics), θ denote the matrix of the action distributions

for the behaviours and ψ denote the matrix of the transition

probabilities between the behaviours:

φ = {φx,y}x∈X,y∈Y , φx,y = p(x|y), φy = {φx,y}x∈X ;

θ = {θy,z}y∈Y,z∈Z, θy,z = p(y|z), θz = {θy,z}y∈Y ;

ψ = {ψz̃,z}z̃∈Z,z∈Z , ψz̃,z = p(z̃|z), ψz = {ψz̃,z}z̃∈Z ,

where z – is the ‘start’ behaviour, z̃ – is the ‘final’ behaviour.

The generative model can be described then as follows:

for each clip t a behaviour zt is sampled according to the

behaviour for the previous clip zt−1 from ψzt−1
. Then for Nt

(the length of the clip t in the visual words) times the following

process is repeated: an action yi,t is sampled according to

the behaviour zt from θzt , a visual word xi,t is sampled

according to the action yi,t from φyi,t
, i = {1, . . . , Nt}. The

pairs (xi,t, yi,t) given zt for all clips t and all tokens i are

assumed to be independently sampled. Following the idea of



LDA the Dirichlet prior distributions are considered for all

discrete distributions:

p(φy|β) = Dir(φy;β);

p(θz|α) = Dir(θz;α);

p(ψz|γ) = Dir(ψz;γ),

where Dir denotes a Dirichlet distribution and β,α,γ are the

corresponding hyperparameters.

IV. THE PROPOSED APPROACH

A. Motivation

The inference for MCTM in [7] is based on the collapsed

Gibbs sampler. The Markov chain is built to sample the hidden

variables from the joint distribution of all the actions and the

behaviours given the data. The Gibbs sampling update for

the action yi,t and the behaviour zt is derived by integrating

out the parameters φ, θ and ψ. For the behaviour update

step integrating out the transition matrix ψ uses the following

assumption:

p(zt|y\t, z\t) ∝

∝

∫

p(zt|zt−1,ψ)p(zt+1|zt, ψ)p(ψ|z\t)dψ, (1)

where y\t denotes all the actions in the data excluding those

corresponding to the clip t, z\t denotes all the behaviours in

the data excluding that corresponding to the clip t. While the

exact formula is as follows:

p(zt|y\t, z\t) =

=

∫

p(zt|zt−1,ψ)p(zt+1|zt,ψ)
∑

z̃t∈Z

p(z̃t|zt−1,ψ)p(zt+1|z̃t,ψ)
p(ψ|z\t)dψ (2)

One can notice that in this case the sign ∝ does not mean, as

usual, the precision up to a normalization constant.

B. Solution

In order to infer the model without such kind of approxi-

mations we propose a new inference scheme for the model.

The MCTM is developed from one of two base topic models

– LDA [13], while we would like to use the other base topic

model – PLSA [12]. PLSA is a simpler model which does not

assume any prior distributions and treats only φ and θ matrices

as parameters and utilises maximum likelihood estimates for

them applying the EM-algorithm. PLSA can be considered as a

special case of LDA [14]. Moreover, experiments on real data

show that PLSA and LDA have compatible results [15]. Most

of the LDA-based topic models can be reformulated as PLSA-

based models with simpler parameter inference [16]. Since

the PLSA model has the more straightforward inference we

use the PLSA-based MCTM (denoted as EM-MCTM) without

approximations at the intermediate stages.

C. EM-MCTM

The generative model for the PLSA-based MCTM is the

same as for the MCTM [7] except for: (a) one more model

parameter π = {πz}z∈Z – the distribution for the initial

behaviour z1 is introduced, and (b) the algorithm does not rely

on prior distributions for any of the parameters {π,φ, θ,ψ}.

Details can be found in Algorithm IV.1

Algorithm IV.1 The generative model for EM-MCTM

Require: The number of clips – T , the length of each clip –

Nt ∀t = {1, . . . , T }, the parameters – π, φ, θ, ψ;

Ensure: The dataset x1:T = {x1,1, . . . , xi,t, . . . , xNT ,T };

1: for all t ∈ {1, . . . , T } do

2: if t = 1 then

3: draw a behaviour for the clip from the initial distri-

bution: zt ∼ π;

4: else

5: draw a behaviour for the clip based on the behaviour

of the previous clip: zt ∼ ψzt−1
;

6: for all i ∈ {1, . . . , Nt} do

7: draw an action for the token i based on the chosen

behaviour: yi,t ∼ θzt ;
8: draw a visual word for the token i based on the

chosen action: xi,t ∼ φyi,t
;

The model parameters {π,φ, θ,ψ} are estimated with the

maximum likelihood approach. The EM-algorithm [17] is

applied to the optimisation problem. The full likelihood of

the model is as follows:

p(x1:T , y1:T , z1:T |π,φ, θ,ψ) = p(z1|π)

[

T
∏

t=2

p(zt|zt−1,ψ)

]

×

T
∏

t=1

Nt
∏

i=1

p(xi,t|yi,t,φ)p(yi,t|zt, θ), (3)

where T – is the number of clips, x1:T =
{x1,1, . . . , xi,t, . . . , xNT ,T } – is the sequence of all visual

words in the dataset, y1:T = {y1,1, . . . , yi,t, . . . , yNT ,T } – is

the sequence of all actions in the dataset, z1:T = {z1, . . . , zT}
– is the sequence of all behaviours in the dataset.

Since there is Markov dependence in the data, the derivation

of the EM-algorithm is similar to the EM-algorithm applied

to the Hidden Markov Model known as the Baum-Welch

algorithm [18]. Following the idea of the Baum-Welch algo-

rithm, the additional variables α̃z,t and β̃z,t for each behaviour

z and each clip t are introduced in the E-step. They are

calculated efficiently by recursive expressions. Knowing these

additional variables and the current estimates of the model

parameters, the posterior estimates of the hidden variables can

be computed. The full E-step then can be written as follows:



















α̃z,t =
Nt
∏

i=1

∑

y∈Y

φxi,t,y θy,z
∑

z̃∈Z

α̃z̃,t−1ψz,z̃, if t > 2;

α̃z,1 = πz
N1
∏

i=1

∑

y∈Y

φxi,1,y θy,z;

(4)













β̃z,t =
∑

z̃∈Z

β̃z̃,t+1ψz̃,z

Nt+1
∏

i=1

∑

y∈Y

φxi,t+1,y θy,z̃, if t 6 T − 1;

β̃z,T = 1;

(5)

p(z|x1:T ) ∝ α̃z,tβ̃z,t; (6)

p(zt, zt−1|x1:T ) ∝ α̃zt−1,t−1β̃zt,tψzt,zt−1

×

Nt
∏

i=1

∑

y∈Y

φxi,t,yθy,zt ;
(7)



























































p(yi,t, zt|x1:T ) ∝ φxi,t,yi,t
θyi,t,zt β̃zt,t

∑

z̃∈Z

α̃z̃,t−1ψzt,z̃

×

Nt
∏

j=1

j 6=i

∑

ỹ∈Y

φxj,t,ỹθỹ,zt if t > 2;

p(yi,1, z1|x1:T ) ∝ φxi,1,yi,1
θyi,1,z1 β̃z1,1 πz1

×

N1
∏

j=1

j 6=i

∑

ỹ∈Y

φxj,1,ỹθỹ,z1 ;

(8)

p(yi,t|x1:T ) =
∑

z∈Z

p(yi,t, z|x1:T ) (9)

Having the posterior estimates of the hidden variables, the

estimates of the model parameters are easily calculated during

the M-step:

πz =
p(z1 = z|x1:T )

∑

z̃

p(z1 = z̃|x1:T )
; (10)

φx,y =

T
∑

t=1

Nt
∑

i=1

p(yi,t = y|x1:T )δxi,t,x

T
∑

t=1

Nt
∑

i=1

p(yi,t = y|x1:T )

; (11)

θy,z =

T
∑

t=1

Nt
∑

i=1

p(yi,t = y, zt = z|x1:T )

T
∑

t=1

Nt
∑

i=1

∑

ỹ

p(yi,t = ỹ, zt = z|x1:T )

; (12)

ψz,z̃ =

T
∑

t=2

p(zt = z, zt−1 = z̃|x1:T )

T
∑

t=2

∑

z′

p(zt = z, zt−1 = z′|x1:T )

, (13)

where δ·,· - is the Kronecker delta, x, y, z without subscripts

denote the possible values for a word, an action and a

behaviour variable, respectively, and the same symbols with

subscript denote realisations in a particular place in the dataset.

V. ABNORMALITY DETECTION

Following the approach proposed in [7] we consider the sim-

ilar framework for abnormality detection. A certain number,

Ttr clips is used as a training dataset for parameter inference.

The training dataset is assumed to be representative, i.e. that no

more adaptation of the parameters is required when new clips

are available. After the training stage we obtain the estimates

{φ̂, θ̂, ψ̂} of the model parameters and use these estimates to

evaluate whether testing clips are normal or abnormal.

The measure of abnormality is defined as a likelihood of

a new clip xt+1 = {x1,t+1, . . . , xNt+1,t+1} given all the

previous clips till the clip t inclusively x1:t = {x1, . . . , xt}
and the estimates {φ̂, θ̂, ψ̂} of the model parameters obtained

from the training stage:

p(xt+1|x1:t, φ̂, θ̂, ψ̂) =
∑

zt

∑

zt+1

[

p(xt+1|zt+1, φ̂, θ̂)

× p(zt+1|zt, ψ̂)p(zt|x1:t, φ̂, θ̂, ψ̂)
]

, (14)

where the predictive behaviour probability given the data

sequence can be calculated recursively as follows:

p(zt|x1:t, φ̂, θ̂, ψ̂) =

=
∑

zt−1

p(xt|zt, φ̂, θ̂)p(zt|zt−1, ψ̂)p(zt−1|x1:t−1, φ̂, θ̂, ψ̂)

p(xt|x1:t−1, φ̂, θ̂, ψ̂)

(15)

In order to compare the likelihood of different clips, con-

taining a different number of visual words, the normalised

likelihood s is calculated as the final measure of abnormality:

log s(xt+1|x1:t) =
1

Nt+1

log p(xt+1|x1:t). (16)

When this normalised likelihood is lower than a threshold,

the clip xt+1 is supposed to be abnormal, i.e. some kind of

abnormal behaviour happens during this clip. It can be a rare

visual word xi,t+1; or a rare combination of visual words

which can not be explained with any of the learnt actions

(topics); or a combination of visual words can form the learnt

actions (topics), but the combination of the actions is rare;

or a sequence of behaviours which conflicts with the learnt

behaviour dynamics.

The full learning and detection procedure of the EM-MCTM

can then be described as follows. Ttr clips from the whole

video sequence are selected as a training dataset, the remaining

parts are treated as testing clips. The decision of abnormality

is made for these testing clips. With some initialization of the

parameters estimates {π̂, φ̂, θ̂, ψ̂} the EM-algorithm iterates

E-step (4) - (9) and M-step (10) - (13) until the convergence.

The EM-algorithm handles only the training dataset. After

this off-line training stage, the parameters estimates {φ̂, θ̂, ψ̂}
are calculated and used later to evaluate the normality of the

testing clips. The on-line testing stage performs the decision

making procedure. For each of the testing clips the predictive

behaviour probability is calculated (15) first and secondly, the

normalised likelihood is computed (16). If the likelihood is

below a threshold the clip is labelled as abnormal otherwise

as normal and the analysis of the next testing clip is started.

Note that the decision making is performed on-line as it is an

essential requirement of real surveillance applications.



(a) (b)

(c) (d) (e) (f)

Figure 2. Synthetic data example (the lighter elements correspond to the higher probabilities): (a) The true behaviour representations in visual words; (b) the
true actions (topics) representations in visual words; (c) the true transition probability matrix for behaviour dynamics – columns correspond to start behaviours,
rows correspond to final behaviours; (d) an example of an abnormal ‘clip’ with the type of abnormality – abnormal word joint appearance; (e) examples
of abnormal ‘clips’ with the type of abnormality – abnormal action joint appearance; (f) an example of an abnormal ‘clip’ with the type of abnormality –
abnormal behaviour dynamics, where the left ‘clip’ is normal and the right ‘clip’ is abnormal as the ‘right-down’ motion should be followed by the ‘vertical’
flow, not the ‘horizontal’ one

VI. EXPERIMENTS

In this section we apply the proposed EM-MCTM approach

for abnormality detection and compare it with the MCTM

based on the Gibbs sampling scheme inference proposed in [7]

(denoted later as GS-MCTM). First, we illustrate the models

with synthetic data and then apply them to real video data.

It is worth noting that the EM-algorithm depends on the

initialisation. Although the Gibbs sampling algorithm does

not depend on the initialisation, due to randomness of the

process the results of several runs can slightly differ. For all

experiments we use random initialisations and show average

results over 20 runs for each algorithm with the same data and

different initialisations.

For quantitative evaluation we compare the answers of the

models with the given ground truth. Two kinds of classification

accuracy measures are used: the error percentage and the f-

measure. The error percentage is a fraction of the model an-

swers that are not equal to the ground truth. The f-measure [19]

is a harmonic mean of precision and recall, where precision

is a fraction of model detections that are correct (in terms of

the ground truth) and recall is a fraction of the ground truth

positive cases that are detected by the model.

A. Synthetic data

We use synthetic data to show the models performance.

Let us assume that we observe a road junction with the

following type of motions: the ‘vertical’ traffic flow, the ‘left-

up’ turning, the ‘horizontal’ traffic flow, and the ‘right-down’

turning (Fig. 2a). Each of the motion type we model as a

behaviour. Each of the behaviours are modelled to consist of

two actions (topics) forming four actions in total (Fig. 2b).

The transition probability matrix can be found on Fig. 2c.

Having these distributions for the behaviours, the actions

(topics), and the behaviour dynamics, we can generate ‘clips’

from our generative model (we use the uniform distribution for

the initial behaviour probability). We add some small noise to

all the distribution matrices and generate 1000 ‘clips’ as a

training dataset.

We also generate 1000 testing ‘clips’ where we randomly

include 300 ‘abnormal’ ones. Three kinds of abnormality is

used with an equal probability for the generation of ‘abnormal

clips’:

(a) abnormal word joint appearance. On step 8 of Algo-

rithm IV.1 we add a significant noise to the words in

actions (topics) distribution matrix φ obtained a ‘clip’

consisted of the words, rarely appearing together, or

even the new words in comparison with the training

dataset (Fig. 2d for example);

(b) abnormal action joint appearance. On step 7 of Al-

gorithm IV.1 we sample actions (topics) not from the

existing actions in the behaviour distribution θzt , where

zt is the behaviour for the current ‘clip’ but we sample

actions from one of two ‘abnormal’ behaviours (Fig. 2e)

obtained the ‘clip’ containing the actions, which have

never been together in the training dataset;

(c) abnormal behaviour dynamics. On step 5 of Algo-

rithm IV.1 we sample a behaviour for the current ‘clip’

having the minimum probability in the transition distri-

bution from the behaviour for the previous ‘clip’ ψzt−1

obtained unusual behaviour dynamics from the ‘clip’ t−1
to the ‘clip’ t (Fig. 2f for example).

We run the EM-MCTM with 100 iterations, the GS-MCTM

with 200 burn-in iterations, followed with 500 iterations

taking 5 independent samples with lag of 100 iterations,

the Dirichlet hyperparameters are symmetric and fixed as

{α = (5, . . . , 5),β = (1
5
, . . . , 1

5
),γ = (1, . . . , 1)}. Each

model is run 20 times with different random initialisations.
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Figure 3. Comparison of the learnt parameters by the models with the true reference parameters from the synthetic data example: (a) Actions (topics)
restoration comparison; (b) Behaviours restoration comparison; (c) Transition probability matrix for behaviour dynamics restoration comparison. From the
left column to the right one: the reference true distributions; the restored distributions by the ‘best’ Gibbs sampling MCTM (GS-MCTM 1) algorithm run;
the restored distributions by the ‘worst’ Gibbs sampling MCTM (GS-MCTM 2) algorithm run; restored distributions by the ‘best’ EM-algorithm for MCTM
(EM-MCTM 1) run; the restored distributions by the ‘worst’ EM-algorithm for MCTM (EM-MCTM 2) run

1) Parameter Learning: We can qualitatively evaluate how

the models restore the references parameters {φ, θ,ψ}. We

choose the ‘best’ and the ‘worst’ run among 20 runs for

each model and present the comparison between the restored

parameters and the reference ones. For the Gibbs sampling

model for this illustrative purpose we use the estimation of

the parameters obtained by the last sample of the Markov

Chain. Figure 3a demonstrates the comparison for the words

in actions (topics) distributions φ. One can notice that while

the best runs for both models restore the parameters quite well,

the worst runs for both models do not have such good results.

In this case the algorithms extract true behaviours as learnt

topics. Indeed, given only observed data (visual words) it is

impossible to distinguish between two possible outcomes: two

true topics and true behaviour consisting of these two topics

and one topic equal to true behaviour and behaviour consisting

of this topic. The similar results can be found for the actions

(topics) in behaviours distributions θ (Fig. 3b). Although the

transition probability matrix for the behaviour dynamics ψ

is restored quite well for all cases (the worst run of the EM-

MCTM has slightly worse results as it does not distinguish the

‘horizontal’ and the ‘right-down’ traffic behaviours) (Fig. 3c).

2) Classification of abnormality: We use the trained models

to classify the testing data into two classes – normal or

abnormal, and compare the classification answers with the

ground truth known after the generation. For the GS-MCTM

we used two kinds of likelihood to measure abnormality of

a clip: (a) the proposed conditional likelihood (16) given the

learnt parameters {φ̂, θ̂, ψ̂} obtained from the last sample of

Table I
THE CLASSIFICATION RESULTS FOR THE SYNTHETIC EXAMPLE

Quality
measure

Reference
parameter
model

GS,
Marginalized
likelihood

GS,
Conditional
likelihood

EM

mean error
percentage 0.0860 0.1503 0.1495 0.1387

mean
f-measure

0.9404 0.8961 0.8962 0.9035

the Markov Chain [20] and (b) the marginal likelihood, where

the integral over parameters is approximated with a sum of

the Gibbs samples (the saliency measure used in [7]). We also

perform the classification for the model using the reference

parameters and the conditional likelihood for the abnormality

measure to show the best results that can be achieved if topic

models are able to ideally restore the parameters {φ, θ,ψ}.

The average results over 20 runs for each model can be found

in Table I. The EM-MCTM outperforms the GS-MCTM with

both kinds of the likelihood calculation.

B. Real data

We use the University of Minnesota (UMN) dataset for

detection of unusual crowd activity [21]. The UMN dataset

consists of 3 scenes (the 1st is outdoor, the 2nd is indoor, the

3rd is outdoor) with total 4 minutes 17 seconds of 30 fps video.

The frame size is 320× 240 (see Fig. 4). The dataset has the

ground truth for the abnormality classification.



Figure 4. UMN dataset samples for each of three scenes: Normal (green)
and Abnormal (red)

Training datasets for each scene are constructed from the

successive sequences of the frames labelled as normal. The

remaining part is treated as testing clips. The cell size is fixed

as 8×8 pixels. For both models the number of behaviours |Z|
is set to be 6 and the number of actions (topics) |Y | is set to be

8. The EM-MCTM is run for 100 iterations. The GS-MCTM

is run with the following parameters: 400 burn-in iterations

followed by 500 iterations taking 5 independent samples at

a lag of 100 iterations, {α = (50
8
= 6.25, . . . , 50

8
= 6.25);

β = (0.01, . . . , 0.01); γ = (1, . . . , 1)} [22]. Note that the

probability of all words not appearing in the trainging dataset

is set to 0 for the EM-MCTM. If there is one of these words

in a testing clip, i.e. some new, abnormal, word, the EM-

MCTM would detect this abnormal event as the abnormality

measure would be equal to minus infinity. However, in the

UMN dataset only short training datasets can be obtained and

even ‘normal’ testing clips contain the words not appearing

in the training datasets. Hence a new word for the UMN

dataset does not mean abnormality instead this indicates that

the training dataset does not contain all regular words. In order

to make the EM-MCTM work even with these poor training

datasets the small value 0.005 is added to all entities of the

parameter estimates obtained by the EM-MCTM. No addition

to the GS-MCTM parameter estimates is needed as they can

not be equal to exact zero because of the Dirichlet prior.

During the iterations some probabilities in the EM-MCTM

algorithm become very close to zero. This fact is used to

automatically reduce the number of behaviours. If the tran-

Table II
THE CLASSIFICATION RESULTS FOR THE UMN DATA

Scene
Quality
measure

GS EM

First
mean error
percentage 0.0705 0.0385

mean
f-measure

0.9573 0.9763

Second
mean error
percentage 0.2599 0.2528

mean
f-measure

0.8402 0.8485

Third
mean error
percentage 0.0776 0.0750

mean
f-measure

0.9574 0.9591

sition probabilities from all the behaviours to one of them

becomes very close to zero: ∃z ∈ Z ψz,z̃ → 0 ∀z̃ ∈ Z , this

one behaviour z is deleted as it can not be reached from any

behaviour. For the first scene the average number of remaining

behaviours is 5.1, for the second scene – 5.4, and for the third

scene – 5.55.

The classification results can be found in Table II. Since

the classifier answers are equal for the both GS-MCTM with

the marginal likelihood and the conditional likelihood as the

abnormality measure the results for the general GS-MCTM

are provided. The EM-MCTM algorithm outperforms the

GS-MCTM algorithm in classification accuracy for all three

scenes.

Decision making procedure for both algorithms (as ab-

normality measure is calculated in the similar way) can be

performed on-line. Abnormality measurement and decision

making for 10-second test preprocessed (feature extracted)

data from UMN dataset take approximately 0.21 seconds for

the proposed conditional likelihood and 0.75 seconds for the

marginal likelihood proposed in [7] (for the laptop with i7-

4702HQ CPU with 2.20GHz, 16.0 GB operative memory and

with MATLAB 2015a implementation).

VII. CONCLUSIONS

A novel inference scheme for the dynamic topic model is

developed for discovering the typical actions and behaviours

of a scene in video data. The designed framework can be

applied for abnormality detection where an abnormal event

is defined as the one having small likelihood. The proposed

inference approach uses maximum likelihood estimates of the

parameters applying the Expectation-Maximisation algorithm

rather than the Gibbs sampling scheme originally proposed

to the model in [7]. We show that the more straightforward

inference can be achieved without additional approximations.

The experiments both with synthetic and real data prove that

the proposed abnormality detection algorithm outperforms the

one using Gibbs sampling based inference.
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