
A New Corpus and Imitation Learning Framework for Context-Dependent
Semantic Parsing

Andreas Vlachos
Computer Science Department

University College London
a.vlachos@cs.ucl.ac.uk

Stephen Clark
Computer Laboratory

University of Cambridge
sc609@cam.ac.uk

Abstract

Semantic parsing is the task of translating
natural language utterances into a machine-
interpretable meaning representation. Most
approaches to this task have been evaluated
on a small number of existing corpora which
assume that all utterances must be interpreted
according to a database and typically ignore
context. In this paper we present a new, pub-
licly available corpus for context-dependent
semantic parsing. The MRL used for the an-
notation was designed to support a portable,
interactive tourist information system. We
develop a semantic parser for this corpus
by adapting the imitation learning algorithm
DAGGER without requiring alignment infor-
mation during training. DAGGER improves
upon independently trained classifiers by 9.0
and 4.8 points in F-score on the development
and test sets respectively.

1 Introduction

Semantic parsing is the task of translating natu-
ral language utterances into a machine-interpretable
meaning representation (MR). Progress in semantic
parsing has been facilitated by the existence of cor-
pora containing utterances annotated with MRs, the
most commonly used being ATIS (Dahl et al., 1994)
and GeoQuery (Zelle, 1995). As these corpora cover
rather narrow application domains, recent work has
developed corpora to support natural language in-
terfaces to the Freebase database (Cai and Yates,
2013), as well as the development of MT systems
(Banarescu et al., 2013).

However, these existing corpora have some im-
portant limitations. The MRs accompanying the

utterances are typically restricted to some form of
database query. Furthermore, in most cases each
utterance is interpreted in isolation; thus utterances
that use coreference or whose semantics are context-
dependent are typically ignored. In this paper we
present a new corpus for context-dependent seman-
tic parsing to support the development of an interac-
tive navigation and exploration system for tourism-
related activities. The new corpus was annotated
with MRs that can handle dialog context such as
coreference and can accommodate utterances that
are not interpretable according to a database, e.g.
repetition requests. The utterances were collected in
experiments with human subjects, and contain phe-
nomena such as ellipsis and disfluency. We devel-
oped guidelines and annotated 17 dialogs containing
2,374 utterances, with 82.9% exact match agreement
between two annotators.

We also develop a semantic parser for this cor-
pus. As the output MRs are rather complex, in-
stead of adopting an approach that searches the out-
put space exhaustively, we use the imitation learning
algorithm DAGGER (Ross et al., 2011) that converts
learning a structured prediction model into learning
a set of classification models. We take advantage of
its ability to learn with non-decomposable loss func-
tions and extend it to handle the absence of align-
ment information during training by developing a
randomized expert policy. Our approach improves
upon independently trained classifiers by 9.0 and 4.8
F-score on the development and test sets.

2 Meaning Representation Language

Our proposed MR language (MRL) was designed
in the context of the portable, interactive naviga-
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tion and exploration system of Janarthanam et al.
(2013), through which users can obtain information
about places and objects of interest, such as mon-
uments and restaurants, as well as directions (see
dialog in Fig. 1). The system is aware of the po-
sition of the user (through the use of GPS technol-
ogy) and is designed to be interactive; hence it can
initiate the dialog by offering information on nearby
points of interest and correcting the route taken by
the user if needed. The MRs returned by the se-
mantic parser must represent the user utterances ad-
equately so that the system can generate the appro-
priate response. The system was developed in the
context of the SPACEBOOK project.1

The MRL uses a flat syntax composed of elemen-
tary predications, based loosely on minimal recur-
sion semantics (Copestake et al., 2005), but with-
out an explicit treatment of scope. Each MR con-
sists of a dialog act representing the overall function
of the utterance, followed for some dialog acts by
an unordered set of predicates. All predicates are
implicitly conjoined and the names of their argu-
ments specified to improve readability and to allow
for some of the arguments to be optional. The ar-
gument values can be either constants from the con-
trolled vocabulary, verbatim string extracts from the
utterance (enclosed in quotes) or variables (Xno).
Negation is denoted by a tilde (˜) in front of predi-
cates. The variables are used to bind together the ar-
guments of different predicates within an utterance,
as well as to denote coreference across utterances.

The goals in designing the MRL were to remain
close to existing semantic formalisms, whilst at the
same time producing an MRL that is particularly
suited to the application at hand (Janarthanam et al.,
2013). We also wanted an MRL that could be com-
puted with efficiently and accurately, given the na-
ture of the NL input. Hence we developed an MRL
that is able to express the relevant semantics for the
majority of the utterances in our data, without mov-
ing to the full expressive power of, e.g., DRT.

Dialog acts The dialog acts are utterance-level la-
bels which capture the overall function of the utter-
ance in the dialog, for example whether an utterance
is a question seeking a list as an answer, a statement
of information, an acknowledgement, an instruction

1www.spacebook-project.eu

USER what’s the nearest italian, em, for a meal?
dialogAct(set_question)

*isA(id:X1, type:restaurant)
def(id:X1)
hasProperty(id:X1, property:cuisine,

value:"italian")
distance(location:@USER,

location:X1, value:X2)
argmin(argument:X1, value:X2)

WIZARD vapiano’s.
dialogAct(inform)
isA(id:X4, type:restaurant)

*isNamed(id:X4, name:"vapiano’s")
equivalent(id:X1, id:X4)

USER take me to vapiano!
dialogAct(set_question)

*route(from_location:@USER,
to_location:X4)

isA(id:X4, type:restaurant)
isNamed(id:X4, name:"vapiano")

WIZARD certainly.
dialogAct(acknowledge)

WIZARD keep walking straight down clerk street.
dialogAct(instruct)

*walk(agent:@USER, along_location:X1,
direction:forward)

isA(id:X1, type:street)
isNamed(id:X1, name:"clerk street")

USER yes.
dialogAct(acknowledge)

USER what is this church?
dialogAct(set_question)

*isA(id:X2, type:church)
index(id:X2)

WIZARD sorry, can you say this again?
dialogAct(repeat)

USER i said what is this church on my left!
dialogAct(set_question)

*isA(id:X2, type:church)
index(id:X2)
position(id:X2, ref:@USER,

location:left)

WIZARD it is saint john’s.
dialogAct(inform)
isA(id:X3, type:church)

*isNamed(id:X3, name:"saint john’s")
equivalent(id:X2, id:X3)

USER A sign here says it is saint mark’s.
dialogAct(inform)
isA(id:X4, type:church)

*isNamed(id:X4, name:"saint mark’s")
equivalent(id:X2, id:X4)

Figure 1: Sample dialog annotated with MRs
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or a repetition request (set_question, inform,
acknowledge, instruct and repeat in Fig-
ure 1). The focal point together with the act provide
similar information to the intent annotation in ATIS
(Tur et al., 2010). The acts defined in the proposed
MRL follow the guidelines proposed by Allen and
Core (1997), Stolcke et al. (2000) and Bunt et al.
(2012).

The dialog acts are divided into two categories.
The first category contains those that are accompa-
nied by a set of predicates to represent the seman-
tics of the sentence, such as set_question and
inform. For these acts we denote their focal points
— for example the piece of information requested in
a set_question — with an asterisk (*) in front
of the relevant predicate. The second category con-
tains dialog acts that are not accompanied by predi-
cates, such as acknowledge and repeat.

Predicates The MRL contains predicates to de-
note entities, properties and their relations:

• Predicates introducing entities and their proper-
ties: isA, isNamed and hasProperty.

• Predicates describing user actions, such as walk
and turn, with arguments such as direction
and along_location.

• Predicates describing geographic relations, such
as distance, route and position, using
ref to denote relative positioning.

• Predicates denoting whether an entity is intro-
duced using a definite article (def), an indefi-
nite (indef) or an indexical (index).

• Predicates expressing numerical relations such
as argmin and argmax.

Coreference In order to model coreference we
adopt the notion of discourse referents (DRs) and
discourse entities (DEs) from Discourse Representa-
tion Theory (DRT) (Webber, 1978; Kamp and Reyle,
1993). DRs are referential expressions appearing
in utterances which denote DEs, which are mental
entities in the speaker’s model of discourse. Mul-
tiple DEs can refer to the same real-world entity;
for example, in Fig. 1 “vapiano’s” refers to a dif-
ferent DE from the restaurant in the previous sen-
tence (“the nearest italian”), even though they are
likely to be the same real-world entity. We con-

sidered DEs instead of actual entities in the MRL
because they allow us to capture the semantics of
interactions such as the last exchange between the
wizard and user. The MRL represents multiple DEs
referring to the same real-world entity through the
predicate equivalent.

Coreference is indicated by using identical vari-
ables across predicate arguments within an utterance
or across utterances. The main principle in deter-
mining whether DRs corefer is that it must be possi-
ble to infer this from the dialog context alone, with-
out using world knowledge.

3 Data Collection and Annotation

The NL utterances were collected using Wizard-of-
Oz experiments (Kelley, 1983) with pairs of hu-
man subjects. In each experiment, one human pre-
tended to be a tourist visiting Edinburgh (by physi-
cally walking around the city), while the other per-
formed the role of the system responding through a
suitable interface using a text-to-speech system.

Each user-wizard pair was given one of two sce-
narios involving requests for directions to different
points of interest. The first scenario involves seeking
directions to the national museum of Scotland, then
going to a nearby coffee shop, followed by a pub
via a cash machine and finally looking for a park.
The second scenario involves looking for a Japanese
restaurant and the university gym, requesting infor-
mation about the Flodden Wall monument, visiting
the Scottish parliament and the Dynamic Earth sci-
ence centre, and going to the Royal Mile and the
Surgeon’s Hall museum. Each experiment formed
one dialog which was manually transcribed from
recorded audio files. 17 dialogs were collected in
total, 7 from the first scenario and 10 from the sec-
ond. More details are reported in Hill et al. (2013).

Given the varied nature of the dialogs, some of the
user requests were not within the scope of the sys-
tem. Furthermore, the proposed MRL has its own
limitations; for example it does not have predicates
to express temporal relationships. Thus, it was nec-
essary to filter the utterances collected and decide
which ones to annotate with MRs.2 In particular, we

2A similar filtering process was used for GeoQuery (Sec-
tion 7.5.1 in Zelle (1995)) and ATIS (principles of interpretation
document (/atis3/doc/pofi.doc) in the NIST CDs).
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vocabulary type number of terms
dialog acts 15
predicates 19
arguments 41
constants 9
entity types 26
properties 4

Table 1: MRL vocabulary used in the annotation

did not annotate utterances falling into one or more
of the following categories:

• Utterances that are not human-interpretable, e.g.
utterances that were interrupted too early to be
interpretable. In such cases, the system is likely
to respond with a repetition request.

• Utterances that are human-interpretable but out-
side the scope of the system, e.g. questions about
historical events which are not included in the
database of the application considered.

• Utterances that are within the scope of the sys-
tem but too complex to be represented by the
proposed MRL, e.g. an utterance requiring rep-
resentation of time to be interpreted.

Note that we still annotate an utterance if the core
of its semantics can be captured by the MRL. For
example, “take me to vapiano now!” would be an-
notated, even though the MRL cannot represent the
meaning of “now”. Broad information requests such
as “tell me more about this church” are also anno-
tated using the predicate extraInfo(id:Xno).
We argue that determining which utterances should
be translated into MRs, and which should be ig-
nored, is an important subtask for real-world appli-
cations of semantic parsing.

The annotation was performed by one of the au-
thors and a freelance linguist with no experience in
semantic parsing. As well as annotating the user
utterances, we also annotated the wizard utterances
with dialog acts and the entities mentioned, as they
provide the necessary context to perform context-
dependent interpretation. In practice, though, we
expect this information to be used by a natural lan-
guage generation system to produce the system’s re-
sponse and thus be available to the semantic parser.

The total number of user utterances annotated

was 2374, out of which 1906 were annotated with
MRs, the remaining not translated due to the rea-
sons discussed earlier in this section. The number
and types of the MRL vocabulary terms used ap-
pear in Tbl. 1. The annotated dialogs, the guide-
lines and the lists of the vocabulary terms are
available from http://sites.google.com/
site/andreasvlachos/resources.

In order to assess the quality of the guidelines
and the annotation, we conducted an inter-annotator
agreement study. For this purpose, the two anno-
tators annotated one dialog consisting of 510 utter-
ances. Exact match agreement at the utterance level,
which requires that the MRs by the annotators agree
on dialog act, predicates and within-utterance vari-
able assignment, was 0.829, which is a strong re-
sult given the complexity of the annotation task, and
which suggests that the proposed guidelines can be
applied consistently. We also assessed the agree-
ment on predicates using F-score, which was 0.914.

4 Comparison to Existing Corpora

The most closely related corpus to the one presented
in this paper (herein SPACEBOOK) is the airline
travel information system (ATIS) corpus (Dahl et al.,
1994) which consists of dialogs between a user and
a flight booking system collected in Wizard-of-Oz
experiments. Each utterance is annotated with the
SQL statement that would return the requested piece
of information from the flights database. The utter-
ance interpretation is context-dependent. For exam-
ple, when the user follows up an initial flight request
— e.g. “find me flights to Boston” — with utterances
containing additional preferences — e.g. “on Mon-
day” — the interpretation of the additional prefer-
ences extends the MR for the initial request.

Compared to ATIS, the dialogs in the SPACE-
BOOK corpus are substantially longer (8.8 vs. 139.7
utterances on average respectively) and cover a
broader domain due to the longer scenarios used in
data collection. Furthermore, allowing the wizards
to answer in natural language instead of restricting
them to responding via database queries as in ATIS
led to more varied dialogs. Finally, our approach
to annotating coreference avoids repeating the MR
of previous utterances, thus resulting in shorter ex-
pressions that are closer to the semantics of the NL
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utterances.
The datasets developed in the recent dialog state

tracking challenge (Henderson et al., 2014) also con-
sist of dialogs between a user and a tourism informa-
tion system. However the task is easier since only
three entity types are considered (restaurant, cof-
feeshop and pub), a slot-filling MRL is used and the
argument slots take values from fixed lists.

The abstract meaning representation (AMR) de-
scribed by Banarescu et al. (2013) was developed to
provide a semantic interpretation layer to improve
machine translation (MT) systems. It has similar
predicate argument structure to the MRL proposed
here, including a lack of cover for temporal relations
and scoping. However, due to the different appli-
cation domains (MT vs. tourism-related activities),
there are some differences. Since MT systems oper-
ate at the sentence-level, each sentence is interpreted
in isolation in AMR, whilst our proposed MRL takes
context into account. Also, AMR tries to account
for all the words in a sentence, whilst our MRL only
tries to capture the semantics of those words that are
relevant to the application at hand.

Other popular semantic parsing corpora include
GeoQuery (Zelle, 1995) and Free-917 (Cai and
Yates, 2013). Both consist exclusively of questions
to be answered with a database query, the former
considering a small American geography database
and the latter the much wider Freebase database
(Bollacker et al., 2008). Unlike SPACEBOOK and
ATIS, there is no notion of context in either of these
corpora. Furthermore, the NL utterances in these
corpora are compiled to be interpreted as database
queries, which is equivalent to only one of the dialog
acts (set_question)in the SPACEBOOK corpus.
Thus the latter allows the exploration of the applica-
tion of dialog act tagging as a first step in semantic
parsing. Finally, MacMahon et al. (2006) developed
a corpus of natural language instructions paired with
sequences of actions; however the domain is limited
to simple navigation instructions and there is no no-
tion of dialog in this corpus.

5 Semantic Parsing for the New Corpus

The MRL in Fig. 1 is readable and easy to annotate
with. However, it is not ideal for experiments, as it
is difficult to compare MR expressions beyond exact

match. For these reasons, we converted the MR ex-
pressions into a node-argument form. In particular,
all predicates introducing entities (isA) and most
predicates introducing relations among entities (e.g.
distance) become nodes, while all other predi-
cates (e.g. isNamed, def) are converted into argu-
ments. For example, the MR for the first utterance in
Fig. 1 is converted into the form in Fig. 2g. Entities
appearing in MR expressions without a type (e.g.
X2 in the last utterance of Fig. 1) are denoted with a
node of type empty. Each node has a unique id (e.g.
X1) and each argument can take as value a constant
(e.g. det), a node id, or a verbatim string extract from
the utterance. Arguments that are absent (e.g. the
name of restaurant) are set to the constant null.
This conversion results in 16 utterance-level labels
(15 dialog acts plus one for the non-interpretable ut-
terances), 35 node types and 32 arguments.

The comparison between a predicted and a gold
standard node-argument form is performed in three
stages. First we map the ids of the predicted nodes
to those of the gold standard. While ids do not
carry any semantics, they are needed to differenti-
ate between multiple nodes of the same type; e.g.
if a second restaurant had been predicted in
Fig. 2h then it would have a different id and would
not be matched to a gold standard node. Second,
we decompose the node-argument forms into a set
of atomic predictions (Fig. 2h). This decomposi-
tion allows the awarding of partial credit, e.g. when
the node type is correct but some of the arguments
are not. Using these atomic predictions we calculate
precision, recall and F-score.

The mapping between predicted and gold stan-
dard ids is performed by evaluating all mappings
(with mappings between nodes of different types not
allowed), and choosing the one resulting in the low-
est sum of false positives and negatives.

5.1 Task decomposition

Fig. 2 shows the decomposition of the semantic
parsing task in stages, which are described below.

Dialog act prediction We first assign an
utterance-level label using a classifier that ex-
ploits features based on the textual content of the
utterance and on the utterance preceding it. The fea-
tures extracted from the utterance are all unigrams,
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what ’s the nearest italian for a meal ?

SET QUESTION

(a) Dialog act prediction

what ’s the nearest italian for a meal ?

SET QUESTION

distance restaurant

(b) Node prediction

what ’s the nearest italian for a meal ?

SET QUESTION

distance
restaurant

def

singular

number

detUSER

location

(c) Constant argument prediction

what ’s the nearest italian for a meal ?

SET QUESTION

distance
restaurant

def

singular

number

det
cuisine

USER

location

OUT OUT OUT OUT IN OUT OUT OUT

(d) String argument prediction

what ’s the nearest italian for a meal ?

SET QUESTION

distance restaurant

def

singular

number

detcuisine

USER

location
argmin

location

(e) Node argument prediction

what ’s the nearest italian for a meal ?

SET QUESTION

distance restaurant

def

singular

number

detcuisine

USER

location
argmin

location

focus

(f) Focus/negation prediction

SET QUESTION
X1:restaurant(num:singular,

det:def, cuisine:“italian”)
X2:distance(location:USER,

location:X1, argmin:X1)
focus:X1

(g) Node-argument form

dialogAct:SET QUESTION
X1:restaurant
X1:restaurant(num:singular)
X1:restaurant(det:def )
X1:restaurant(cuisine:“italian”)
X2:distance
X2:distance(location:USER)
X2:distance(location:X1-restaurant (num:singular, det:def ))
X2:distance(argmin:X1)
focus:X1-restaurant(num:singular, det:def )

(h) Atomic predictions

Figure 2: Semantic parsing decomposition.

bigrams and trigrams and the final punctuation
mark. Unlike in typical text classification tasks,
content words are not always helpful in dialog act
tagging; e.g. the token “meal” in Fig. 2a is not
indicative of set_question, while n-grams of
words typically considered as stopwords, such as
“what ’s the”, can be more helpful. If the dialog act
predicted is to be accompanied by other predicates
according to the guidelines (Sec. 2) we proceed to

the following stages, otherwise stop.

The features based on the preceding utterance in-
dicate whether it was by the user or the wizard and,
in the latter case, its dialog act. Such features are
useful in determining the act of short, ambiguous
utterances such as “yes”, which is tagged as yes
when following a prop_question utterance, but
as acknowledge otherwise.
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Node prediction In node prediction we use a clas-
sifier to predict whether each of the tokens in the ut-
terance denotes a node of a particular type or empty
(Fig. 2b). The features used include the target to-
ken and its lemma, which are conjoined with the
PoS tag, the previous and following tokens, as well
as the lemmas of the tokens with which it has syn-
tactic dependencies. Further features represent the
dialog act (e.g. route is more likely to appear in
a set question utterance), and the number and
types of the nodes already predicted. Since the
evaluation ignores the alignment between nodes and
tokens, it would have been correct to predict the
correct nodes from any token; e.g. restaurant
could be predicted from “italian” instead. However,
alignment does affect argument prediction, since it
determines its feature extraction.

Constant argument prediction In this stage
(Fig. 2c) we predict, for each argument of each node,
whether its value is an MRL vocabulary term, a ver-
batim string extract, a node, or absent (special val-
ues STRING, NODE, null respectively). If the value
predicted is STRING or NODE it is replaced by the
predictions in subsequent stages. For each argument
different values are possible; thus we use separate
classifiers for each, resulting in 32 classifiers. The
features used include the node type, the token that
predicted the node, and the syntactic dependency
paths from that token to all other tokens in the ut-
terance. We also include as features the values pre-
dicted for other arguments of the node, the dialog
act, and the other node types predicted.

String argument prediction For each argument
predicted to be STRING (e.g. cuisine in Fig-
ure 2d), we predict for each token in left-to-right or-
der whether it should be part of the value for this
argument or not (IN or OUT). Since the strings that
are appropriate for each argument differ (e.g. the
strings for cuisine are unlikely to be appropriate
for name), we use separate classifiers for each of
them, resulting in five classifiers. The features used
include the target token and its lemma, its conjunc-
tion with the PoS tag, the previous and following
tokens, and the lemmas of the tokens with which it
has syntactic dependencies. We also added the label
assigned to the previous token and the syntactic de-
pendency path to the token that predicted the node.

Node argument prediction For each argument
predicted to have NODE as its value, we predict for
every other node whether it should be the value or
not (e.g. argmin in Fig. 2e). As with the string ar-
gument prediction, we use separate binary classifiers
for each argument, resulting in 18 classifiers. The
features extracted are similar to that stage, but we
now consider the tokens that predicted each candi-
date argument node (e.g. “meal” for restaurant)
instead of the tokens in the utterance.

Focus/Negation prediction We predict whether
each node should be focused or negated as two sep-
arate binary tasks. The features used include the to-
ken that predicted the target node, its lemma and PoS
tag and the syntactic dependency paths to all other
tokens in the utterance. Further features include the
type of the node and its arguments.

6 Imitation Learning

In order to learn the classifiers for the task de-
composition described, two challenges must be ad-
dressed. The first is the complexity of the struc-
ture to be predicted. The task involves many inter-
dependent predictions made by a variety of clas-
sifiers, and thus cannot be tackled by approaches
that assume a particular type of graph structure, or
restrict structure feature extraction in order to per-
form efficient dynamic programming. The second
challenge is the lack of alignment information dur-
ing training. Imitation learning algorithms such as
SEARN (Daumé III et al., 2009) and DAGGER (Ross
et al., 2011) have been applied successfully to a vari-
ety of structured prediction tasks including summa-
rization, biomedical event extraction and dynamic
feature selection (Daumé III et al., 2009; Vlachos,
2012; He et al., 2013) thanks to their ability to han-
dle complex output spaces without exhaustive search
and their flexibility in incorporating features based
on the structured output. In this work we focus on
DAGGER and extend it to handle the missing align-
ments.

6.1 Structured prediction with DAGGER

The dataset aggregation (DAGGER) algorithm (Ross
et al., 2011) forms the prediction of an instance s as
a sequence of T actions ŷ1:T predicted by a learned
policy which consists of one or more classifiers.
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Algorithm 1: Imitation learning with DAG-
GER

Input: training instances S, expert policy π?,
loss function `, learning rate β, CSC learner CSCL
Output: Learned policy HN

1 CSC Examples E = ∅
2 for i = 1 to N do
3 p = (1− β)i−1

4 current policy π = pπ? + (1− p)Hi−1

5 for s in S do
6 Predict π(s) = ŷ1:T
7 for ŷt in π(s) do
8 Extract features Φt = f(s, ŷ1:t−1)

9 foreach possible action yjt do
10 Predict

y′t+1:T = π(s; ŷ1:t−1, y
j
t )

11 Assess
cjt = `(ŷ1:t−1, y

j
t , y′t+1:T )

12 Add (Φt, ct) to E

13 Learn Hi = CSCL(E)

These actions are taken in a greedy fashion, i.e. once
an action has been taken it cannot be changed. Dur-
ing training, it converts the problem of learning how
to predict these sequences of actions into cost sensi-
tive classification (CSC) learning. In CSC learning
each training example has a vector of misclassifica-
tion costs associated with it, thus rendering some
mistakes on some examples to be more expensive
than others (Domingos, 1999).

Algorithm 1 presents the training procedure.
DAGGER requires a set of labeled training instances
S and a loss function ` that compares complete out-
puts for instances in S against the gold standard.
In addition, an expert policy π? must be specified
which is an oracle that returns the optimal action for
the instances in S , akin to an expert demonstrating
the task. π? is typically derived from the gold stan-
dard; e.g. in part of speech tagging π? would return
the correct tag for each token. In addition, the learn-
ing rate β and a CSC learner (CSCL) must be pro-
vided. The algorithm outputs a learned policy HN

that, unlike π?, can generalize to unseen data.
Each training iteration begins by setting the prob-

ability p (line 3) of using π? in the current policy π.
In the first iteration, only π? is used but, in later it-
erations, π becomes stochastic and, for each action,

π? is used with probability p, and the learned pol-
icy from the previous iterationHi−1 with probability
1 − p (line 4). Then π is used to predict each train-
ing instance s (line 6). For each action ŷt, a CSC
example is generated (lines 7-12). The features Φt

are extracted from s and all previous actions ŷ1:t−1

(line 8). The cost for each possible action yjt is es-
timated by predicting the remaining actions y′t+1:T

for s using π (line 10) and calculating the loss in-
curred given yjt w.r.t. the gold standard for s using
` (line 11). As π is stochastic, it is common to use
multiple samples of y′t+1:T to assess the cost of each
action yjt by repeating lines 10-11. The features, to-
gether with the costs for each possible action, form
a CSC example (Φt, ct) (line 12). At the end of each
iteration, the CSC examples obtained from all itera-
tions are used by the CSC learning algorithm to learn
the classifier(s) for Hi (line 13).

When predicting the training instances (line 6),
and when estimating the costs for each possible ac-
tion (lines 10-11), the policy learned in the previous
iteration Hi−1 is used as part of π after the first it-
eration. Thus the CSC examples generated to learn
Hi depend on the predictions of Hi−1 and, by grad-
ually increasing the use of Hi−1 and ignoring π? in
π, the learned policies are adjusted to their own pre-
dictions, thus learning the dependencies among the
actions and how to predict them in order to mini-
mize the loss. The learning rate β determines how
fast π moves away from π?. The use of Hi−1 in
predicting the training instances (line 6) also has the
effect of exploring sub-optimal actions so that the
learned policies are adjusted to recover from their
mistakes. Finally, note that if only one training it-
eration is performed, the learned policy is equiva-
lent to a set of independently trained classifiers since
no training against the predictions of the previously
learned policy takes place.

6.2 Training with missing alignments

The loss function ` in DAGGER is only used to
compare complete outputs against the gold standard.
Therefore, when generating a CSC training example
in DAGGER (lines 7-12), we do not need to know
whether an action yjt is correct or not, we only evalu-
ate what the effect of yjt is on the loss incurred by the
complete action sequence. Thus, it does not need to
decompose over the actions taken to evaluate them.
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The ability to train against non-decomposable loss
functions is useful when the training data has miss-
ing labels, as is the case with semantic parsing. Fol-
lowing Sec. 5, ` is defined as the sum of the false
positive and false negative atomic predictions used
to calculate precision and recall and, since it ignores
the alignment between tokens and nodes, it cannot
assess node prediction actions. However, we can use
it under DAGGER to learn a node prediction classi-
fier together with the classifiers of the other stages.

The only component of DAGGER which assumes
knowledge of the correct actions for training is the
expert policy π?. Since these are not available for
the node prediction stage, we replace π? with a ran-
domized expert policy πrand, in which actions that
are not specified by the annotation are chosen ran-
domly from a set of equally optimal ones. For ex-
ample, in Fig. 2b when predicting the action for
each token, πrand chooses randomly among null,
distance, and restaurant, so that by the end
of the stage the correct nodes have been predicted.
Randomizing this choice helps explore the actions
available. In our experiments we placed a uniform
distribution over the available actions, i.e. all op-
timal actions are equally likely to be chosen. The
actions returned by πrand will often result in align-
ments that do not incur any loss but are nonsensical,
e.g. predicting restaurant from “what”. How-
ever, since πrand is progressively ignored, the effect
of such actions is reduced.

While being able to learn a semantic parser with-
out alignment information is useful, it would help to
use some supervision, e.g. that “street” commonly
predicts the node street. We incorporate such
an alignment dictionary in πrand as follows: if the
target token is mapped to a node type in the dictio-
nary, and if a node of this type needs to be predicted
for the utterance, then this type is returned. Other-
wise, the prediction is made with πrand. Finally, like
πrand itself, the dictionary is progressively ignored
and neither constrains the training process, nor is
used during testing.

7 Experiments

We split the annotated dialogs into training and test
sets. The former consists of four dialogs from the
first scenario and seven from the second, and the lat-

ter of three dialogs from each scenario. All devel-
opment and feature engineering was conducted us-
ing cross-validation on the training set, at the dialog
level rather than the utterance level (therefore result-
ing in as many folds as dialogs in the training set),
to ensure that each fold contains utterances from all
parts of the scenario from which the dialog is taken.

To perform cost-sensitive classification learning
we used the adaptive regularization of weight vec-
tors (AROW) algorithm (Crammer et al., 2009).
AROW is an online algorithm for linear predic-
tors that adjusts the per-feature learning rates so
that popular features do not overshadow rare but
useful ones. Given the task decomposition, each
learned hypothesis consists of 59 classifiers. We
restricted the prediction of nodes to content words
since function words are unlikely to provide useful
alignments. All preprocessing was performed us-
ing the Stanford CoreNLP toolkit (Manning et al.,
2014). The implementation of the semantic parser is
available from http://sites.google.com/
site/andreasvlachos/resources. The
DAGGER parameters were set to 12 training itera-
tions, β = 0.3 and 3 samples for action cost assess-
ment. We compared our DAGGER-based imitation
learning approach (henceforth Imit) against indepen-
dently trained classifiers using the same classifica-
tion learner and features (henceforth Indep).

For both systems we incorporated an alignment
dictionary (+align versions) as described in Sec. 6.2,
in order to improve node prediction performance.
The dictionary was extracted from the training data
and contains 96 tokens that commonly predict a par-
ticular node type.

The results from the cross-validation experiments
are reported in Tbl. 2. Overall performance eval-
uated as described in Sec. 5 was 53.6 points in F-
score for Imit, 5.7 points higher than Indep and the
difference is greater for the +align versions. These
results demonstrate the advantages of training clas-
sifiers using imitation learning versus independently
trained classifiers. Isolating the performance for
node and argument prediction stages, we observe
that the main bottleneck is the former, which in the
case of Imit is 60.9 points in F-score compared to
78.8 for the latter. Accuracy for dialog acts is 78.9%.

As shown in Tbl. 2, the alignment dictionary im-
proved not only node prediction performance by 6
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Imit Imit+align Indep Indep+align
exact match (accuracy) 58.4% 59.1% 56% 55.9%
dialog act (accuracy) 78.9% 79.3% 78.8% 79%
nodes (Rec/Prec/F) 72.3 52.6 60.9 76.1 59.8 66.9 44.4 61.6 51.6 53.3 64 58.1
arguments (Rec/Prec/F) 77.6 80 78.8 79.6 83 81.3 74.1 67.2 70.1 78.2 66.3 71.8
focus (Rec/Prec/F) 81.8 87.2 84.4 84.4 86.7 85.5 85.9 87 86.5 86.8 8.3 84.7
overall (Rec/Prec/F) 59.3 48.9 53.6 62.2 54.4 59.1 45.3 50.8 47.9 50 50.1 50.1

Table 2: Performances using 11-fold cross-validation on the training set.

points in F-score, but also argument prediction by
2.5 points, thus demonstrating the benefits of learn-
ing the alignments together with the other compo-
nents of the semantic parser. The overall perfor-
mance improved by 5.5 points in F-score.

Finally, we ran an experiment with oracle node
prediction and found that the overall performance
using cross-validation on the training data improved
to 88.2 and 79.9 points in F-score for the Imit+align
Indep+align systems. This is in agreement with the
results presented by Flanigan et al. (2014) on devel-
oping a semantic parsing parser for the AMR for-
malism who also argue that node prediction is the
main performance bottleneck.

Tbl. 3 gives results on the test set. The overall
performance for Imit is 48.4 F-score and 47.9% for
exact match. As in the cross-validation results on
the training data, training with imitation learning im-
proved upon independently trained classifiers. The
performance was improved further using the align-
ment dictionary, reaching 53.5 points in F-score and
49.1% exact match accuracy.

In the experimental setup above, dialogs from the
same scenarios appear in both training and testing.
While this is a reasonable evaluation approach also
followed in ATIS evaluations, it is likely to be rel-
atively forgiving; in practice, semantic parsers are
likely to encounter entities, activities, etc. unseen in
training. Hence we conducted a second evaluation
in which dialogs from one scenario are used to train
a parser evaluated on the other (still respecting the
train/test split from before). When testing on the di-
alogs from the first scenario and training on the di-
alogs from the second, the overall performance us-
ing Imit+align was 36.9 points in F-score, while in
the reverse experiment it was 41.7. Note that direct
comparisons against the performances in Tbl. 3 are

not meaningful since fewer dialogs are being used
for training and testing in the cross-scenario setup.

8 Comparison with Related Work

Previous work on semantic parsing handled the
lack of alignments during training in a variety of
ways. Zettlemoyer and Collins (2009) manually
engineered a CCG lexicon for the ATIS corpus.
Kwiatkowski et al. (2011) used a dedicated algo-
rithm to infer a similar dictionary and used align-
ments from Giza++ (Och and Ney, 2000) to initial-
ize the relevant features. Most recent work on Geo-
Query uses an alignment dictionary that includes for
each geographical entity all noun phrases referring
to it (Jones et al., 2012). More recently, Flanigan
et al. (2014) developed a dedicated alignment model
on top of which they learned a semantic parser for
the AMR formalism. In our approach, we learn the
alignments together with the semantic parser with-
out requiring a dictionary.

In terms of structured prediction frameworks,
most previous work uses hidden variable linear
(Zettlemoyer and Collins, 2007) or log-linear (Liang
et al., 2011) models with beam search. In terms of
direct comparisons with existing work, the goal of
this paper is to introduce the new corpus and pro-
vide a competitive first attempt at the new semantic
parsing task. However, we believe it is non-trivial to
apply existing approaches to the new task, since, as-
suming a decomposition similar to that of Sec. 5.1,
exhaustive search would be too expensive, and ap-
plying vanilla beam search would be difficult since
different predictions result in beams of (sometimes
radically) different lengths that are not comparable.

We have attempted applying the MT-based se-
mantic parsing approach proposed by Andreas et al.
(2013) to our dataset but in initial experiments the
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Imit Imit+align Indep Indep+align
exact match (accuracy) 47.9% 49.1% 47.6% 46.1%
dialog act (accuracy) 77% 80.5% 79.8% 79.5%
nodes (Rec/Prec/F) 68.7 45.7 54.8 75.5 51.7 61.4 41.9 61.1 49.7 54 64.9 58.9
arguments (Rec/Prec/F) 73.9 73.7 73.8 76.8 77.3 77.1 69.5 61.3 65.1 77.3 63.6 69.8
focus (Rec/Prec/F) 87.1 80.7 83.8 86 81.2 83.6 81.6 73.4 77.3 90.6 76.8 83.1
overall (Rec/Prec/F) 56.6 42.3 48.4 63.5 46.2 53.5 41.2 47.8 44.3 50 47.4 48.7

Table 3: Performances on the test set.

performance was poor. The main reason for this is
that, unlike GeoQuery, the proposed MRL does not
align well with English.

The expert policy in DAGGER is a generalization
of the dynamic oracle of Goldberg and Nivre (2013)
for shift-reduce dependency parsing to any struc-
tured prediction task decomposed into a sequence of
actions. The randomized expert policy proposed ex-
tends DAGGER to learn not only how to avoid error
propagation, but also how to infer latent variables.

The main bottleneck is training data sparsity.
Some node types appear only a few times in rela-
tively long utterances, and thus it is difficult to infer
appropriate alignments for them. Unlike machine
translation between natural languages, it is unreal-
istic to expect large quantities of utterances to be
annotated with MR expressions. An appealing al-
ternative would be to use response-based learning,
i.e. use the response from the system instead of MR
expressions as training signal (Liang et al., 2011;
Kwiatkowski et al., 2013; Berant and Liang, 2014).
However such an approach would not be straight-
forward to implement in our application, since the
response from the system is not always the result
of a database query but, e.g., a navigation instruc-
tion that is context-dependent and thus difficult to
assess its correctness. Furthermore, it would require
the development of a user simulator (Keizer et al.,
2012), a non-trivial task which is beyond the scope
of this work. A different approach is to use dialogs
between a system and its users as proposed by Artzi
and Zettlemoyer (2011) using the DARPA commu-
nicator corpus (Walker et al., 2002). However, in
that work utterances were selected to be shorter than
6 words and to include one noun phrase present
in the lexicon used during learning while ignoring
short but common phrases such as “yes” and “no”;

thus it is unclear whether it would be applicable to
our dataset.

Finally, dialog context is only taken into account
in predicting the dialog act for each utterance. Even
though our corpus contains coreference information,
we did not attempt this task as it is difficult to eval-
uate and our performance on node prediction on
which it relies is relatively low. We leave corefer-
ence resolution on the new corpus as an interesting
and challenging task for future work.

9 Conclusions

In this paper we presented a new corpus for context-
dependent semantic parsing in the context of a
portable, interactive navigation and exploration sys-
tem for tourism-related activities. The MRL used
for the annotation can handle dialog context such
as coreference and can accommodate utterances that
are not interpretable according to a database. We
conducted an inter-annotator agreement study and
found 0.829 exact match agreement.

We also developed a semantic parser for the
SPACEBOOK corpus using the imitation learning al-
gorithm DAGGER that, unlike previous approaches,
can infer the missing alignments in the training data
using a randomized expert policy. In experiments
using the new corpus we found that training with im-
itation learning substantially improves performance
compared to independently trained classifiers. Fi-
nally, we showed how to improve performance fur-
ther by incorporating an alignment dictionary.
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