
European Journal of Operational Research 249 (2016) 1074–1081

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Production, Manufacturing and Logistics

Complexity results for storage loading problems with stacking

constraints

Florian Bruns a, Sigrid Knust a,∗, Natalia V. Shakhlevich b

a University of Osnabrück, Institute of Computer Science, Osnabrück 49069, Germany
b School of Computing, University of Leeds, Leeds LS2 9JT, UK

a r t i c l e i n f o

Article history:

Received 24 June 2014

Accepted 21 September 2015

Available online 30 September 2015

Keywords:

Storage loading

Stacking

Complexity

Stacking constraints

a b s t r a c t

In this paper, we present complexity results for storage loading problems where the storage area is organized

in fixed stacks with a limited common height. Such problems appear in several practical applications, e.g., in

the context of container terminals, container ships or warehouses. Incoming items arriving at a storage area

have to be assigned to stacks so that certain constraints are respected (e.g., not every item may be stacked

on top of every other item). We study structural properties of the general model and special cases where at

most two or three items can be stored in each stack. Besides providing polynomial time algorithms for some

of these problems, we establish the boundary to NP-hardness.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

a

n

h

i

s

F

w

c

j

o

m

t

e

b

e

a

n

t

d

t

t

s

r

f

1. Introduction

Storage loading problems arise in several practical applications,

e.g., in the context of container terminals, container ships, ware-

houses or steel yards. In such problems incoming items arrive at a

storage area by trains, vessels or trucks and have to be assigned to

stacks respecting certain constraints. Usually, only the topmost item

of each stack can be directly retrieved, i.e., the items are accessed in

last-in-first-out order. This implies that if an item stacked below has

to be retrieved, a so-called reshuffling (relocation) operation is neces-

sary. In this paper, we only consider the loading process and assume

that no outgoing items have to be retrieved during this process.

We study problems where items have to be loaded into a two-

dimensional storage area consisting of stacks where each stack has

its own fixed position. This means that one cannot decide where to

position a stack in the area, but which stack to choose for placing an

item. Such a predefined arrangement of stacks is motivated by yard

areas in maritime or rail-road terminals, which are often organized

in a “fixed grid” layout. These layouts have fixed subareas with pre-

defined lengths, and containers must be placed into these subareas

without exceeding their borders. If we assume that only one stack

may be opened in each subarea, this case is equivalent to the situa-

tion with fixed positions of stacks.

The items are usually relocated by cranes moving above the stacks,

which imposes a restriction on the maximum height of a stack. We
∗ Corresponding author. Tel.: +49 541 969 2483.

E-mail addresses: florian.bruns@uni-osnabrueck.de (F. Bruns),

sigrid.knust@uni-osnabrueck.de (S. Knust), N.Shakhlevich@leeds.ac.uk

(N.V. Shakhlevich).

s

n

l

b

http://dx.doi.org/10.1016/j.ejor.2015.09.036

0377-2217/© 2015 The Authors. Published by Elsevier B.V. This is an open access article unde
ssume that each stack cannot hold more than b items. In some sce-

arios the items may have additional characteristics like weights or

eights. Then, in addition to the number b that limits the number of

tems in any stack, one has a height limit or a weight limit for each

tack. Also, special restrictions on the containers’ locations may exist.

or example, reefer containers need a power socket, so only locations

ith an appropriate configuration are feasible for them.

The main goal of a storage loading problem is to assign each in-

oming item to a feasible position in a stack such that a given ob-

ective function is optimized. Several aspects of such problems are

f interest for practitioners. For example, the distances the cranes

ove should be minimized to reduce the energy costs for operating

he cranes. Another objective is to achieve an allocation of contain-

rs so that future reshuffles related to storage unloading are avoided

ecause they are time- and energy-consuming. Since in general the

xact number of required reshuffles cannot be easily determined in

dvance, this objective is often replaced by a lower bound on the

umber of reshuffles, which is easier to compute. For this purpose,

he number of “unordered stackings” may be minimized, which is

efined as the total number of vertically adjacent items ordered in

he wrong way (e.g., with respect to retrieval times). Another objec-

ive important in practice is to minimize the total number of items

tacked on levels above the ground level (this reduces the risk of

eshuffling). In contrast to that, some practitioners prefer to use as

ew stacks as possible to have more flexibility for the remaining

tacks in the storage area.

As observed by Lehnfeld and Knust (2014), up to now almost

o complexity results for storage loading problems have been pub-

ished. On the other hand, for storage unloading problems or com-

ined loading/unloading problems some results are known (cf.
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ejor.2015.09.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2015.09.036&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:florian.bruns@uni-osnabrueck.de
mailto:sigrid.knust@uni-osnabrueck.de
mailto:N.Shakhlevich@leeds.ac.uk
http://dx.doi.org/10.1016/j.ejor.2015.09.036
http://creativecommons.org/licenses/by/4.0/

F. Bruns et al. / European Journal of Operational Research 249 (2016) 1074–1081 1075

L

(

p

i

fl

v

t

s

s

f

c

l

b

H

s

s

s

a

m

s

t

g

t

m

g

s

t

c

p

N

t

i

n

c

D

t

fl

d

s

d

f

t

t

w

i

c

t

a

s

i

t

a

e

s

t

S

2

l

b

s

g

t

i

a

w

b

i

c

o

a

s

t

t

i

e

fi

a

f

s

t

t

d

i

S

w

w

t

a

a

o

m

t

h

a

a

s

t

i

i

g

λ

p

s

s

I

l

s

ehnfeld & Knust, 2014). For example, Caserta, Schwarze, and Voß

2012) deal with a basic unloading problem (the “blocks relocation

roblem”) where items are stored in stacks and have to be retrieved

n a given order. It is shown that minimizing the number of reshuf-

es is NP-hard. In the so-called “container stowage problem”, a vessel

isits several ports consecutively. At each port, a set of containers has

o be retrieved from the vessel and another set of containers has to be

tored on it. Avriel, Penn, and Shpirer (2000) derived complexity re-

ults by relating this problem to the coloring of special graphs: while

or the problem with unlimited b and at most 3 stacks it can be de-

ided in polynomial time whether there exists a solution without re-

ocations, for every fixed number of stacks greater than 3 the problem

ecomes NP-complete. Delgado, Jensen, Janstrup, Høyer Rose, and

øj Andersen (2012) consider a loading problem where a container

hip has to be loaded with a set of items. According to the vessel’s

tability, weight and height restrictions are given for each stack. Since

ome containers need a power socket, there are location restrictions

s well. By a reduction from the bin packing problem, it is shown that

inimizing the number of used stacks is NP-hard.

Kim, Park, and Ryu (2000) deal with a loading problem where a

equence of items has to be stored in a storage yard. It is assumed

hat each item belongs to one of three weight groups, but the weight

roup of each item is not known before its arrival. The objective is

o minimize the expected number of reshuffles. A dynamic program-

ing approach is described based on the probability of the weight

roup of the next arriving item. Kang, Ryu, and Kim (2006) tackle a

imilar problem by simulated annealing. In the context of rail-road

erminals, Jaehn (2013) considers a storage loading problem where

ontainers from a bundle of trains arriving simultaneously have to be

laced into a storage area consisting of parallel lanes. After showing

P-hardness of two models, heuristic algorithms are presented and

ested on real-world data. An overview of optimization approaches

n rail-road terminals has recently been provided by Boysen, Flied-

er, Jaehn, and Pesch (2013). Storage loading problems in seaport

ontainer terminals are considered in Borgmann, van Asperen, and

ekker (2010) and Dekker, Voogd, and van Asperen (2006). Depar-

ure times are given and the aim is to avoid stacks that cause reshuf-

es when an item is stacked on top of another item with an earlier

eparture time.

The main objective of our paper is to provide first theoretical re-

ults for storage loading problems with stacking constraints. In ad-

ition to NP-hardness results, we derive polynomial time algorithms

or special situations which may be used as building blocks in heuris-

ic approaches for more general problems with additional constraints

ypical for real-world applications.

The remainder of the paper is organized as follows. In Section 2,

e formally introduce typical constraints and objectives that occur

n practical storage loading problems. In Section 3, we consider spe-

ial cases with the stacking limit b = 2. We show that minimizing

he number of used stacks, minimizing the number of items stacked

bove the ground level and minimizing the number of unordered

tackings, can be done in polynomial time even if there are compat-

bility constraints for pairs of items. In Section 4, we prove that for

he stacking limit b = 3 in the presence of stacking constraints it is

lready strongly NP-complete to decide whether a feasible solution

xists or not. Afterwards, in Section 5, we consider the more general

ituation of an arbitrary stacking limit b and identify two special cases

hat are polynomially solvable. Finally, conclusions are presented in

ection 6.

. Problem formulation

In this section, we give a formal definition of storage loading prob-

ems and introduce notations for its various versions. As mentioned

efore, we focus on problems where the storage area is arranged in

tacks and the positions of the stacks in a two-dimensional area are
iven. It is assumed that the yard layout is fixed and the stack posi-

ions cannot be changed.

Let m be the number of stacks where for each stack a position

n the yard is specified by x- and y-coordinates. Each stack can hold

t most b items. The set of all items is denoted by I = {1, 2, . . . , n}
here normally the inequality m < n holds, i.e., some items have to

e stacked on others. We assume that n ≤ bm; otherwise the problem

s infeasible.

For each item i ∈ I its original position Oi is given by its x- and y-

oordinates. Typically, positions Oi correspond to locations of items

n an arriving train or truck. Additionally, for a non-empty storage

rea the locations of the items already stored in the stacks are given,

pecified by a stack number and a level in the stack. We assume that

hese positions are fixed and cannot be changed. We denote by Ifix ⊂ I

he set of fixed items in the storage area and by Iin ⊆ I the set of incom-

ng items. Since the items in Ifix are not allowed to be re-allocated, we

xclude from consideration all stacks which are already completely

lled with items and assume that in each of the remaining m stacks

t least one free position exists; the corresponding items are removed

rom the sets Ifix and I.

Usually, in practice there are restrictions concerning feasible

tacking configurations. For example, heavier items are not allowed

o be stacked on top of lighter ones, longer items are not allowed

o be put on shorter ones, and items of different material or with

ifferent destinations may not be put on each other. All such stack-

ng constraints may be encoded by a 2-dimensional binary matrix

= (si j)n×n, where si j = 1 if i can be stacked onto j and si j = 0 other-

ise. These constraints can also be represented by a directed graph

ith n vertices and arcs i → j if si j = 1. Stacking constraints may be

ransitive (i.e., if item i is stackable on top of item j and item j is stack-

ble on top of item h , then also i is stackable on top of h) or may have

n arbitrary structure. For example, restrictions coming from weights

r lengths of the items are transitive, while restrictions induced by

aterials may be non-transitive. Weight or length restrictions have

he special property that all items are comparable (i.e., for all i �= j we

ave si j = 1 or s ji = 1). Thus, these restrictions define a total order on

ll items. Sometimes for the items i ∈ I departure (retrieval) times di

re known indicating the time at which item i is expected to leave the

torage area. In this situation, it is advantageous to stack an item i on

op of j only if di ≤ dj holds; otherwise, a reshuffle will be necessary

n the future.

Items stored in a stack are defined by a tuple (ik, . . . , i1), where

λ denotes the item stacked at level λ and λ = 1 corresponds to the

round level. Such a tuple is feasible if k ≤ b and siλ+1,iλ
= 1 for all

= 1, . . . , k − 1.

The simplest version of a storage loading problem is the feasibility

roblem which asks whether all items can be feasibly allocated to the

torage area respecting all constraints, e.g., the stack capacity b, the

tacking constraints S, a weight limit per stack or location restrictions.

f this is possible, the objective is to assign each item to a feasible

ocation (specified by a stack number and a level in the corresponding

tack) minimizing one of the following objective functions:

• the total number #St of used stacks;
• the total number #SI>1 of items stacked at levels above the ground

level (to reduce the risk of reshuffling);
• the total number of “unordered stackings” #US with respect to de-

parture times di (to minimize the number of reshuffles): we count

all pairs of items (i, j) where a less urgent item i is stacked directly

on top of a more urgent item j, i.e., one with dj < di;
• the total transportation costs TC for moving items from their orig-

inal positions Oi to the assigned locations in the storage area. In

general these costs depend on the x- and y-coordinates in the

storage area as well as the assigned level (z-direction). Special sit-

uations are TC(x, y) (the transportation costs only depend on the

1076 F. Bruns et al. / European Journal of Operational Research 249 (2016) 1074–1081

1 2 11 6 10 8 9
5 4 3 12 7 13

(a) A feasible solution

1 2 11 6 10 8 9 12 7 13
5 4 3

(b) An optimal solution minimizing #SI>1

Fig. 1. Constructing an optimal solution from a feasible one (Example 1).

n

m

&

s

w

a

i

E

#

#

n

m

c

s

l

T

n

o

t

d

T

c

p

P

i

s

(

V

|
s

p

a

i

c

F

s

e

c

T

i

I

c

a

t

o

s

o

n

x- and y -coordinates, the assigned level is negligible) or TC(x) (the

transportation costs only depend on the x-coordinates).

Note that the introduced functions can be considered indepen-

dently or in a combined way. For example, w1TC + w2#SI>1 repre-

sents a weighted sum of transportation costs and the number of items

stacked above the ground level with associated weights w1, w2 ≥ 0.

We use the three-field notation α|β|γ , introduced in Lehnfeld and

Knust (2014), to represent the described versions of the storage load-

ing problem. The problem type (e.g., loading or unloading) is speci-

fied in the first field α. In this paper, α = L for loading. Furthermore,

we write b = b′ if the stacking limit b is fixed to b′ ∈ N (e.g., b = 2 or

b = 3).

The second field specifies the incoming items and characterizes

additional storage restrictions. In loading problems, there is usually a

set of items, denoted by Iin, which arrive simultaneously by a single

delivery vehicle (e.g., by a single train, ship or truck). Sometimes a se-

quence π in is given which means that the items have to be placed into

the storage area according to a fixed sequence (e.g., if all items arrive

on different trucks or a train has to be unloaded from “left to right”

according to the original positions Oi). More generally, (Iin)K denotes a

sequence of K incoming sets, e.g., if several trains arrive consecutively

and have to be unloaded in the order of their arrival. In this case, all

items belonging to the same set have to be loaded into the storage

area before any item of the next set can be stored. By default, we as-

sume that there may be fixed items Ifix in the storage area and do not

include Ifix in the notation. Otherwise, we explicitly write I f ix = ∅ in

the β-field. Additional conditions in this field may include the en-

try sij to denote stacking constraints, and the entries “weight-limit”

or “height-limit” indicating weight and height restrictions per stack,

respectively.

Finally, the objective function is specified in the third field γ . In

the feasibility version of a problem, no objective function is given

(indicated by “−”), and the task is to find a feasible assignment of

items to locations. For example, L, b = 3 | Iin, si j | − denotes the fea-

sibility problem with stacking limit b = 3 and arbitrary stacking con-

straints sij, while L|Iin|TC(x, y) denotes the problem of assigning items

to stacks with limit b (an arbitrary value given as part of the input)

without stacking constraints minimizing transportation costs in x-

and y-directions.

3. Problems with stacking limit b = 2

In this section, we consider problems where the stacking limit

is b = 2. Such a situation is typical for rail-road container terminals,

where often at most 2 containers may be stacked. We consider arbi-

trary stacking constraints sij and the objective functions #St, #SI>1,

and #US. The storage area may contain some fixed items Ifix or may

be empty.

Theorem 1. Problem L, b = 2 | Iin, si j | #St with arbitrary stacking con-

straints sij can be solved as a maximum cardinality matching problem in

O(n2.5) time. A solution minimizing #SI>1 can be derived from a feasible

solution to L, b = 2 | Iin, si j | #St in O(n) time.

Proof. We introduce the undirected graph G = (V, E), in which the

nodes V correspond to the items I and edges E = {{i, j} | i, j ∈ V} con-

nect two nodes if the corresponding items can be stored together in a

stack. For incoming items i, j ∈ Iin an edge {i, j} exists if i can be stacked

on j or vice versa, i.e., if si j + s ji ≥ 1. For items i ∈ Iin and j ∈ Ifix an edge

{i, j} exists if i is stackable on top of j, i.e., si j = 1.

By calculating a matching of maximum cardinality in the graph G,

we get a solution with the largest number of stacks containing two

items. Additionally, the items that are not matched have to be stored

at the ground level. Thus, the total number of used stacks is mini-

mized. A feasible solution with at most m stacks exists if and only if

the number of edges in the matching plus the number of unmatched
odes is not larger than m. Since the number of nodes is n, a maxi-

um cardinality matching can be computed in O(n2.5) time (cf. Even

Kariv, 1975).

Problem L, b = 2 | Iin, si j | #SI>1 minimizing the number of items

tacked above the ground level can be solved as follows. We start

ith a solution to L, b = 2 | Iin, si j | #St and re-allocate as many items

s possible to the ground level until all stacks contain at least one

tem. �

xample 1. In the following, we illustrate how a solution minimizing

SI>1 can be constructed from a solution to problem L, b = 2 | Iin, si j |
St . We consider an example with m = 10 stacks and n = 13 items,

umbered from 1 to 13. We assume that in the maximum cardinality

atching the edges {1, 5}, {2, 4}, {3, 11}, {6, 12}, {7, 10}, {8, 13} are

hosen. Furthermore, item 9 is not matched at all.

The solution to the matching problem can be interpreted as the

tacking solution shown in Fig. 1a. In this solution, three stacks are

eft empty, so three stacked items can be moved to the ground level.

his results, for example, in the solution shown in Fig. 1b, where the

umber of items stacked above the ground level is 3 = 13 − 10. Obvi-

usly, for m = 10, b = 2 and n = 13 this is optimal.

Next, we consider the same problem setting but with the objective

o minimize the number of unordered stackings. For this problem ad-

itionally departure times di are given for all items i ∈ I.

heorem 2. Problem L, b = 2 | Iin, si j | #US with arbitrary stacking

onstraints sij can be solved as a minimum-weight perfect matching

roblem in O(n3) time.

roof. At first we introduce 2m − n dummy items, leading to 2m

tems in total. These dummy items are used to represent empty po-

itions in a solution and can be stacked together with any other item

real or dummy), in both directions.

We introduce the undirected graph G = (V1 ∪ V2, E1 ∪ E2), where

1 and V2 represent real and dummy items, respectively, |V1| = n,

V2| = 2m − n. Edges E1 connect nodes corresponding to pairs of

tackable real items, edges E2 = {{i, j} | i ∈ V1 ∪ V2, j ∈ V2} contain all

airs involving at least one dummy item. For an incoming item i ∈ Iin

nd a fixed item j ∈ Ifix an edge {i, j} ∈ E1 exists if i can be stacked on j,

.e., if si j = 1. The costs cij for these edges are set to

i j :=
{

0, if di ≤ dj

1, otherwise.

or two incoming items i, j ∈ Iin an edge {i, j} ∈ E1 exists if i can be

tacked on j or vice versa, i.e., if si j + s ji ≥ 1. The costs cij for these

dges are set to

i j :=
{

0, if (si j = 1, di ≤ dj) or (s ji = 1, dj ≤ di),

1, otherwise.

he costs cij for edges connecting two real items i, j of the set V1 are 0

f these items can be stacked without inducing an unordered stacking.

f i and j can only be stacked leading to an unordered stacking, the cost

ij is equal to 1. Furthermore, we set cij := 0 for all edges {i, j} ∈ E2, i.e.,

ll dummy items can be stacked at no cost. Such an edge corresponds

o the situation that a stack is completely empty (two dummy items)

r a stack contains a real item stored at the ground level without a

tacked item on top (one real and one dummy item).

Consider the minimum-weight perfect matching problem defined

n the graph G . Clearly, if a perfect matching does not exist, then also

o feasible stacking solution exists. Otherwise a minimum-weight

F. Bruns et al. / European Journal of Operational Research 249 (2016) 1074–1081 1077

1 2 3 4

5 6

1 0 1

1

(a) Graph G for m = 3

1 2 3 4

5 6

1 1

1

(b) Perfect matching for m = 3

1 2 3 4

5 6

D1 D2

1

11

(c) Graph G for m = 4

1 2 3 4

5 6

D1 D2

1

0

0 0

(d) Perfect matching for m = 4

1 2 3 4

5 6

D1 D2 D3 D4

1

11

(e) Graph G for m = 5

1 2 3 4

5 6

D1 D2 D3 D4

0

0

0

0 0

(f) Perfect matching for m = 5

Fig. 2. Graphs and matchings for Example 2.

p

s

c

i

p

e

a

(

s

i

r

s

w

d

w

m

(

E

4

b

d

n

e

o

w

s

s

d

i

t

u

n

6 2 4
5 1 3

(a) Stacks for m = 3

6 3 1 4
5 2

(b) Stacks for m = 4

3 1 4 5 6
2

(c) Stacks for m = 5

Fig. 3. Stacking solutions for Example 2.

A

s

l

i

t

o

c

3

d

i

a

i

s

a

s

d

a

a

p

2

s

w

u

C

s

#

4

b

T

c

i

P

N

J

a

P

i

d

s

o

i

3

s

c

i

w

e

erfect matching arranges items in pairs ensuring the minimum pos-

ible number of unordered stackings. Indeed, due to the definition of

ij, each unordered stack has cost 1, while stacks without unordered

tems or those containing only one item have cost 0.

Based on the solution to the minimum-weight perfect matching

roblem, we define a solution to the storage loading problem. For

dges {i, j} ∈ E1 in the matching we define the order of i, j in the stack

s follows. If i ∈ Iin, j ∈ Ifix or i, j ∈ Iin are only stackable in one direction

i.e., si j + s ji = 1), then they are stored in the unique possible way re-

pecting the stacking constraints (i.e., if si j = 1, item i is stacked on

tem j). On the other hand, if items i, j ∈ Iin are stackable in both di-

ections (i.e., si j = s ji = 1), then j is placed at the ground level and i is

tacked on top if di ≤ dj; otherwise the reverse order is selected.

For edges {i, j} ∈ E2 in the matching involving two dummy items,

e introduce a completely empty stack; for edges {i, j} ∈ E2 with one

ummy and one real item, we place the real item on the ground level

ithout any item on top.

Since the number of nodes is 2m and we assume that m < n, a

inimum-weight perfect matching can be computed in O(n3) time

cf. Gabow, 1973; Lawler, 1976). �

xample 2. Consider three instances with n = 6 items and m ∈ {3,

, 5}, respectively. Let s12 = s23 = s32 = s34 = s56 = 1 and all other sij

e zero. The delivery times are d1 = 4, d2 = d4 = 1 , d3 = d6 = 2 and

5 = 3. In the basic graph for m = 3 shown in Fig. 2a items are con-

ected if they can be stored together in a stack. Furthermore, the

dges between two items have cost 0 if the items can be stacked with-

ut an unordered stacking and cost 1 if an unordered stacking occurs

hen stacking the items. In the case of Fig. 2a only item 2 can be

tacked on item 3 without inducing an unordered stacking.

The basic graph shown in Fig. 2a is the graph that has to be con-

idered if m = 3. Due to 2m = n, no dummy nodes have to be intro-

uced and a minimum-weight perfect matching with cost 3 is shown

n Fig. 2b. This matching can be transformed into the stacking solu-

ion shown in Fig. 3a. For each stack the ordering of the two items is

nique since they can only be stacked in one direction.

For m = 4 we introduce 2 dummy nodes D1 and D2 which are con-

ected by edges of cost 0 to the 6 nodes corresponding to real items.
dditionally, D1 and D2 are also connected, which enables empty

tacks. The resulting graph is presented in Fig. 2c. Here, we do not

abel edges with 0 cost for clarity. In this situation, a perfect match-

ng with cost 1 exists, see Fig. 2d. This matching can be interpreted as

he stacking solution shown in Fig. 3b. Item 5 has to be stacked on top

f item 6 since these items are in one stack and due to s65 = 0 item 6

annot be stacked on top of item 5. For the second stack, items 2 and

are stackable in both directions, but putting 3 on top of 2 would in-

uce an unordered stacking due to the delivery times (d2 < d3). Thus,

tem 2 should be stacked on top of 3.

For m = 5 we introduce the 4 dummy nodes D1 to D4 which are

gain connected by 0-cost edges to all nodes corresponding to real

tems; they are also interconnected by 0-cost edges. The graph is

hown in Fig. 2e, a perfect matching with cost 0 is presented in Fig. 2f,

nd the corresponding stacking solution is shown in Fig. 3c. The only

tacked items are 2 and 3, where again 2 is on top of 3 as this direction

oes not induce an unordered stacking.

Up to now, we assumed that one set Iin of incoming items is given

nd arbitrary stacking constraints sij have to be respected. If instead

sequence π in or a sequence (Iin)K of sets is given, the corresponding

roblems can be solved by the same algorithms as in Theorems 1 and

. We simply use a modified stacking matrix S′ = (s′
i j
) with

′
i j :=

{
1, if si j = 1 and item i does not arrive before item j,

0, otherwise,

hich guarantees that an item arriving at a later time is not placed

nderneath an item that arrives earlier. Thus, we have

orollary 3. Problems L, b = 2 | (Iin)K , si j | #St and L, b = 2 | (Iin)K ,

i j | #SI>1 can be solved in O(n2.5) time. Problem L, b = 2 | (Iin)K , si j |
US is solvable in O(n3) time.

. Problems with stacking limit b = 3

In this section, we show that several problems with stacking limit

= 3 are strongly NP-complete.

heorem 4. The feasibility problem L, b = 3 | Iin, si j | − is strongly NP-

omplete even for an empty storage area (I f ix = ∅) and transitive stack-

ng constraints sij.

roof. We prove NP-completeness by a reduction from the strongly

P-complete problem EXACT COVER BY 3-SETS (X3C), see (Garey &

ohnson, 1979). The idea of the proof is similar to that used in Garey

nd Johnson (1979) (Section 3.2.2) for proving NP-completeness of

ARTITION INTO TRIANGLES.

An instance of X3C is given by a finite set X with |X| = 3q for some

nteger q, as well as a collection C of three-element subsets of X. The

ecision problem asks whether C contains an exact cover of X, i.e., a

ubcollection C′⊆C where each element of X is contained in exactly

ne element of C′.
For an instance of X3C we construct an instance of the stack-

ng problem with m = q + 3|C| stacks, stacking limit b = 3 and n =
(q + 3|C|) incoming items Iin. There are no items Ifix stored in the

tacks. Note that n = 3m and hence in each feasible solution all lo-

ations in the stacks have to be filled with items. We specify the

nstance of the stacking problem by a directed graph G = (V, A), in

hich nodes V correspond to the items Iin, |V | = n, and arcs (i, j) ∈ A

xist if i can be stacked onto j (i.e., si j = 1).

1078 F. Bruns et al. / European Journal of Operational Research 249 (2016) 1074–1081

ui vi wi

ai1 ai2

ai3

ai4 ai5

ai6

ai7 ai8

ai9

Fig. 4. Substitution graph.

ui vi wi

ai1 ai2

ai3

ai4 ai5

ai6

ai7 ai8

ai9

Fig. 5. Stacks if ci is part of the cover. (For interpretation of the references to color in

the text, the reader is referred to the web version of this article.)

ui vi wi

ai1 ai2

ai3

ai4 ai5

ai6

ai7 ai8

ai9

Fig. 6. Stacks if ci is not part of the cover. (For interpretation of the references to color

in the text, the reader is referred to the web version of this article.)

V

ui vi wi

ai1 ai2

ai3

ai4 ai5

ai6

ai7 ai8

ai9

Fig. 7. Transitive substitution graph. (For interpretation of the references to color in

the text, the reader is referred to the web version of this article.)

p

s

a

a

i

o

c

(

f

t

t

n

s

a

s

f

p

w

i

(

a

a

g

e

t

m

s

s

a

T

w

There are two types of nodes in V: main nodes (one node per el-

ement from X) and auxiliary nodes (9 nodes for each triple from C).

Each triple ci = {ui, vi, wi} defines a so-called substitution graph with

3 main nodes {ui, vi, wi}, 9 auxiliary nodes {ai1, . . . , ai9} and the col-

lection Ai containing the 11 arcs shown in Fig. 4. Note that the main

nodes {ui, vi, wi} may belong to several substitution graphs, but there

are no arcs between the aij-nodes belonging to different substitution

graphs.

Thus, for the graph G = (V, A) we have

= X ∪
|C|⋃
i=1

{ai j|1 ≤ j ≤ 9} and A =
|C|⋃
i=1

Ai.

In the following we show that C contains an exact cover of X if and

only if the stacking problem has a feasible solution.

“⇒”: Assume that X3C has an exact cover C′ ⊆ C. If ci =
{ui, vi, wi} ∈ C′, then in the stacking problem we build four

stacks, each containing b = 3 elements: (ai1, ai2, ui), (ai4, ai5, vi),
(ai7, ai8, wi), and (ai9, ai6, ai3). The corresponding paths within the

substitution graph are drawn as thick red lines in Fig. 5. Note that

the items corresponding to the main nodes of ci are now stored and

cannot be used in any other stack.

If on the other hand, ci is not part of the cover C′, the items in the

corresponding substitution graph are stacked according to the thick

red arcs shown in Fig. 6. Here, the three stacks (ai1, ai2, ai3), (ai4, ai5,

ai6) and (ai7, ai8, ai9) are built. In this case, the items corresponding

to the main nodes of ci are not included in any stack, while the items

corresponding to all auxiliary nodes are stored.
“⇐”: Assume that conversely a feasible solution to the stacking

roblem exists. We construct a partition into triples which defines a

olution to X3C.

First we note that due to the stacking constraints imposed by the

rcs A, in any feasible solutions all main items are stacked at level 1,

nd the items at levels 2 and 3 correspond to auxiliary nodes.

Consider a stack with a main item at the ground level and an aux-

liary item at level 2. Suppose that these items are ui, ai2; the cases

f vi, ai5 and wi, ai8 are similar. Let Gi be the substitution graph that

ontains ai2. We show that in this case there are four stacks

ai1, ai2, ui), (ai4, ai5, vi), (ai7, ai8, wi), (ai9, ai6, ai3) (1)

or the substitution graph Gi, and hence we include ci = {ui, vi, wi} in

he exact cover.

First observe that the stack with ui and ai2 at levels 1 and 2 is of

he form (ai1, ai2, ui); thus there are 7 remaining auxiliary items of Gi,

ot counting ai1, ai2.

(i) If the item stacked on top of vi does not belong to Gi and the

same is true for the item stacked on top of wi, then 7 auxiliary

items of Gi cannot form full stacks containing b = 3 items.

(ii) If the item stacked on top of vi does not belong to Gi , while the

item stacked on top of wi does, then (ai7, ai8, wi) forms a stack

in Gi, and the remaining 5 auxiliary nodes of Gi cannot form

full stacks.

(iii) If the item stacked on top of vi belongs to Gi, while the item

stacked on top of wi does not, then (ai4, ai5, vi) forms a stack in

Gi, and the remaining 5 auxiliary nodes of Gi cannot form full

stacks.

Thus, in each of the above cases we get a contradiction to the as-

umption that there exists a feasible solution to the stacking problem,

nd the only feasible stacking is given by (1).

In the following we prove that already the special case of transitive

tacking constraints sij is NP-complete by showing that the reduction

rom X3C also holds if the graph G = (V, A) is transitive. For this pur-

ose, we consider the transitive substitution graph shown in Fig. 7,

here the transitive arcs are added as thick blue arcs.

We use similar arguments as before. Consider an item correspond-

ng to the main node ui included in a stack together with item ai2

note that there does not exist a stack containing 3 items with item

i1 at level 2). Again it can be shown that there are four stacks (ai1,

i2, ui) , (ai4, ai5, vi), (ai7, ai8, wi) and (ai9, ai6, ai3) for the substitution

raph Gi, which means that ci = {ui, vi, wi} should be included in the

xact cover. Notice that property (i) remains the same; in (ii) we need

he additional observation that ai7 cannot be stacked at level 2, im-

ediately on top of wi; similarly in (iii) we observe that ai4 cannot be

tacked at level 2, immediately on top of vi. �

In the following we show that if we have no stacking constraints

ij, but an additional weight or height limit per stack, the problem is

lso strongly NP-complete.

heorem 5. The feasibility problems L, b = 3 | Iin, weight-limit | −
ith a weight limit per stack and L, b = 3 | Iin, height-limit | − with a

F. Bruns et al. / European Journal of Operational Research 249 (2016) 1074–1081 1079

h

i

P

p

N

(

e

n

a

λ
e

p

a

s

P

s

s

T

a

p

b

s

s

a

s

I

w

5

i

i

t

t

p

m

t

T

O

P

w

w

t

a

w

p

o

d

p

l

m

O
s

c

1

2

3

4

5

6

p1

p2

p3

p4

p5

p6

p7

p8

(a) Bipartite graph

1

2

3

4

5

6

p1

p2

p3

p4

p5

p6

p7

p8

(b) An optimal matching

Fig. 8. Bipartite graph and an optimal matching for Example 3.

2

3

stack 1

1
4
5
6

stack 2

(a) Stacking solution according to
matching

2
3

stack 1

1
4
5
6

stack 2

(b) Repaired stacking solution

Fig. 9. Original and repaired stacking solution for Example 3.

a

1

a

i

j

o

E

b

i

t

f

s

p

s

i

c

s

w

e

F

s

f

s

eight limit per stack are strongly NP-complete even if the storage area

s empty (I f ix = ∅).

roof. We prove NP-completeness of the first problem (the second

roblem can be tackled similarly) by a reduction from the strongly

P-complete problem 3-PARTITION (3-PART), see Garey and Johnson

1979). An instance of 3-PART is defined by a set A = {1, . . . , 3k} of 3k

lements and a bound B ∈ N. Associated with the elements i ∈ A are

umbers ai with
3k∑

i=1

ai = kB and B/4 < ai < B/2. The decision problem

sks whether A contains a partition S1, . . . , Sk such that
∑

i∈Sλ

ai = B for

= 1, . . . , k. Note, that by the definition of ai each set Sλ must contain

xactly three elements.

For an instance of 3-PART we construct an instance of the stacking

roblem with |A| = 3k items and weights ai for i = 1, . . . , 3k. There

re no items Ifix stored in the stacks. We introduce m = k stacks with

tacking limit b = 3 and weight limit B per stack. We show that 3-

ART has a feasible solution if and only if a feasible solution for the

tacking problem exists.

“⇒”: Assume that 3-PART has a feasible solution. Then the k = m

ubsets can be interpreted as m stacks, each containing three items.

hese stacks are feasible since each stack respects the weight limit B

nd the stacking limit b = 3.

“⇐”: Assume that conversely a feasible solution to the stacking

roblem exists. The m stacks have to be filled by three items per stack

ecause the number of items is 3m. Since the maximum weight of a

tack is limited to B and the sum of the item weights is B · m, each

tack has a weight of B. Thus, the items of a stack can be interpreted

s subsets with cardinality three for problem 3-PART, where for each

ubset the sum of the weights is B.

Note that the same reduction also applies to problem L, b = 3 |
in, height-limit | − where the heights of the items take the role of the

eights. Thus, this problem is strongly NP-complete as well. �

. Problems with arbitrary stacking limit b

In this section, we consider an arbitrary stacking limit b ≥ 2 which

s given as part of the input. We show that the problem without stack-

ng constraints is polynomially solvable if the objective is to minimize

he transportation costs TC(x, y), the number of items stacked above

he ground level #SI>1, or a weighted sum of them. Additionally, we

rove that problems L | Iin, si j | #St and L | Iin, si j | #SI>1 are polyno-

ially solvable in the case that the stacking constraints sij define a

otal order.

At first we consider problem L | Iin | w1TC(x, y) + w2#SI>1.

heorem 6. Problem L | Iin | w1TC(x, y) + w2#SI>1 can be solved in

((n + mb)3) time for any stacking limit b.

roof. We show that the problem can be solved as a minimum-

eight matching problem in the bipartite graph G = (V1 ∪ V2, E)
here V1 corresponds to the set of incoming items Iin and V2 con-

ains all free positions in the storage area (here, a “position” means

pair consisting of a stack and a level). If the storage area is empty,

e consider mb positions. If, on the other hand, the storage area is

artially filled, we do not consider those positions that are already

ccupied with items from the set Ifix.

We introduce edges {i, p} for all i ∈ V1 and p ∈ V2. The weight cip is

efined as the cost of transporting item i from its origin Oi to position

multiplied by w1. Additionally, if the position p is not at the ground

evel, we add the unit cost for a stacked item multiplied by w2.

The bipartite graph G has at most n + mb nodes, and the

inimum-weight bipartite matching problem for it can be solved in

((n + mb)3) time (cf. Gabow, 1976). Since in practical settings the

tacking limit b is usually smaller than the number of items n, this

omplexity is polynomial.
In an optimal solution to the matching problem it can occur that

n item is stored in the kth level without an item stored in the (k −
)th level in the same stack. If w2 > 0, then in an optimal solution

ll such k satisfy 2 ≤ k ≤ b; if w2 = 0, then 1 ≤ k ≤ b. In either case,

n the corresponding actual solution to the stacking problem, we can

ust lower all items that are stacked in the “air” until they are stacked

n other items without increasing the cost. �

xample 3. Consider an instance with m = 2 stacks, stacking limit

= 4 and n = 6 items. The vertex sets have cardinalities |V1| = 6 for

tems and |V2| = 8 for free positions.

The corresponding bipartite graph is shown in Fig. 8a. Item ver-

ices are numbered from 1 to 6, while position vertices are numbered

rom p1 to p8. Note, that the positions p1 to p4 belong to the first

tack, while positions p5 to p8 belong to the second stack. Positions

1 and p5 represent ground level positions, the other positions repre-

ent non-ground levels for stacked items.

Assume that an optimal matching is the one shown in Fig. 8b. All

tems are assigned and positions p2 and p4 stay empty. This solution

an be interpreted as the stacking solution shown in Fig. 9a. In that

olution, in the first stack, level three is filled but level two is empty,

hich is not feasible. However, the solution can be repaired by low-

ring all items that are stored in the “air”. In the solution shown in

ig. 9b the level of item 3 is changed from 3 to 2. The latter stacking

olution has the same cost as the one shown in Fig. 9a since the costs

or assigning an item to the second or third level in a stack are the

ame.

1080 F. Bruns et al. / European Journal of Operational Research 249 (2016) 1074–1081

Table 1

Summary of complexity results.

Problem Reference Complexity

L, b = 2 | (Iin)K , si j | #St or #SI>1 Corollary 3 O(n2.5)

L, b = 2 | (Iin)K , si j | #US Corollary 3 O(n3)

L, b = 3 | Iin, I f ix = ∅, si j transitive | − Theorem 4 str. NP-complete

L, b = 3 | Iin, I f ix = ∅, weight-limit | − Theorem 5 str. NP-complete

L, b = 3 | Iin, I f ix = ∅, height-limit | − Theorem 5 str. NP-complete

L | Iin | w1TC(x, y) + w2#SI>1 Theorem 6 O((n + mb)3)

L | Iin, si j total order | #St or #SI>1 Theorem 7 O(n log n)

L | (Iin)2, I f ix = ∅, si j total order | #St or #SI>1 Theorem 8 O(n log n)

E

o

t

t

t

f

i

q

w

c

q

f

t

a

f

i

i

T

(
e

P

p

a

p

p

w

c

m

n

p

s

o

6

i

o

g

m

T

1

p

w

Now we consider the situation of special stacking constraints sij,

which define a total order on all items, i.e., sij is transitive and for all

i �= j we have si j = 1 or s ji = 1. For example, this condition is satisfied

if the sij are based on weight or length restrictions of the items.

Theorem 7. Problems L | Iin, si j total order | #St and L | Iin, si j total

order | #SI>1 can be solved in O(n log n) time.

Proof. Since the sij define a total order, all items can be compared.

We define a comparator � for items i and j based on the stacking

restrictions sij as follows:

i � j :=

⎧⎨
⎩

i ≈ j, if si j = 1 and s ji = 1,

i ≺ j, if si j = 1 and s ji = 0,

i � j, if si j = 0 and s ji = 1.

At first we consider the situation that the storage area is empty, i.e.,

I f ix = ∅. By sorting the items non-increasingly according to the de-

fined comparator �, the list of items can always be transformed into

a feasible stacking solution by iteratively filling the stacks from the

bottom to the top according to the sorted list. This means that the

first (the “largest”) item is placed at the ground level in the first stack

and all items up to the bth item are stacked on top. The (b + 1)st item

is at the ground level of the second stack and so on. In the following,

we show that the stacking constraints are respected by this approach.

Whenever an item i is stacked on another item j, we have i� j which

implies that si j = 1 (for i� j we have to distinguish the situations i≺j

and i ≈ j, but according to the definition of the comparator for both

cases si j = 1 holds). Since si j = 1 for all items i that are stacked on an-

other item j, the stacking constraints are not violated by processing

the ordered list. Obviously, the number of used stacks is minimized

by this approach.

If the storage area is not empty (i.e., Ifix �= ∅), we consider all items

from Iin in non-decreasing order according to � and fill up all partially

filled stacks starting with the stack that has the smallest item j ∈ Ifix

on top (according to the comparator �). We fill the empty positions in

this stack from the top to the bottom with the smallest feasible items

from the set Iin (i.e., all i ∈ Iin with i� j). We then proceed with the

stack with the second smallest item on top and so on. This strategy

guarantees that incomplete stacks are filled as much as possible, up

to the maximum level b. However, in the resulting solution still partly

filled stacks may exist if there are not enough items smaller than the

topmost item in a partial stack. Having processed all stacks contain-

ing items of Ifix , the problem reduces to the problem with an empty

storage area discussed in the beginning of the proof. As a result, we

either get a feasible solution or demonstrate that none exists. Again,

the number of used stacks is minimized by this approach.

If a feasible solution to problem L | Iin, si j total order | #St is found,

a solution to problem L | Iin, si j total order | #SI>1 with the minimum

number of items stacked above the ground level can be obtained as

before by moving as many items of the set Iin as possible from levels

above the ground level to the ground.

Sorting the items of Iin and sorting the topmost items of Ifix (in the

case that this set is not empty) requires O(n log n) time, while filling

up the stacks can be implemented in O(n) time. Thus, the problem

can be solved in O(n log n) time. �

Note that the ordered list in the proof defines a Hamiltonian path

through the directed graph of the items with arcs (i, j) for si j = 1. If

the sij-values do not define a total order, but the graph induced by sij

contains a Hamiltonian path, this path can be transformed into a fea-

sible stacking solution, adopting the same strategy as in the proof of

Theorem 7. However, the existence of a total order or a Hamiltonian

path is only a sufficient but not a necessary condition for the exis-

tence of a feasible stacking solution. For a feasible solution the graph

has to be partitioned into at most m chains of length at most b, where

each item is contained in exactly one chain.
xample 4. As a small real-world example, we consider three types

f items: 40, 42 and 45-feet containers, where the number denotes

he length of the container in feet. In this example, 40-feet con-

ainers can be stacked on top of all container types, 42-feet con-

ainer can be stacked on top of 42 and 45-feet containers, but 45-

eet containers can only be stacked on 45-feet containers. By sort-

ng the containers according to non-increasing lengths, we get a se-

uence of containers starting with 45-feet containers, continuing

ith 42-feet ones and ending with 40-feet containers. The order of

ontainers of the same type can be arbitrary. By splitting this se-

uence into stacks of height b, the stacking constraints are respected

or all stacks since items are stacked within their groups and po-

entially a 42-feet container is stacked on top of a 45-feet container

nd a 40-feet container is stacked on a 42-feet container, which is

easible.

Theorem 7 can be generalized to handle the situation where two

ncoming sets Iin
1

and Iin
2

are given. Then it is assumed that no item

∈ Iin
1

can be stacked on top of an item j ∈ Iin
2

, even if si j = 1.

heorem 8. Problems L | (Iin)2, I f ix = ∅, si j total order | #St and L |
Iin)2, I f ix = ∅, si j total order | #SI>1, where the stacks are initially

mpty, can be solved in O(n log n) time.

roof. We use again the comparator � that has been defined in the

roof of Theorem 7. Consider first the items of the set Iin
1

. Using the

pproach described in the proof of Theorem 7, create � |Iin
1

|
b

� com-

letely filled stacks, containing the smallest items and create one

artly filled stack (if any) with |Iin
1
|modb largest items. The problem

ith the remaining items of the set Iin
2

reduces then to the problem

onsidered in Theorem 7 with I f ix = Iin
1

.

For the minimization of #SI>1, items of both sets Iin
1

and Iin
2

can be

oved to the ground level. The complexity of the algorithm is domi-

ated by the sorting step, which is again O(n log n). �

Note that this algorithm cannot be generalized to solve

roblem L | (Iin)3, I f ix = ∅, si j total order | #St with three incoming

ets Iin
1

, Iin
2

, Iin
3

; even the feasibility version of this problem is

pen.

. Concluding remarks

In this work, we derived first complexity results for storage load-

ng problems motivated by practical settings in container terminals

r warehouses. The main assumptions are that the storage area is or-

anized in fixed stacks with a limited height b and not every item

ay be stacked on every other item. Our results are summarized in

able 1.

Since in rail-road container terminals on average slightly above

up to 1.5 containers are stacked (cf. Ballis & Golias, 2002), in

ractice the stacking limit b = 2 may be sufficient. For this limit

e have proposed efficient algorithms for minimizing #St, #SI>1 or

F. Bruns et al. / European Journal of Operational Research 249 (2016) 1074–1081 1081

#

c

i

l

b

c

a

c

o

f

c

r

t

s

c

i

a

fi

a

t

r

e

c

g

r

A

E

R

A

B

B

B

C

D

D

E

G

G

G

J

K

K

L

L

US, which are applicable even in the presence of arbitrary stacking

onstraints sij. Additionally, if no stacking constraints are given, min-

mizing transportation costs is easy even for an arbitrary stacking

imit b. Another important efficiently solvable case is characterized

y stacking constraints sij defining a total order. Such constraints oc-

ur in practice if length or weight restrictions have to be taken into

ccount.

On the other hand, problems with stacking constraints sij be-

ome NP-complete if the stacking limit is b ≥ 3 or in the presence

f height/weight limits. Such problems are typical, for example,

or maritime terminals or warehouses, where higher stacks are

ommon.

The most interesting problems for which the complexity status

emains open are L, b = 2 | Iin, si j | TC(x, y) involving transporta-

ion costs and L, b = 3 | (Iin)K , I f ix = ∅, si j total order | − with K ≥ 3

ets of incoming items. It would also be interesting to study spe-

ial situations for the matrix S based on a partial order, i.e., S

s transitive, but not all items are comparable. For example, if

rrival times ai and departure times di are given, we may de-

ne si j = 1 if ai ≥ aj and di ≤ dj to model that no reshuffling is

llowed.

To conclude, we observe that the storage loading model studied in

his paper is quite universal and context free. It is relevant to a broad

ange of scenarios: rail or maritime terminals, warehouses, storages,

tc. Although the algorithms we propose are designed for rather spe-

ial situations, they still might be useful as building blocks for more

eneral problems with additional features and constraints typical for

eal-world applications.

cknowledgement

This research was supported by the EPSRC funded project

P/K041274/1.
eferences

vriel, M., Penn, M., & Shpirer, N. (2000). Container ship stowage problem: Complex-

ity and connection to the coloring of circle graphs. Discrete Applied Mathematics,

103(1), 271–279.
allis, A., & Golias, J. (2002). Comparative evaluation of existing and innovative rail–

road freight transport terminals. Transportation Research Part A: Policy and Practice,
36(7), 593–611.

orgmann, B., van Asperen, E., & Dekker, R. (2010). Online rules for container stacking.
OR Spectrum, 32(3), 687–716.

oysen, N., Fliedner, M., Jaehn, F., & Pesch, E. (2013). A survey on container processing

in railway yards. Transportation Science, 47, 312–329.
aserta, M., Schwarze, S., & Voß, S. (2012). A mathematical formulation and complexity

considerations for the blocks relocation problem. European Journal of Operational
Research, 219(1), 96–104.

ekker, R., Voogd, P., & van Asperen, E. (2006). Advanced methods for container stack-
ing. OR Spectrum, 28(4), 563–586.

elgado, A., Jensen, R. M., Janstrup, K., Høyer Rose, T., & Høj Andersen, K. (2012). A
constraint programming model for fast optimal stowage of container vessel bays.

European Journal of Operational Research, 220(1), 251–261.

ven, S., & Kariv, O. (1975). An O(n2.5) algorithm for maximum matching in general
graphs. In 16th Annual Symposium on Foundations of Computer Science (pp. 100–

112). IEEE.
abow, H. (1973). Implementation of algorithms for maximum matching on nonbi-

partite graphs. PhD thesis. Stanford, California: Department of Computer Science,
Stanford University.

abow, H. (1976). An efficient implementation of Edmonds’ algorithm for maximum

matching on graphs. Journal of the ACM, 23(2), 221–234.
arey, M., & Johnson, D. (1979). Computers and intractability – A guide to the theory of

NP-completeness. San Francisco: Freeman.
aehn, F. (2013). Positioning of load units in a transshipment yard storage area. OR Spec-

trum, 35(2), 399–416.
ang, J., Ryu, K. R., & Kim, K. H. (2006). Deriving stacking strategies for export contain-

ers with uncertain weight information. Journal of Intelligent Manufacturing, 17(4),

399–410.
im, K. H., Park, Y. M., & Ryu, K. R. (2000). Deriving decision rules to locate export

containers in container yards. European Journal of Operational Research, 124(1), 89–
101.

awler, E. (1976). Combinatorial optimization: Networks and matroids. New York: Holt,
Rinehart and Winston.

ehnfeld, J., & Knust, S. (2014). Loading, unloading and premarshalling of stacks in

storage areas: Survey and classification. European Journal of Operational Research,
239(2), 297–312.

http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0001
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0001
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0001
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0001
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0001
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0002
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0002
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0002
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0002
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0003
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0003
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0003
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0003
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0003
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0004
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0004
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0004
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0004
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0004
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0004
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0005
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0005
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0005
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0005
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0005
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0006
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0006
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0006
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0006
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0006
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0007
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0007
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0007
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0007
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0007
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0007
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0007
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0008
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0008
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0008
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0008
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0009
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0009
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0010
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0010
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0011
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0011
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0011
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0011
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0012
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0012
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0013
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0013
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0013
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0013
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0013
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0014
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0014
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0014
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0014
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0014
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0015
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0015
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0016
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0016
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0016
http://refhub.elsevier.com/S0377-2217(15)00878-4/sbref0016

	Complexity results for storage loading problems with stacking constraints
	1 Introduction
	2 Problem formulation
	3 Problems with stacking limit
	4 Problems with stacking limit
	5 Problems with arbitrary stacking limit b
	6 Concluding remarks
	 Acknowledgement
	 References

