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Seismic studies are a key stage in the search for large scale underground features such as water reserves, gas pockets, or oil fields.
Sound waves, generated on the earth’s surface, travel through the ground before being partially reflected at interfaces between
regionswith high contrast in acoustic properties such as between liquid and solid. After returning to the surface, the reflected signals
are recorded by acoustic sensors. Importantly, reflections from different depths return at different times, and hence the data contain
depth information as well as position. A strong reflecting interface, called a horizon, indicates a stratigraphic boundary between
two different regions, and it is the location of these horizons which is of key importance. This paper proposes a simple approach
for the automatic identification of horizons, which avoids computationally complex and time consuming 3D reconstruction. The
new approach combines nonparametric smoothing and classification techniques which are applied directly to the seismic data,
with novel graphical representations of the intermediate steps introduced. For each sensor position, potential horizon locations
are identified along the corresponding time-series traces. These candidate locations are then examined across all traces and when
consistent patterns occur the points are linked together to form coherent horizons.

1. Introduction

There are many applications with multiple time-series data
recorded at high frequency, such as environmental science,
geophysics, financial trading, and internet marketing. Often
the aim of the analysis is to identify events which occur
across many data series but not necessarily at the same
time. Rapid acquisition means that a full analysis may be
impractical and so simple yet reliable methods are needed.
An exemplary application is geophysical surveying where
large datasets are obtained but only limited questions need
answering, such as the following: is there an oil field? And
if so, what is its location? In such cases, there is no need to
perform a full 3D reconstruction of the study area and then
interpret the reconstruction. Instead, it is possible to produce
an answer directly from the data. A seismic study will form
motivation for the proposed approach, but the method could
be equally applied to other situations where the aim is to
identify coherent features across multiple time series.

A seismic dataset consists of records of reflected signals
measured by a number of seismic sensors placed at the
nodes of a lattice on the earth surface. Figure 1 presents a
diagramof the forming of reflected seismic signals. For details
and a review of seismology, see, for example, Shearer [1],
Sheriff and Geldart [2], Waters [3], and Hatton et al. [4].
The data can be treated as adjacent time series, called traces,
indicating the arrival time of artificially generated sound
waves reflected by underground features. An incident sound
wave is reflected primarily by boundaries between layers with
differing physical properties. Strong reflections are named
horizons and indicate boundaries between distinct layers, or
strata.

The main purpose of the analysis is to identify geometric
features automatically, which represent strong reflections,
and describe the horizons. The tracking of horizons is not
easy in many cases, for example, when dealing with noisy
measurements or across faults. A fault is a vertical crack in the
rock which is recognized in seismic data by discontinuities in
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Figure 1: Diagram showing the formation of the reflected seismic
signals.

the horizon.The location of faults is an important task for the
structural interpretation of seismic data.

There are several approaches and many contributions
that have been made to solve seismological problems. One
approach is to perform a full 3D reconstruction of the sub-
surface from the surface measurements.This type of problem
is well known and is referred to as an ill-posed inverse
problem which often requires substantial regularization. A
general background to inverse problems can be found in
Ribés and Schmitt [5] and in a mathematical discussion
in Stuart [6]. Even in 2D the reconstruction process is
usually mathematically and computationally challenging,
and performing a full 3D reconstruction for a large scale
seismic problem (possibly involving terabytes of data) may
be impractical and ineffective—this is in contrast to other
geophysical data collection methods (see, e.g., the review
paper of [7]). Also, the reconstructed distribution would
still need postprocessing to identify features, and a major
drawback of this two-stage approach is that the regularization
required in the first step may mask the features of interest.
Instead, other types of analysis have beenmorewidely studied
looking to produce surface maps to indicate what is beneath
the surface. Lendzionowski et al. [8] and van der Baan and
Paul [9] use pattern recognition methods in seismology.
In particular, they compare the traces against a library of
patterns from known features with the aim of identifying
similar features. The key to success is the construction of
a varied library as otherwise features of interest could be
ignored. Walden [10] uses simple summary measures of the
traces followed by projection pursuit and thresholding to
classify the traces into homogeneous groups. This, however,
was performed on the entire trace and hence no depth
information is retained. Also, there is no spatial smoothing,
meaning that some locations can be classified differently to
neighbouring locations simply due to the effects of noise.

The rest of the paper is organized as follows. In Section 2,
a model is presented which describes the full multistage
process leading to a seismic dataset. This model will be used

to generate synthetic data, but it will not be used for data
analysis. Instead, the method of data analysis is described in
Section 3 along with examples. Finally, there is a conclusions’
section followed by references.

2. A Model for Seismic Data

In this section, the standard model for seismic data is
described. In this paper, the model has been used for data
generation, but it is not used in the proposed method of
analysis. The use of a realistic seismic model will mean that
synthetic data mimic real data. If the aim of an analysis
is full 3D subsurface reconstruction, then such a model
would also be used in analysis; however, in this work, the
proposed method detailed in the next section interprets the
data directly.

Suppose that acoustic sensors are placed on the earth’s
surface at 𝑛 distinct locations forming a regular grid across
some study regions.At time 𝑡

0
= 0 a seismic pulse is generated

and data recording starts. The energy from the pulse spreads
through the ground with some proportion being reflected
back towards the surface. The sensors record this reflected
energy at 𝑛 equally spaced time points, T = {𝑡

𝑖
: 𝑖 =

1, 2, . . . , 𝑛}, spread over several seconds before data collection
stops. Hence, at each location, a time series, y = {𝑦

𝑖
: 𝑖 =

1, 2, . . . , 𝑛}, is recorded. Let the 𝑛 sensor locations be denoted
by S = {s

𝑗
: 𝑗 = 1, 2, . . . , 𝑚}. Collecting the multiple time

series together produces the full seismic dataset, Y = {𝑦
𝑖,𝑗

:

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚}, where 𝑦
𝑖,𝑗

represents the
reflected energy measured at time 𝑡

𝑖
and location s

𝑗
.

The amount of reflected energy depends on the acoustic
impedance distribution of the subsurface, as well as proper-
ties of the initial seismic pulse. A common model used in
reflection seismology is that of a stack of horizontal layers
(see [4, 11]). Suppose that there are 𝐾 distinct layers with the
bottom of the layers at depthsD = {𝑑

𝑘
: 𝑘 = 1, 2, . . . , 𝐾−1}—

note that the lowest layer is assumed to stretch to infinity and
hence there is no value for 𝑑

𝐾
—and that the corresponding

acoustic impedances are W = {𝜔
𝑘
: 𝑘 = 1, 2, . . . , 𝐾}. In

turn, the acoustic impedance is determined by the product of
the density, 𝜌, and the acoustic velocity, V, of the material in
the layer. Typical values for density (in g/cm3) and acoustic
velocity (km/sec) are water 𝜌 = 1.0, V = 1.4; oil 𝜌 = 0.8,
V = 1.3; and rock 𝜌 = 1.5–3.0, V = 3.0–6.0. This means
that it is possible for two materials to have different density
and acoustic velocity but to have indistinguishable acoustic
impedance values.

Where two layers touch, there is an acoustic impedance
contrast described by the reflection coefficient.This is defined
as the difference between the acoustic impedances of the two
layers divided by their sum. So the reflection coefficient, 𝛾

𝑘
,

at the bottom of layer 𝑘 is given by

𝛾
𝑘
=

𝜔
𝑘+1

− 𝜔
𝑘

𝜔
𝑘+1

+ 𝜔
𝑘

, 𝑘 = 1, 2, . . . , 𝐾 − 1. (1)

In a regionwithmultiple layers, therewill be several reflecting
surfaces at different depths. A reflection coefficient series,
or spike series, records the depth and value of the various
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Figure 2: Ricker wavelet of varying dominant frequency: (a) 25Hz; (b) 50Hz; (c) 100Hz.

reflection coefficients and can be written as 𝛾 = {𝛾
𝑘
: 𝑘 =

1, 2, . . . , 𝐾 − 1} at depths D = {𝑑
𝑘
: 𝑘 = 1, 2, . . . , 𝐾 − 1}.

This series therefore encodes the information about the
horizons, in the sense that the arrival time of a reflection
is directly proportional to the location of the spike, 𝑑

𝑘
, and

the amplitude of the spike represents the strength of the
reflection, 𝛾

𝑘
.

The model of recorded seismic data is completed by the
convolution of the reflection coefficient series with a transfer
function which is often taken as the Ricker wavelet [12]. The
Ricker wavelet is defined as the scaled second derivative of
the Gaussian function written as

𝑤 (𝑑, 𝑡) = (1 − 2𝜋
2
𝑓
2

𝑅
(𝑡 −

𝑑

V
)

2

) 𝑒
−𝜋
2
𝑓
2

𝑅
(𝑡−𝑑/V)2

, (2)

where 𝑑 is the depth of the reflecting surface, 𝑡 is the time
delay for the reflection to return to the surface, 𝑓

𝑅
is the

dominant frequency of the sound wave, and V is the average
velocity of the sound wave along its path. The transfer
function relates the time taken for the energy pulse to cover
a particular distance. Examples of the Ricker wavelet for
three different dominant frequencies are shown in Figure 2.
The Ricker wavelet is wide for low frequencies and more
compact for higher dominant frequencies. Although this
means that higher frequency soundwaves have the advantage
of greater time resolution, suchwaves have the overwhelming
disadvantage that they penetrate less deeply into the ground.
Then, the discrete convolution model can be written as

𝑓 (𝑡
𝑖
) =

𝐾−1

∑

𝑘=1

𝑤 (𝑑
𝑘
, 𝑡
𝑖
) × 𝛾
𝑘
, 𝑖 = 1, 2, . . . , 𝑛, (3)

and including the effects of measurement error gives the final
data equation

𝑦
𝑖
= 𝑓 (𝑡

𝑖
) + 𝜖
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (4)

where {𝜖
𝑖
, 𝑖 = 1, 2, . . . , 𝑛} are independent measurement

errors modelled by a Gaussian distribution. Figure 3 shows
a diagrammatic representation of the formation of a seismic
signal which results from the convolution of the reflection
coefficient and the Ricker wavelet. The horizon locations
can be seen as spikes in the reflection coefficient series

Noise-free traceRicker waveletReflection coefficient

=×

(a) (b) (c)

Figure 3: Diagram illustrating data production: (a) reflection
coefficients; (b) Ricker wavelet; (c) seismic trace.

corresponding to contrasting acoustic impedance values.The
convolution of this series with the Ricker wavelet leads to a
blurred version of the reflection coefficient series. In practice,
the reflection coefficient series will be contaminated byminor
acoustic impedance contrasts due to natural variation and by
random noise describing other sources of error.

Now, consider an example of the simulation of a synthetic
dataset using the above model. Consider a sedimentary
geological regionwhich consists of several rock layers bedded
horizontally upon each other with each layer having a char-
acteristic, but naturally varying, acoustic impedance. This
latter point will create weak reflections due to low-contrast
changes in acoustic impedance within a layer creating clutter,
which may partially obscure the true horizon locations. This
will have the effect of contaminating the reflection coefficient
series which will be transformed into correlated errors in the
seismic trace—in addition to the independent measurement
errors. Further, suppose there is a fault causing one part of
the region to be deeper relative to the surrounding area.
As a particular example, Figure 4 shows the seismogram of
traces along a transect—in these traces moderate natural
variation and measurement noise have been included. The
dataset consists of 21 traces, each having 361 readings at equal
time intervals. Three horizons can easily be identified, one
curving up towards the top-right and the other two almost
horizontal in the bottomhalf of the picture.The discontinuity
in the horizons is caused by the presence of a fault towards



4 Advances in Statistics

Figure 4: Seismogram showing multiple traces in a synthetic
dataset.

the right-hand side. There is also a gap in the lowest horizon
towards the left-hand side.

3. Method of Analysis

3.1. General Strategy. The method proposed here takes as
its starting point the seismogram. Although this may have
already been preprocessed, it is assumed that this involved
little or no smoothing. Hence, the method starts by consider-
ing smoothing to remove the effects of noise, before moving
on to identify key features within the data.

The overall objective of the analysis is to identify the
stratigraphic structure in the seismogram, that is, long, linear
features which are called horizons. These represent lines of
high acoustic impedance contrast which are associated with
important changes in subsurface structure. In the presence
of low noise, the points along a strong contrast horizon
can easily be identified as turning points in the individual
traces—see Figure 4. Even in this case, however, as the
number of horizons is unknown, it might not be obvious
how many turning points to take. Also, when the contrast is
lower, relative to the noise level, identification will be further
complicated as turning points caused by the noise and feature
might sometimes have similar signal values.

In the proposed method, first, each time series trace is
considered separately and candidate horizon locations are
identified as local maxima and minima after smoothing.
Then, these candidate points are classified into groups where
members of each class have similar signals. Again, noise
may mean that some points are incorrectly classified. The
identified classes are defined as structural points. Finally,
selected points in each class are linked to identify the
horizons. The diagram in Figure 5 illustrates the steps of the
analysis strategy.

3.2. Extracting Candidate Point Locations. Figure 6(a) shows
a single trace, from themiddle of the earlier seismogram,with

local minima and maxima shown as open and filled circles,
respectively.The sets of the locations of the local maxima and
minima are simply determined as

𝐿
max
0

= {𝑡
𝑖
: 𝑦
𝑖
− 𝑦
𝑖−1

> 0, 𝑦
𝑖+1

− 𝑦
𝑖
< 0} ,

𝐿
min
0

= {𝑡
𝑖
: 𝑦
𝑖
− 𝑦
𝑖−1

< 0, 𝑦
𝑖+1

− 𝑦
𝑖
> 0} .

(5)

In total, there are 61 turning points and although the three
horizon locations can easily be seen, the remaining 58 are
caused by the noise. In situations where there are higher
noise levels, it will not be so easy to separate the extreme
points created by horizons from those due to noise. This will
mean that some horizons are lost and that spurious points
contaminate the true locations. To reduce the influence of
noise the traces are smoothed.

For a given trace, consider the 𝑛 paired data points,
{(𝑡
𝑖
, 𝑦
𝑖
) : 𝑖 = 1, . . . , 𝑛}, related by an unknown nonlinear

relationship, 𝑓(⋅), with additive noise; that is,

𝑦
𝑖
= 𝑓 (𝑡

𝑖
) + 𝜖
𝑖
, 𝑖 = 1, . . . , 𝑛, (6)

where the noise, {𝜖
𝑖
, 𝑖 = 1, . . . , 𝑛}, are independent, and

identically distributed Gaussian random variables with zero
mean and constant variance, 𝜎2.

To reduce the effects of noise, the unknown function
can be estimated using smoothing splines (see, e.g., [13, 14]),
which minimizes the objective function

𝐽 (𝜆) =

1

𝑛

𝑛

∑

𝑖=1

(𝑦
𝑖
− 𝑓(𝑡
𝑖
))
2
+ 𝜆∫ (𝑓

󸀠󸀠
(𝑡))

2

𝑑𝑡 (7)

subject to the constraint that the fitted curve is twice differ-
entiable. That is,

̂
𝑓
𝜆
(𝑡) = argmin

𝑓

{

1

𝑛

𝑛

∑

𝑖=1

(𝑦
𝑖
− 𝑓(𝑡
𝑖
))
2
+ 𝜆∫ (𝑓

󸀠󸀠
(𝑡))

2

𝑑𝑡} .

(8)

In these, the integral is over the interval [𝑡
(1)
, 𝑡
(𝑛)
], that is, the

minimum and maximum of the data collection times. The
first term, a residual mean-square, measures the discrepancy
between the data and the fitted function and the second,
an integrated squared curvature, measures the roughness
of the fitted function, and 𝜆 is a smoothing or bandwidth
parameter. To make the residuals zero, the fitted function
must interpolate the data. In general, this will lead to a
quickly varying function which will have a high curvature.
In contrast, to make the curvature zero, the fitted func-
tion must be linear, which is unlikely to fit the data well,
making the residuals large. The smoothing parameter, 𝜆,
controls the balance between these two measures. Figures
6(b) and 6(c) show the results of spline smoothing (using
the R function smooth.spline, [15]) for small andmoderate
values of 𝜆, respectively. In each, the major structure is still
evident and some undesirable points are removed. However,
care is needed to avoid oversmoothingwhichmight eliminate
important features. In the extreme, however, even the main
structural features would be lost.
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Figure 6: A seismic trace after increasing levels of smoothing: (a)
low, (b) moderate, and (c) high smoothing. Also shown are the
locations of local minima and maxima.

Figures 6(b) and 6(c) also show the locations of the local
turning points of the smoothed function estimates, which can
be defined as

𝐿
max
𝜆

= {𝑡
𝑖
:
̂
𝑓
𝜆
(𝑡
𝑖
) −

̂
𝑓
𝜆
(𝑡
𝑖−1
) > 0,

̂
𝑓
𝜆
(𝑡
𝑖+1
) −

̂
𝑓
𝜆
(𝑡
𝑖
) < 0} ,

𝐿
min
𝜆

= {𝑡
𝑖
:
̂
𝑓
𝜆
(𝑡
𝑖
) −

̂
𝑓
𝜆
(𝑡
𝑖−1
) < 0,

̂
𝑓
𝜆
(𝑡
𝑖+1
) −

̂
𝑓
𝜆
(𝑡
𝑖
) > 0} .

(9)

Here, and later, a scale-space approach (see, e.g., [16, 17]) will
be considered. The idea is that one should not try to focus
on a single smoothing level but consider several levels simul-
taneously with the aim of identifying any dominant scales.
For any value of the smoothing parameter, 𝜆, minimizing (7)
will yield a fitted function, ̂𝑓

𝜆
, and hence this can be repeated

for a range of values of the smoothing parameter. Figure 7
shows a set of smoothed traces. As the level of smoothing
increases, from left to right, the resulting smoothed traces
become smoother and smoother until they are a straight line
on the far right. The best smoothed trace will be somewhere
within this set.

Recall that the aim here is not to produce a “nicely
smoothed trace,” but, instead, to accurately locate the turning
points which correspond to the horizons. Hence the choice
of smoothing parameter focuses on this output rather than
on a more usual global goodness-of-fit measure. To help
with the analysis, a novel turning-point tree is proposed
with an example shown in Figure 8 where the locations of

Figure 7: A single seismic trace after increasing levels of smoothing.

all minima and maxima are shown as the smoothing level
changes. That is, the tree shows a graphical representation
of the sets 𝐿max

𝜆
and 𝐿

min
𝜆

as functions of 𝜆. The bottom
edge of Figure 8 corresponds to no smoothing and every
turning point in the data appears. As the smoothing increases,
moving upwardswithin the graph, the turning point locations
change and sometimes turning points disappear. Note that,
as the smoothing increases, pairs of neighbouring maxima
and minima move towards each other before disappearing.
Gradually, the number of turning points decreases until at the
top of the graph only the three principal turning points are
seen and eventually even these will disappear. The horizontal
dotted lines correspond to the low, moderate, and high
smoothing situations shown in Figure 6.Overall, it seems that
turning points associatedwith true horizons remain for a very
wide range of levels of smoothing and hence themethod does
not seem to be too sensitive to the exact choice.

To summarize the threshold tree in Figure 8, consider
the number of turning points, 𝑁

𝜆
, for each value of the

smoothing parameter as shown in Figure 9(a). For small
values of 𝜆, there is little smoothing and hence there are
many turning points, but as 𝜆 increases the number of
turning points reduces. Turning points due to noise should
be removed quickly, but true turning points due to the
horizons should remain. To select an appropriate value of 𝜆,
it is proposed to use the value corresponding to the greatest
change in the number of turning points. This derivative is
shown in Figure 9(b) with the maximum (absolute) value
shown as a vertical line at about 𝜆∗ = 0.62. Figure 6(b)
shows a smoothed trace using the corresponding smoothing
parameter value. Figure 10(a) shows the full dataset after
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Figure 8: Threshold tree showing the location of the turning points (blue minima, red maxima) for varying levels of smoothing.
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Figure 9: Graphs of (a) the number of turning points as a function
of bandwidth and (b) the corresponding derivative and point of
maximum absolute derivative.

smoothing using the automatically chosen bandwidth and
Figure 10(b) shows the corresponding minima and maxima
as open and filled circles. It is worth noting that this has
located many more candidate points than the number of true
turning points.This is important as, at this stage, it is vital that
true horizon locations are not lost.The next stage will identify
which candidate points form coherent features.

3.3. Candidate Point Classification and Structural Point Link-
ing. The second stage in the procedure is to classify the
candidate points into groups where members of a group
form a single horizon. It is assumed that points along a
horizon will have a distinct acoustic impedance contrast
giving rise to a distinct reflectance coefficient and hence a
distinct measured signal. Since each horizon is expected to
have a different characteristic acoustic impedance contrast,
the measured signals will be a mixture of an unknown
number of distributions, each of an unknown shape. Also,
the various sources of systematic and random variability may
mean that measured signals from one horizon vary and may
be similar to those from other horizons. It is impossible
to obtain a parametric form for this distribution and so a
kernel density approach is used to provide a nonparametric
smoothed version of the signal strength distribution of the
candidate points. For background to kernel density meth-
ods, see, for example, Wand and Jones [18] and Silverman
[19].

Suppose that 𝜂 = 𝑁
𝜆
∗ turning points have been found,

that their signal strengths are denoted by {𝑢
𝑖
: 𝑖 = 1, . . .,

𝜂}, and that their locations along the traces are {V
𝑖
: 𝑖 =

1, . . . , 𝜂}; then the kernel density estimate of the signal
strength distribution is

𝑔
𝛿
(𝑢) =

𝜂

∑

𝑖=1

𝐾(

𝑢
𝑗
− 𝑢

𝛿

) , −∞ < 𝑢 < ∞, (10)
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(a) (b)

Figure 10: Multiple smoothed traces in (a) with corresponding candidate points in (b) where open and filled circles represent minima and
maxima, respectively.

(a) (b) (c)

Figure 11: The curves represent kernel density with (a) low smoothing; (b) moderate smoothing; (c) high smoothing.

where 𝐾(⋅) is the kernel function and 𝛿 is a bandwidth
parameter. A popular choice of kernel function is the stan-
dard Gaussian density. Despite the method being generally
successful at finding structure, kernel density estimation
can also ignore significant structure via oversmoothing or
retain insignificant structure via undersmoothing, and hence
the correct choice of 𝛿 is important. Figure 11 shows a
simple bimodal dataset after varying levels of smoothing
using the R function density [15]. We might guess that (a)
is undersmoothed retaining unimportant random variation
and that (c) is oversmoothed leaving little useful information.
The central graph, (b), uses the default bandwidth, based on
Silverman’s rule of thumb [19] which seems to summarize the
distribution well.

The number of modes in the kernel density estimate is
regarded as the number of distinct classes and hence the
number of horizons. The locations of the minima between
the modes can be taken as thresholds which can then be used
to classify the candidate points. Considering the three levels
of smoothing used in Figure 11 would, however, lead to very
different results. Rather than attempting to estimate a single
level of smoothing, again a scale-space approach will be used
(again see, e.g., [16, 17]). In this approach, many levels of

smoothing are considered allowing features at different scales
to appear and allowing a natural scale to be identified.

Let the set of locations of the local minima, which are to
be used as threshold, be defined as

𝜏
𝛿
= 𝐺

min
𝛿

= {𝑢
𝑖
: 𝑔
𝛿
(𝑢
𝑖
) − 𝑔
𝛿
(𝑢
𝑖−1
) < 0, 𝑔

𝛿
(𝑢
𝑖+1
) − 𝑔
𝛿
(𝑢
𝑖
> 0)} .

(11)

Suppose that 𝐾 thresholds are found in this way, hence
defining 𝐾 + 1 groups. For a particular bandwidth, 𝛿, let the
thresholds be denoted by 𝜏

𝛿
= {𝜏
𝑘
: 𝑘 = 1, 2, . . . , 𝐾}, which

allows the members of the classes to be defined as

𝐶
𝑘

𝛿
=

{
{
{
{

{
{
{
{

{

{𝑢
𝑖
: 𝑢
𝑖
< 𝜏
1
} for 𝑘 = 1,

{𝑢
𝑖
: 𝜏
𝑘−1

< 𝑢
𝑖
< 𝜏
𝑘
} for 2 ≤ 𝑘 ≤ 𝐾,

{𝑢
𝑖
: 𝑢
𝑖
> 𝜏
𝐾
} for 𝑘 = 𝐾 + 1,

(12)

and the number in each class as𝑁𝑘
𝛿
for 𝑘 = 1, 2, . . . , 𝐾.

Figure 12(a) shows the relation between the locations of
the thresholds and the level of smoothing defined in terms
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Figure 12: (a) Threshold tree; (b) histogram of kernel density; and (c) turning point locations.

of the bandwidth 𝛿. The change in the bandwidth leads to
a change in the number and value of the thresholds and
hence in the number of classes. As the bandwidth increases,
the number of thresholds decreases, and when the curves
combine into a single line, there is only a single threshold,
which means in turn that the number of groups is two.
The procedure is stopped when the smoothed distribution
becomes unimodal. In the proposed method, the best clas-
sification is defined to be when the number of thresholds is
stable for the longest.

In this example, three thresholds persist the longest, a
bandwidth interval indicated by the vertical dotted lines,
and hence suggests four clusters. The optimum smoothing
bandwidth, 𝛿∗, is then taken as the smallest value in this
interval.The corresponding kernel density estimate is plotted
in Figure 12(b); the vertical dotted lines show the position of
the thresholds. It is now important to realise that the cluster
surrounding signal strength zero includes turning points
generated by the random noise and should be excluded. This
will be considered now, before moving to the final linking
step.

The observed signal strength distribution will be a mix-
ture of background values and values due to true horizons.
Of course the various means and the variance of these
components are unknown. To describe the distribution of the
signal values from the background, the following approach
is proposed. The centre of the background signal strength
distribution is estimated using the median of the full data

𝜇 = median
𝑗

𝑢
𝑗
, (13)

and the variance estimate is based on the median absolute
deviation (MAD)

𝜎̃
2
=

MAD
Φ
−1
(3/4)

with MAD = median
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗
− 𝜇

󵄨
󵄨
󵄨
󵄨
󵄨
, (14)

where the value 1/Φ−1(3/4) ≈ 1.48 is chosen so that when
the values follow a Gaussian distribution, then 𝐸[𝜎̃

2
] =

𝜎
2. These estimators are chosen to be robust to outliers

caused by the signal strengths from the horizons. The solid
horizontal line near the bottom of Figure 12(b) represents
a 95% confidence interval for background signal strength.
The calculation assumes a Gaussian distribution and uses the
abovemean and variance estimates.This interval encloses the
majority of this zero-centred mode and confirms that it is
reasonable to exclude the whole group. Before moving on,
it is worth noting that, for datasets containing no horizons,
all turning points will form a single group which will be
identified as a background group, and hence the procedure
would not identify any horizons.

Figure 12(c) shows all the minima and maxima as open
and filled circles, respectively. The grey circles correspond to
the background group and the black circles to the horizon
groups.The algorithm achieves good results in extracting and
classifying the structural points which make the horizons,
but notice that, although the horizons can be clearly seen,
there are three extra points near the top and one missing
along the central horizon. Also, although not visible, there
are six points misclassified to the wrong group. This means
that linking would not be perfect with some crossing of the
proposed horizons. This suggests that further criteria must
be included in this final linking process. As a simple example,
here, isolated structural point will be excluded from the
linking. In particular, if the distance to the nearest other point
in the group is greater than, say, twice the average within-
group interpoint distance then is excluded.

Let the ordered set of all locations along the traces of
member of class 𝑘 be denoted by {V

𝑖
: 1, 2, . . . , 𝑁

𝑘

𝛿
∗}. Then

consider the median distance between neighbouring points
in the class

𝑑
𝑘
= median

𝑖

󵄨
󵄨
󵄨
󵄨
V
𝑖+1

− V
𝑖

󵄨
󵄨
󵄨
󵄨 (15)

and the distance from a point to the nearest other point in the
class

𝑚
𝑘

𝑖
= min
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
V
𝑖
− V
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
. (16)
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Figure 13: Linked structural points with modified method.

This allows the following modified rule for class membership
to be defined:

𝐶
𝑘

𝛿
∗ =

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

{V
𝑖
: V
𝑖
< 𝜏
1
, 𝑚
𝑘

𝑖
< 2 × 𝑑

𝑘
}

for 𝑘 = 1,

{V
𝑖
: 𝜏
𝑘−1

< V
𝑖
< 𝜏
𝑘
, 𝑚
𝑘

𝑖
< 2 × 𝑑

𝑘
}

for 2 ≤ 𝑘 ≤ 𝐾,

{V
𝑖
: V
𝑖
> 𝜏
𝐾
, 𝑚
𝑘

𝑖
< 2 × 𝑑

𝑘
}

for 𝑘 = 𝐾 + 1.

(17)

Applying this final rule to the previous example produces
three groups of structural points forming clear and coherent
horizons as shown in Figure 13. Although not shown here,
it has also been applied to examples with higher noise levels
with equal success.

4. Conclusions

Seismic surveys play an important role in locating under-
ground features, but the partial reflection and natural varia-
tion in acoustic properties mean that the recorded acoustic
signals provide a confusing representation of the study
area. Full 3D datasets can be enormous, covering several
square kilometres on the surface and representing several
kilometres in depth with high frequency temporal sampling.
This suggests that rapid analysis is needed even if interesting
examples require further analysis or examination by experts.
This also suggests that simple techniques are preferable
with full reconstruction reserved for follow-up analysis. Raw
data contain systematic distortions and significant noise
and typically they undergo substantial preprocessing before
analysis is started. The preprocessing aims at reducing the
distortion and reducing noise but can introduce artefacts.

The approach proposed here is based on simple statistical
procedures which aim at smoothing out noise and using
contextual information to identify coherent horizons. In

particular, smoothing splines are used to smooth individual
traces before localminima andmaxima are located. It appears
that greater smoothing can be applied to the traces, without
overwhelming the major features, than would be the case
if the aim was to estimate the signal. Once a smaller set of
candidate points is found, they can be classified into groups
where each group represents points along a horizon. Clas-
sification is performed by thresholding the signal strength
distribution so that each mode represents a class. Again
smoothing is needed to help select the correct number of
modes, and hence classes, in the distribution.This time kernel
density methods are used. Here, the choice of bandwidth is
much more important as even small changes can lead to a
substantial change in the smoothed density. A scale-space
approach is adopted, which first allows all levels of smoothing
to be considered. The best level of smoothing, and hence
the number of clusters and the number of horizons, is then
determined as the value for which the number of clusters
persists the longest. The cluster associated with the random
variation in the background is identified and excluded from
horizon linkage. Locationswithin each cluster are then linked
to form horizons. In some high noise examples, further
information is used in this linking stage to exclude points
which are distant from the main cluster and hence unlikely
to be part of the horizon. This does not prevent, however,
horizons from being linked across gaps and across faults.
Clearly, it would be possible to supplement this fine tuning
with other criteria as necessary. Based on the experiments
conducted here, the proposed method shows great promise.
It provides a simple and quick approach to locate and link
horizons even in relatively noisy datasets. It is not affected by
gaps in horizons nor by discontinuities caused by faults.

Finally, it is important to note that the proposed method
is not specific to seismic studies but can easily be applied
to other problems where the aim is to identify coherent
structure within 2D or 3D data. Also, the use of smoothing
and threshold trees gives a simple graphical tool for any
classification problem, and the use of the most persistent
thresholding is applicable to many other situations.
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