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Abstract

Recent work on language modelling has
shifted focus from count-based models to
neural models. In these works, the words
in each sentence are always considered in
a left-to-right order. In this paper we show
how we can improve the performance of
the recurrent neural network (RNN) lan-
guage model by incorporating the syntac-
tic dependencies of a sentence, which have
the effect of bringing relevant contexts
closer to the word being predicted. We
evaluate our approach on the Microsoft
Research Sentence Completion Challenge
and show that the dependency RNN pro-
posed improves over the RNN by about
10 points in accuracy. Furthermore, we
achieve results comparable with the state-
of-the-art models on this task.

1 Introduction

Language Models (LM) are commonly used to
score a sequence of tokens according to its prob-
ability of occurring in natural language. They are
an essential building block in a variety of applica-
tions such as machine translation, speech recogni-
tion and grammatical error correction. The stan-
dard way of evaluating a language model has been
to calculate its perplexity on a large corpus. How-
ever, this evaluation assumes the output of the lan-
guage model to be probabilistic and it has been
observed that perplexity does not always correlate
with the downstream task performance.

For these reasons, Zweig and Burges (2012)
proposed the Sentence Completion Challenge, in
which the task is to pick the correct word to com-
plete a sentence out of five candidates. Perfor-
mance is evaluated by accuracy (how many sen-
tences were completed correctly), thus both prob-
abilistic and non-probabilistic models (e.g. Roark

et al. (2007)) can be compared. Recent approaches
for this task include both neural and count-based
language models (Zweig et al., 2012; Gubbins
and Vlachos, 2013; Mnih and Kavukcuoglu, 2013;
Mikolov et al., 2013).

Most neural language models consider the to-
kens in a sentence in the order they appear, and
the hidden state representation of the network
is typically reset at the beginning of each sen-
tence. In this work we propose a novel neu-
ral language model that learns a recurrent neu-
ral network (RNN) (Mikolov et al., 2010) on
top of the syntactic dependency parse of a sen-
tence. Syntactic dependencies bring relevant con-
texts closer to the word being predicted, thus en-
hancing performance as shown by Gubbins and
Vlachos (2013) for count-based language models.
Our Dependency RNN model is published simul-
taneously with another model, introduced in Tai et
al. (2015), who extend the Long-Short Term Mem-
ory (LSTM) architecture to tree-structured net-
work topologies and evaluate it at sentence-level
sentiment classification and semantic relatedness
tasks, but not as a language model.

Adapting the RNN to use the syntactic depen-
dency structure required to reset and run the net-
work on all the paths in the dependency parse tree
of a given sentence, while maintaining a count of
how often each token appears in those paths. Fur-
thermore, we explain how we can incorporate the
dependency labels as features.

Our results show that the dependency RNN lan-
guage model proposed outperforms the RNN pro-
posed by Mikolov et al. (2011) by about 10 points
in accuracy. Furthermore, it improves upon the
count-based dependency language model of Gub-
bins and Vlachos (2013), while achieving slightly
worse than the recent state-of-the-art results by
Mnih and Kavukcuoglu (2013). Finally, we make
the code and preprocessed data available to facili-
tate comparisons with future work.
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2 Dependency Recurrent Neural
Network

Count-based language models operate by assign-
ing probabilities to sentences by factorizing their
likelihood into n-grams. Neural language mod-
els further embed each word w(t) into a low-
dimensional vector representation (denoted by
s(t))1. These word representations are learned as
the language model is trained (Bengio et al., 2003)
and enable to define a word in relation to other
words in a metric space.

Recurrent Neural Network Mikolov et al.
(2010) suggested the use of Recurrent Neural Net-
works (RNN) to model long-range dependencies
between words as they are not restricted to a fixed
context length, like the feedforward neural net-
work (Bengio et al., 2003). The hidden representa-
tion s(t) for the word in position t of the sentence
in the RNN follows a first order auto-regressive
dynamic (Eq. 1), where W is the matrix connect-
ing the hidden representation of the previous word
s(t− 1) to the current one, w(t) is the one-hot in-
dex of the current word (in a vocabulary of size N
words) and U is the matrix containing the embed-
dings for all the words in the vocabulary:

s(t) = f (Ws(t− 1) + Uw(t)) (1)

The nonlinearity f is typically the logistic sigmoid
function f(x) = 1

1+exp(−x) . At each time step, the
RNN generates the word probability vector y(t)
for the next word w(t+ 1), using the output word
embedding matrix V and the softmax nonlinearity
g(xi) = exp(xi)∑

i
exp(xi)

:

y(t) = g (Vs(t)) (2)

RNN with Maximum Entropy Model Mikolov
et al. (2011) combined RNNs with a maximum en-
tropy model, essentially adding a matrix that di-
rectly connects the input words’ n-gram context
w(t − n + 1, . . . , t) to the output word proba-
bilities. In practice, because of the large vocab-
ulary size N , designing such a matrix is computa-
tionally prohibitive. Instead, a hash-based imple-
mentation is used, where the word context is fed
through a hash function h that computes the in-
dex h(w(t − n + 1, . . . , t)) of the context words

1In our notation, we make a distinction between the word
token w(t) at position t in the sentence and its one-hot vector
representation w(t). We note wi the i-th word token on a
breadth-first traversal of a dependency parse tree.

in a one-dimensional array d of size D (typically,
D = 109). Array d is trained in the same way as
the rest of the RNN model and contributes to the
output word probabilities:

y(t) = g
(
Vs(t) + dh(w(t−n+1,...,t))

)
(3)

As we show in our experiments, this additional
matrix is crucial to a good performance on word
completion tasks.

Training RNNs RNNs are trained using maxi-
mum likelihood through gradient-based optimiza-
tion, such as Stochastic Gradient Descent (SGD)
with an annealed learning rate λ. The Back-
Propagation Through Time (BPTT) variant of
SGD enables to sum-up gradients from consecu-
tive time steps before updating the parameters of
the RNN and to handle the long-range temporal
dependencies in the hidden s and output y se-
quences. The loss function is the cross-entropy
between the generated word distribution y(t) and
the target one-hot word distribution w(t+ 1), and
involves the log-likelihood terms log yw(t+1)(t).

For speed-up, the estimation of the output word
probabilities is done using hierarchical softmax
outputs, i.e., class-based factorization (Mikolov
and Zweig, 2012). Each word wi is assigned to
a class ci and the corresponding log-likelihood is
effectively log ywi(t) = log yci(t) + log ywj (t),
where j is the index of word wi among words
belonging to class ci. In our experiments, we
binned the words found in our training corpus into
250 classes according to frequency, roughly corre-
sponding to the square root of the vocabulary size.

Dependency RNN RNNs are designed to pro-
cess sequential data by iteratively presenting them
with word w(t) and generating next word’s proba-
bility distribution y(t) at each time step. They can
be reset at the beginning of a sentence by setting
all the values of hidden vector s(t) to zero.

Dependency parsing (Nivre, 2005) generates,
for each sentence (which we note {w(t)}Tt=0), a
parse tree with a single root, many leaves and an
unique path (also called unroll) from the root to
each leaf, as illustrated on Figure 1. We now note
{wi}i the set of word tokens appearing in the parse
tree of a sentence. The order in the notation de-
rives from the breadth-first traversal of that tree
(i.e., the root word is noted w0). Each of the un-
rolls can be seen as a different sequence of words
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ROOT I saw the ship with very strong binoculars

nsubj

prep
dobj

dep

pobj

advmod
amodROOT

Figure 1: Example dependency tree

{wi}, starting from the single rootw0, that are vis-
ited when one takes a specific path on the parse
tree. We propose a simple transformation to the
RNN algorithm so that it can process dependency
parse trees. The RNN is reset and independently
run on each such unroll. As detailed in the next
paragraph, when evaluating the log-probability of
the sentence, a word token wi can appear in mul-
tiple unrolls but its log-likelihood is counted only
once. During training, and to avoid over-training
the network on word tokens that appear in more
than one unroll (words near the root appear in
more unrolls than those nearer the leaves), each
word token wi is given a weight discount αi = 1

ni
,

based on the number ni of unrolls the token ap-
pears in. Since the RNN is optimized using SGD
and updated at every time-step, the contribution of
word token wi can be discounted by multiplying
the learning rate by the discount factor: αiλ.

Sentence Probability in Dependency RNN
Given a word wi, let us define the ancestor se-
quence A(wi) to be the subsequence of words,
taken as a subset from {wk}i−1

k=0 and describing
the path from the root node w0 to the parent of wi.
For example, in Figure 1, the ancestors A(very)
of word token very are saw, binoculars and
strong. Assuming that each word wi is con-
ditionally independent of the words outside of
its ancestor sequence, given its ancestor sequence
A(wi), Gubbins and Vlachos (2013) showed that
the probability of a sentence (i.e., the probability
of a lexicalized tree ST given an unlexicalized tree
T ) could be written as:

P [ST |T ] =
|S|∏
i=1

P [wi|A(wi)] (4)

This means that the conditional likelihood of a
word given its ancestors needs to be counted only
once in the calculation of the sentence likelihood,
even though each word can appear in multiple un-
rolls. When modeling a sentence using an RNN,
the state sj that is used to generate the distribution

of words wi (where j is the parent of i in the tree),
represents the vector embedding of the history of
the ancestor words A(wi). Therefore, we count
the term P [wi|sj ] only once when computing the
likelihood of the sentence.

3 Labelled Dependency RNN

The model presented so far does not use
dependency labels. For this purpose we
adapted the context-dependent RNN (Mikolov and
Zweig, 2012) to handle them as additional M -
dimensional label input features f(t). These fea-
tures require a matrix F that connects label fea-
tures to word vectors, thus yielding a new dynam-
ical model (Eq. 5) in the RNN, and a matrix G
that connects label features to output word proba-
bilities. The full model becomes as follows:

s(t) = f (Ws(t− 1) + Uw(t) + Ff(t))(5)

y(t) = g
(
Vs(t) + Gf(t) + dh(wt

t−n+1)

)
(6)

On our training dataset, the dependency parsing
model found M = 44 distinct labels (e.g., nsubj,
det or prep). At each time step t, the context word
w(t) is associated a single dependency label f(t)
(a one-hot vector of dimension M ).

Let G(w) be the sequence of grammatical rela-
tions (dependency tree labels) between successive
elements of (A(w), w). The factorization of the
sentence likelihood from Eq. 4 becomes:

P [ST |T ] =
|S|∏
i=1

P [wi|A(wi), G(wi)] (7)

4 Implementation and Dataset

We modified the Feature-Augmented RNN
toolkit2 and adapted it to handle tree-structured
data. Specifically, and instead of being run se-
quentially on the entire training corpus, the RNN
is run on all the word tokens in all unrolls of all
the sentences in all the books of the corpus. The
RNN is reset at the beginning of each unroll of a
sentence. When calculating the log-probability of
a sentence, the contribution of each word token
is counted only once (and stored in a hash-table
specific for that sentence). Once all the unrolls
of a sentence are processed, the log-probability
of the sentence is the sum of the per-token log-
probabilities in that hash-table. We also further

2http://research.microsoft.com/en-us/projects/rnn/
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enhanced the RNN library by replacing some
large matrix multiplication routines by calls to the
CBLAS library, thus yielding a two- to three-fold
speed-up in the test and training time.3

The training corpus consists of 522 19th cen-
tury novels from Project Gutenberg (Zweig and
Burges, 2012). All processing (sentence-splitting,
PoS tagging, syntactic parsing) was performed us-
ing the Stanford CoreNLP toolkit (Manning et al.,
2014). The test set contains 1040 sentences to be
completed. Each sentence consists of one ground
truth and 4 impostor sentences where a specific
word has been replaced with a syntactically cor-
rect but semantically incorrect impostor word. De-
pendency trees are generated for each sentence
candidate. We split that set into two, using the first
520 sentences in the validation (development) set
and the latter 520 sentences in the test set. Dur-
ing training, we start annealing the learning rate λ
with decay factor 0.66 as soon as the classification
error on the validation set starts to increase.

5 Results

Table 1 shows the accuracy (validation and test
sets) obtained using a simple RNN with 50, 100,
200 and 300-dimensional hidden word represen-
tation and 250 frequency-based word classes (vo-
cabulary size N = 72846 words appearing at least
5 times in the training corpus). One notices that
adding the direct word context to target word con-
nections (using the additional matrix described in
section 2), enables to jump from a poor perfor-
mance of about 30% accuracy to about 40% test
accuracy, essentially matching the 39% accuracy
reported for Good-Turing n-gram language mod-
els in Zweig et al. (2012). Modelling 4-grams
yields even better results, closer to the 45% accu-
racy reported for RNNs in (Zweig et al., 2012).4

As Table 2 shows, dependency RNNs (de-
pRNN) enable about 10 point word accuracy im-
provement over sequential RNNs.

The best accuracy achieved by the depRNN on
the combined development and test sets used to re-
port results in previous work was 53.5%. The best
reported results in the MSR sentence completion
challenge have been achieved by Log-BiLinear
Models (LBLs) (Mnih and Hinton, 2007), a vari-

3Our code and our preprocessed datasets are avail-
able from: https://github.com/piotrmirowski/
DependencyTreeRnn

4The paper did not provide details on the maximum en-
tropy features or on class-based hierarchical softmax).

Architecture 50h 100h 200h 300h
RNN (dev) 29.6 30.0 30.0 30.6
RNN (test) 28.1 30.0 30.4 28.5
RNN+2g (dev) 29.6 28.7 29.4 29.8
RNN+2g (test) 29.6 28.7 28.1 30.2
RNN+3g (dev) 39.2 39.4 38.8 36.5
RNN+3g (test) 40.8 40.6 40.2 39.8
RNN+4g (dev) 40.2 40.6 40.0 40.2
RNN+4g (test) 42.3 41.2 40.4 39.2

Table 1: Accuracy of sequential RNN on the MSR
Sentence Completion Challenge.

Architecture 50h 100h 200h
depRNN+3g (dev) 53.3 54.2 54.2
depRNN+3g (test) 51.9 52.7 51.9
ldepRNN+3g (dev) 48.8 51.5 49.0
ldepRNN+3g (test) 44.8 45.4 47.7
depRNN+4g (dev) 52.7 54.0 52.7
depRNN+4g (test) 48.9 51.3 50.8
ldepRNN+4g (dev) 49.4 50.0 (48.5)
ldepRNN+4g (test) 47.7 51.4 (47.7)

Table 2: Accuracy of (un-)labeled dependency
RNN (depRNN and ldepRNN respectively).

ant of neural language models with 54.7% to
55.5% accuracy (Mnih and Teh, 2012; Mnih and
Kavukcuoglu, 2013). We conjecture that their su-
perior performance might stem from the fact that
LBLs, just like n-grams, take into account the or-
der of the words in the context and can thus model
higher-order Markovian dynamics than the simple
first-order autoregressive dynamics in RNNs. The
depRNN proposed ignores the left-to-right word
order, thus it is likely that a combination of these
approaches will result in even higher accuracies.
Gubbins and Vlachos (2013) developed a count-
based dependency language model achieving 50%
accuracy. Finally, Mikolov et al. (2013) report that
they achieved 55.4% accuracy with an ensemble of
RNNs, without giving any other details.

6 Discussion

Related work Mirowski et al. (2010) incorpo-
rated syntactic information into neural language
models using PoS tags as additional input to LBLs
but obtained only a small reduction of the word
error rate in a speech recognition task. Similarly,
Bian et al. (2014) enriched the Continuous Bag-of-
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Words (CBOW) model of Mikolov et al. (2013)
by incorporating morphology, PoS tags and en-
tity categories into 600-dimensional word embed-
dings trained on the Gutenberg dataset, increas-
ing sentence completion accuracy from 41% to
44%. Other work on incorporating syntax into lan-
guage modeling include Chelba et al. (1997) and
Pauls and Klein (2012), however none of these ap-
proaches considered neural language models, only
count-based ones. Levy and Goldberg (2014) and
Zhao et al. (2014) proposed to train neural word
embeddings using skip-grams and CBOWs on de-
pendency parse trees, but did not extend their ap-
proach to actual language models such as LBL and
RNN and did not evaluate the word embeddings
on word completion tasks.

Note that we assume that the dependency tree
is supplied prior to running the RNN which limits
the scope of the Dependency RNN to the scoring
of complete sentences, not to next word prediction
(unless a dependency tree parse for the sentence
to be generated is provided). Nevertheless, it is
common in speech recognition and machine trans-
lation to use a conventional decoder to produce an
N-best list of the most likely candidate sentences
and then re-score them with the language model.
(Chelba et al., 1997; Pauls and Klein, 2011)

Tai et al. (2015) propose a similar approach to
ours, learning Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997; Graves,
2012) RNNs on dependency parse tree network
topologies. Their architectures is not designed to
predict next-word probability distributions, as in
a language model, but to classify the input words
(sentiment analysis task) or to measure the sim-
ilarity in hidden representations (semantic relat-
edness task). Their relative improvement in per-
formance (tree LSTMs vs standard LSTMs) on
these two tasks is smaller than ours, probably be-
cause the LSTMs are better than RNNs at storing
long-term dependencies and thus do not benefit
form the word ordering from dependency trees as
much as RNNs. In a similar vein to ours, Miceli-
Barone and Attardi (2015) simply propose to en-
hance RNN-based machine translation by permut-
ing the order of the words in the source sentence to
match the order of the words in the target sentence,
using a source-side dependency parsing.

Limitations of RNNs for word completion
Zweig et al. (2012) reported that RNNs achieve
lower perplexity than n-grams but do not always

Figure 2: Perplexity vs. accuracy of RNNs

outperform them on word completion tasks. As
illustrated in Fig. 2, the validation set perplex-
ity (comprising all 5 choices for each sentence)
of the RNN keeps decreasing monotonically (once
we start annealing the learning rate), whereas the
validation accuracy rapidly reaches a plateau and
oscillates. Our observation confirms that, once an
RNN went through a few training epochs, change
in perplexity is no longer a good predictor of
change in word accuracy. We presume that the
log-likelihood of word distribution is not a train-
ing objective crafted for precision@1, and that
further perplexity reduction happens in the middle
and tail of the word distribution.

7 Conclusions

In this paper we proposed a novel language model,
dependency RNN, which incorporates syntactic
dependencies into the RNN formulation. We eval-
uated its performance on the MSR sentence com-
pletion task and showed that it improves over
RNN by 10 points in accuracy, while achieving re-
sults comparable with the state-of-the-art. Further
work will include extending the dependency tree
language modeling to Long Short-Term Memory
RNNs to handle longer syntactic dependencies.
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