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Summary18

1. Demographic rates are shaped by the interaction of past and current environments19

that individuals in a population experience. Past environments shape individual20

states via selection and plasticity, and fitness-related traits (e.g., individual size)21
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are commonly used in demographic analyses to represent the effect of past22

environments on demographic rates.23

2. We quantified how well the size of individuals captures the effects of a24

population’s past and current environments on demographic rates in a well-25

studied experimental system of soil mites. We decomposed these interrelated26

sources of variation with a novel method of multiple regression that is useful for27

understanding nonlinear relationships between responses and multicollinear28

explanatory variables. We graphically present the results using area-29

proportional Venn diagrams. Our novel method was developed by combining30

existing methods and expanding upon them.31

3. We showed that the strength of size as a proxy for the past environment varied32

widely among vital rates. For instance, in this organism with an income33

breeding life-history, the environment had more effect on reproduction than34

individual size, but with substantial overlap indicating that size encompassed35

some of the effects of the past environment on fecundity.36

4. This demonstrates that the strength of size as a proxy for the past environment can37

vary widely among life-history processes within a species, and this variation38

should be taken into consideration in trait-based demographic or individual-39

based approaches that focus on phenotypic traits as state variables. Furthermore,40

the strength of a proxy will depend on what state variable(s) and what41

demographic rate is being examined; i.e., different measures of body size (e.g.,42

length, volume, mass, fat stores) will be better or worse proxies for various life-43

history processes.44

45
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48

Introduction49

The past and current environments experienced by individuals shape their50

demographic rates, and these effects can be partially captured in individual state51

variables such as body condition, mass, and size (Easterling, Ellner & Dixon 2000;52

Caswell 2001; Benton, Plaistow & Coulson 2006). For many species, size-at-age,53

body-mass-index, or fat reserves are influenced by food availability and relate to54

patterns of resource acquisition and storage (Kooijman 2000). Size can be a good55

proxy for an individual’s general state including developmental stage, resource56

acquisition and stores, and the outcomes of competitive interactions (Peters 1986).57

Past experiences shape an individual’s current state, and current state interacts with58

the current environment to determine the individual fate (i.e., survival, growth, and59

reproduction). An individual’s full multifaceted state includes its genotype,60

phenotype, epigenetics, energy reserves and many other variables that can be difficult61

to measure. Recent research on trait-based demography has highlighted the power of62

including easy to measure state variables such as individual size in demographic63

models including matrix and integral projection models (IPMs) (Easterling et al.64

2000; Caswell 2001; Ozgul et al. 2009; 2010) and agent-based models (Grimm et al.65

2006). However, how much of the past and current environmental effects on66

demographic rates are captured by individual size and how much variation is left to be67

explained has not been explored as thoroughly and directly as we aim to here.68

The dynamics of state variables and demographic rates are shaped by69

selection, phenotypic plasticity, and parental effects (Ozgul et al. 2010; Coulson et al.70
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2011; Benton 2011; Ozgul et al. 2012). In many cases, much of the cumulative effects71

of the past and current environments on demographic rates are integrated into an72

individual’s size (or condition), but not all (Festa-Bianchet, Gaillard & Jorgenson73

1998; Ozgul et al. 2010; DeLong, Hanley & Vasseur 2014). For example, in bighorn74

sheep, which are considered to be capital breeders, body mass reflects the amount of75

stored resources available for reproductive effort. Yet, a positive effect of body mass76

on female reproductive success was only evident at high population densities, a biotic77

component of the current environment resulting from conditions in the past78

environment (Festa-Bianchet et al. 1998).79

Such cases of weak or context-dependent relationships between an80

individual’s state and demographic rates can arise from differences in the sensitivity81

of life-history traits to past and current environments (Le Galliard et al. 2010;82

Beckerman et al. 2003; Taborsky 2006). Such differences can be due to the fact that83

selection, plasticity, and parental effects do not affect traits equally (Benton et al.84

2006). In addition, context-dependent associations between traits can arise from85

changes in life-history trade-offs in response to environmental variation that affect86

patterns of covariation between life-history traits throughout time (e.g., Plaistow et al.87

2006; Plaistow and Benton 2009). These examples highlight the complex array of88

potentially interacting mechanisms shaping life-history and population dynamics and89

the importance of investigating how much of this variation can be summarized into90

one easily observable, individual condition-index such as body size (Beckerman et al.91

2002; Benton et al. 2006; Evans et al. 2013).92

93
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Fig. 1. Influence diagram. Arrows indicate the influence of demographic94

components on each other. Past environments influence the current environment by95

shaping the demographic structure and population density. Past environments96

influence individual states via natural selection, plasticity, and maternal effects. We97

observe part of an individual’s multifaceted state via its body size. In the soil mite98

model system, past environments include those an individual has experienced, but99

also those experienced by maternal, grand maternal and great-grand-maternal100

generations (Plaistow, Lapsley & Benton 2006).101

102

In this study, we used an extensive laboratory experiment to characterize how103

demographic rates changed through time in populations experiencing drastically104

different environments. Our model organism, Sancassania berlesei (a soil mite), has a105

life-history that plastically responds to food availability and population density, and106

exhibits maternal effects (Benton, Lapsley & Beckerman 2001; Benton, St Clair &107

Plaistow 2008; Ozgul et al. 2012). This experiment enabled us to quantify the108

influence of individual body size, current environment, and past environment on109

demographic rates.110

Favorable past and current environments lead to better individual states and111

thus enhanced demographic rates, but a favorable past environment increases112

population density and can thus reduce the quality of the current environment. The113

interdependencies of body size, current environment, and past environment (Fig. 1)114

cause multicollinearity (i.e., correlation) among explanatory variables in regression115

models that makes it difficult to disentangle the effects (Graham 2003). To116

disentangle the influence of body size, the current environment, and the past117

environment, we have used a novel procedure based on the practice of fitting all118
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possible subsets of these multicollinear explanatory variables (Chevan & Sutherland119

1991; Graham 2003; Murtaugh 2009). We modeled potentially nonlinear effects of120

these explanatory variables on demographic rates using splines (Dahlgren, Garcia &121

Ehrlén 2011). We teased apart the overlap in explanatory power by comparing the122

proportion of deviance explained (a generalization of r
2
, Wood 2006) from models123

with all subsets of explanatory variables. Overlap in explanatory power is a result of124

multicollinearity among the explanatory variables, caused by the interdependencies125

described above. This method is novel because it disentangles multicollinearity in126

nonlinear splines in a way previously used for linear models (Ip 2001). Also, this127

paper is the first to plot the results of this decomposition using area-proportional Venn128

diagrams which are visually intuitive (Micallef & Rodgers 2014). Our goal was to129

quantify how well the past and current environmental effects on demographic rates130

were represented by body size, and how much variation was left to be explained.131

In the past, researchers have attempted traditional time series decomposition of132

measured phenotypes in Sancassania berlesei and how they change over time (Benton133

et al. 2005) but this is complex because the importance of the past environments vary134

over time in a way that is itself context dependent (Beckerman et al. 2003; Plaistow et135

al. 2006; 2007). So standard linear time series models are not informative. Our new136

method of decomposing the variability in demographic rates is therefore valuable as it137

can highlight the importance of processes that we know to be sensitive to conditions138

in complex ways. Most importantly, it challenges one major assumption underlying139

recently popular trait-based demographic models: that a focal state variable such as140

body size captures the effects of past and current environments on the individual’s141

performance, and acts as a memory mechanism to project the individual performance142

to future time steps. By using a well-studied system we can benchmark the143
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performance of the new technique. If the technique produces results that match our144

detailed understanding of this model system, we can have confidence that it has utility145

for studying systems where the background knowledge is lower.146

In the following text, we first describe our methods including the experiment147

for our soil mite case study and then statistical analyses including hypothesis testing148

and variance decomposition. Then we present results from the case study and divide149

our discussion into a soil mite specific discussion and a discussion of the general150

applicability of our method for both demographic and general ecological studies.151

Materials and methods152

Experimental Methods153

The goal of our experiment was to observe how population dynamics and154

individual demographic rates change in response to vastly different environments that155

should induce selection, plasticity, and maternal effects.156

Populations of soil mites were raised in 22 mm diameter tubes for nine weeks157

in four environments: one constant (control) and three varying (famine, declining, and158

fluctuating). Famine and fluctuating populations experienced abrupt changes in their159

food (Fig. 2). The experimental timespan is approximately two times the generation160

time of soil mites maintained in food conditions similar to our control treatment161

(Ozgul et al. 2012; Cameron et al. 2013). Treatments differed in the amount of food162

provided and subsequently, population densities naturally varied accordingly (Fig. 2).163

All populations experienced a constant food environment prior to the experiment until164

population dynamics and stage structure stabilized. The life stages are as follows (in165

order): egg, larva, protonymph, tritonymph, and adult (male or female).166

There were two replicate sampling populations and five replicate counting167

populations per treatment. The counting populations were censused twice per week to168
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monitor population density and stage structure. There were twenty-eight populations169

total; more replicates were not possible due to the work required for censusing the170

counting populations. Twice per week per sampling population, five adult males and171

five adult females were sampled and placed in five mixed-sex tubes for a period of 24172

hours; also three individuals from each juvenile stage (larva, protonymph, tritonymph)173

were placed in three mixed-stage tubes for a period of 24 hours. Sampling was done174

several hours after feeding. Sampled individuals were photographed before and after175

the 24-hour period in which the following responses were monitored: survival176

(binary), final body length (mm), stage transition (binary), reproduction (binary and177

egg counts). After the 24-hour monitoring period, surviving individuals were put back178

in the sampling populations. Eggs were not put back because of the time required to179

move eggs 0.18 mm in diameter. See appendix S1 for more experimental details.180

181
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Fig. 2. Experimental environments and demographic covariates. Each column is a182

different experimental treatment with two populations per treatment each represented183

by a line. Each row represents a different covariate: food provided (in mg), naturally184

varying average individual body size at start of monitoring (length in mm), population185

density weighted by the average body size in each stage (i.e., total body length per186

tube), and food supply (food divided by density, i.e., mg food per mm body length).187

The number of individuals per density unit is equal to the inverse of the stage-specific188

average length: approximately 4.3 larvae, 3.1 protonymphs, 2.2 tritonymphs, 1.6189

males, or 1.4 females, but this varies throughout the experiment as body sizes vary.190

191

Statistical Methods192

The goals of our statistical analyses were to determine which demographic193

responses (i.e., life-history processes) depended on starting body size, current194

environment, and past environment; then to determine the power of these explanatory195

variables and how much power overlapped due to multicollinearity.196

We quantified evidence of the influence of starting body size, current197

environment, and past environment on demographic responses using generalized198

additive mixed models (GAMMs). We used GAMMs because demographic responses199

potentially have nonlinear dependence on starting body size (Anderson et al. 2008;200

Dahlgren et al. 2011; Ozgul et al. 2012; Cameron et al. 2013) and we expected201

responses to change nonlinearly during the experiment in response to the202

environment. Generalized additive models (GAMs) are convenient because they do203

not require that one makes assumptions about the shape of the nonlinear relationships.204

They are generalized linear models that represent the nonlinear relationship using205

smooth functions of covariates (Wood 2006). GAMMs are GAMs with random206
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effects in addition to fixed effects, which we use here to account for repeated207

measures of populations.208

Demographic responses of interest were measured after 24 hours for mites209

sampled from the population (see Experimental Methods). Responses included final210

body size (length in mm), initiation of transition from one developmental stage to the211

next (binary), reproduction by females (binary), fecundity (number of eggs laid given212

reproduction), egg size (in mm, average within female), and survival. In trait-based213

demography, it is common to model the growth process as an individual’s size at the214

end of a time step dependent on its size at the start of the time step, so we follow that215

standard and use “final body size” and “growth” interchangeably.216

Explanatory variables of interest included starting life-history stage (the stage217

of an individual at the start of a 24-hour monitoring period), starting body size,218

current environment, and past environment; see the following three paragraphs for219

further descriptions of starting body size, current environment, and past environment220

(Fig. 1). For clarity, we consistently refer to these four components as “explanatory221

variables”. Alternatively, we use “covariates” to refer to the observed variables222

included in the smooth functions that make up these explanatory variables.223

The explanatory variable “body size” (i.e., starting body size) was a smooth224

function of an individual’s observed body size at the start of the 24-hour monitoring225

period. Throughout this text, all discussions of the explanatory power of body size are226

referring to this starting body size explanatory variable.227

The explanatory variable “current environment” was a two-dimensional228

smooth function of the most recent estimate of (i.e., within the past 24 hours)229

population density and food supply (used here to mean food given divided by density;230

density and food supply are further described below). Two-dimensional smooth231
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functions allow for nonlinear effects of the covariates and their interaction. The fit of232

a two-dimensional smooth function results in a three-dimensional nonlinear surface,233

the height (i.e., third dimension) of which represents how the response variable234

changes with the covariates. We assumed that the current environment experienced by235

an individual is an interaction between the population density and the available food.236

Population density (per tube) was calculated as the number of individuals in a given237

stage times the average body size in that stage, summed across all stages, except eggs,238

to account for asymmetric competition. See appendix S2 for details of our density239

calculations. Food supply (food given divided by density, i.e., mg food per mm body240

length) was used as a covariate (as part of the current environment smooth function)241

instead of absolute food because preliminary analyses indicated that it was a better242

predictor of all demographic responses.243

The explanatory variable “past environment” was a treatment intercept and a244

smooth function of the day of each treatment. When specifying a smooth function of a245

continuous variable by a categorical variable in a GAM (as in our past environment246

by treatment), it is usually necessary to include a separate intercept for that categorical247

variable. Our treatment intercepts are parameterized in the standard way with the248

control treatment as a baseline and other treatments as contrasts. The smooth249

functions of time are not tied to any informative covariates and can take any nonlinear250

shapes that are smooth through time and thus account for cumulative changes in251

demographic responses that arise through selection, plasticity, or parental effects. This252

flexibility can incorporate the cumulative effects of the environment up to the moment253

a demographic response is observed which encompasses much of what we call the254

“current environment” i.e., the most recently estimated population density and food255

supply. Thus, effects of the environment before this “current environment” should be256
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evident in explanatory power from the “past environment” that does not overlap that257

of the “current environment”. The “past environment” spline was defined in such a258

flexible way so that, in a full model with all explanatory variables, it can pick up any259

population level patterns not explained by individual body size, population density, or260

food supply. This implies that, given two individuals of the same body size in the261

same current environment in different treatments or different times in the same262

treatment, we assume that any differences in their demographic rates are caused by263

differences in their past environments. It is possible that there are aspects of the264

current environment that differ, but are not incorporated into our current environment265

spline. So this interpretation of the residual patterns is not strong evidence but a266

means of generating hypotheses that could be tested with further experiments that are267

more mechanistic.268

For example, the full GAMM fit to egg counts (fecundity) contained a smooth269

function of starting body size, a treatment intercept, a smooth function of the day for270

each treatment, a two-dimensional smooth function of the population density and food271

supply, and a random effect of population. The hypothesis represented by this model272

is that an individual’s fecundity depends on its current access to food and the body273

size of that focal individual (which determines its competitive ability). However, the274

allocation strategy of individuals in some treatments or time points of treatments may275

differ from individuals of similar size in similar current environments due to differing276

past environmental experiences. These differences due to past environmental277

experiences should appear in the non-overlapping explanatory power of the past278

environment spline.279

To be clear, as part of the GAM fitting procedure, the smooth functions280

described above took on different nonlinear shapes (thin-plate regression splines) for281
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each model just as coefficients would differ among linear models. Variation in a282

demographic response can be explained by one explanatory variable in one model and283

a different explanatory variable in a different model that contains a different set of284

variables. This is the same issue that occurs when estimating coefficients in linear285

multiple regression with correlated explanatory variables (Chevan & Sutherland 1991;286

Graham 2003). Multicollinearity hinders the interpretability of the coefficients and287

smooth functions (Mitchell-Olds & Shaw 1987).288

For each demographic response separately, we fit the full GAMM containing289

all explanatory variables described above. We applied Wald-type tests to the full290

GAMM (Wood 2013b); these are p-values indicating the strength of evidence against291

the null hypothesis that explanatory variables have no influence. We also examined all292

submodels of the full GAMM using information theory and results were similar to the293

Wald-type tests; the details including R code can be found in appendix S3.294

For demographic responses whose supported explanatory variables contained295

starting body size, current environment, or past environment we calculated the296

explanatory power of each of these and their overlap. We focused on these297

explanatory variables because they were relevant to all responses whereas life-history298

stage only applies to some responses and may not apply to all species. Unlike models299

that tested for effects, to simplify the interpretation of explanatory power, these300

contained no random effect. It is possible to expand this method to apply to mixed301

models, but this is beyond the scope of this paper (Nakagawa & Schielzeth 2012).302

We fit GAMs with all subsets of the supported explanatory variables. We calculated303

the overlap in explanatory power as the difference from what the explanatory power304

of a model with multiple variables would be if it were additive relative to single305

variable models. The non-overlapping explanatory power is the increase in306
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explanatory power when adding a variable to a model that already contains other307

variables. These calculations have been previously described for variance partitioning308

in linear models (Chevan & Sutherland 1991; Ip 2001; Grömping 2007).309

Other statistical methods exist for dealing with multicollinearity, but they do310

not address our interest in interpreting both the overlapping and non-overlapping311

portions of explanatory power to get insight into the demographic processes that lead312

to multicollinearity (Graham 2003). Principal components analysis takes many313

predictors and summarizes them into just a few, but we wanted to look at all of the314

predictors and their relationship with body size. Residual and sequential regression315

require that you assume some hierarchy among the explanatory variables, but we316

wanted to see if body size was more important, not assume it. Structural equation317

modeling and path analysis can not handle relationships as flexibly as GAMs and we318

wanted our method to be able to pick up minor nonlinearities in the time series319

(Brandt, Kelava & Klein 2014). For these reasons, we have expanded upon existing320

methods and combined existing tools in new ways to produce a new method for321

examining multicollinear predictors that have nonlinear relationships with the322

response variable.323

All GAMMs were fit in R using gamm4 with lme4 and GAMs were fit using324

mgcv (Wood 2013a; Bates et al. 2013; Wood & Scheipl 2013). For smooth functions,325

we used penalized thin-plate regression splines that tend to give the best mean squared326

error (Wood 2003; 2013a). All continuous covariates except day were standardized to327

have mean zero and unit variance. We allowed smooth functions of starting body size,328

current environment, and past environment to have a maximum of five, ten, and ten329

knots respectively. Five knots for the effect of starting body size were previously330

discussed by (Dahlgren et al. 2011). Because current environment was a two-331
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dimensional spline, we assumed it might need more knots. Examination of the332

responses (Fig. 3) suggested that they might be more flexible through time (i.e., past333

environment). The mgcv package automatically reduces the flexibility of splines334

based on maximum likelihood using the Laplace approximation. All models used335

typical distributions and link functions for the responses as follows: final body size336

was Gaussian (identity link); stage transition was binomial (logit link); reproduction337

was binomial (logit link); non-zero fecundity minus one was Poisson (log link);338

survival was binomial (logit link).339

340

Results341

In each experimental environment, demographic responses varied through342

time and with some consistency between the two replicate populations (Fig. 3). Wald-343

type tests applied to the full model indicated that starting body size and the current344

environment had effects on most demographic rates (Table 1). Development and345

reproductive rates were higher for individuals with larger body sizes and in346

environments with higher food supply (appendix S5). Higher density decreased347

growth and reproductive rates, but had a positive effect on transition probability with348

marginal significance (Table 1 and appendix S5). While controlling for the effects of349

body size and the current environment, declining and fluctuating environments also350

caused temporal patterns for some demographic rates (Table 1 and appendix S5).351
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352

Fig. 3. Observed life-history processes.353

Each column represents an experimental treatment. Each row represents a life-history354

process observed over a 24 hour monitoring period: final body size at the end of355

monitoring (length in mm), probability of initiating transition from one developmental356

stage to the next, probability of reproduction (given female), fecundity (number of357

eggs laid given reproduction), egg size (in mm, average within female), and survival.358

Lines represent the mean of individuals sampled from a population on a given day (a359

subset of the population: 5 from each adult stage and 3 from each juvenile stage).360

Grey ribbons represent +/- 2 standard errors. Standard errors are missing for egg size361
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on days when only one female was sampled. Observations in the famine populations362

ended when all individuals died. The control populations persisted to the end, but363

observations ended. ‘Proto’ refers to protonymph and ‘trito’ to tritonymph.364

365
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Table 1: Wald-type tests (to test the null hypothesis that the smooth function was not366

different from 0) applied to all smooth functions in the full GAMMs. The control367

intercept was used as the baseline for treatment contrasts and was always non-zero368

(***). The growth model containing stage gave a convergence warning, so we omitted369

it (see appendix S3 for details). ‘NA’ indicates that stage was not included in a model370

to distinguish this case from non-significance. ‘Proto’ refers to protonymph and ‘trito’371

to tritonymph.372

‘.’ p<0.1, ‘*’ p<0.05, ‘**’ p<0.01, ‘***’ p<0.001373

Stage Body

size

Current

environ

ment

Past environment smooth functions (and

intercept in parentheses)

Control Famine Declining Fluctuating

Growth NA *** *** * (.)

Transition ***(proto)

***(trito)

*** . . ** (***)

Reproduct

ion

NA *** *** (*) ** (***)

Fecundity NA *** *** **(**) (.)

Egg Size NA (.) * *

Survival *(trito)

374

375
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Power of supported explanatory variables376

The best explanatory variable of growth and stage transition was body size (Fig. 4).377

Both reproductive rates depended more on the environment than on female body size378

(Fig. 3). Body size encompassed almost all of the explanatory power of the current379

and past environments for growth (0.99); 0.27 and 0.26 respectively for stage380

transition; 0.39 and 0.34 respectively for reproduction; and 0.47 and .48 for fecundity381

(numbers are proportion of explanatory power overlapping). See Appendix S4 for382

explanatory power calculations. As is common for variance decompositions, some383

shares came out slightly negative so we rounded these to zero for graphing in Fig. 4384

(Hamilton 1987; Ip 2001); these were an order of magnitude smaller than the portions385

we interpret (Growth: se=-0.001; Transition: se=-0.007, sh=-0.005). This indicates386

that one variable was masking a tiny amount of the explanatory power of another387

variable (Hamilton 1987). This omission is why the subareas do not perfectly add up.388

389
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390

Fig. 4. Overlapping explanatory power of starting body size (s), current391

environment (e), and past environment (h). Each panel contains an area-392

proportional Venn diagram (Micallef & Rodgers 2014) of explanatory power for a393

demographic response: final body size after 24 hours (Growth), probability of394

initiating stage transition (Transition), probability of reproducing (Reproduction), and395

Fecundity. Areas of the ellipses within a panel represent the proportion of null396

deviance explained by models with one of the explanatory variables. Subareas,397

designated with letters and quantities, represent explanatory power attributable to one,398

two, or three of the explanatory variables due to interdependence of the variables.399

Labels of zero areas were omitted. The total explanatory power of a component is the400

sum of the subareas, noted at the top of each panel. See Appendix S4 for calculations.401

402
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Discussion403

Predicting life-history and population responses to changing environments has404

long been the focus of population ecologists (e.g., Williams 1966). Trait-based405

demographic models have highlighted the strength of including state variables such as406

body size to understand and predict population dynamics (Easterling et al. 2000;407

Caswell 2001; Ozgul et al. 2010). However, these models rely on the assumption that408

chosen state variables are a good proxy of the effects of the environment on409

demographic rates. Here, we challenged this assumption by investigating how well410

body size represented the integrated effects of environmental sequences by411

quantifying the dependence of demographic responses on individual body size,412

current environment, and past environment in a well-studied soil mite experimental413

system. To do so, we used a quantitative method for decomposing the effects of414

multicollinear explanatory variables, extended to allow for nonlinear relationships and415

graphically presented using area-proportional Venn diagrams.416

The past environment explanatory variable was designed to pick up population417

level patterns after controlling for the effects of body size and the current418

environment. This should include delayed effects from past environments experienced419

by individuals and their mothers. Although not all of these splines were significantly420

different from zero, examining the patterns is useful for generating hypotheses to be421

investigated with more detailed data and more mechanistic models. Here, we422

demonstrate this with the soil mite model system because many mechanisms are423

already known.424

We found that the total explanatory power of body size and the amount of425

environmental effects encompassed by body size strongly varies among demographic426

responses. Although this general result is already known, we demonstrate that the427
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strength of our method lies in its flexibility, making it easily applicable to data limited428

situations, which are common in ecology. It is a useful tool to identify patterns and429

test for the ability of state variables to encompass environmental effects on430

demographic and life-history responses that can later be explored with more431

mechanistic experiments.432

433

The case of soil mite populations in drastically different environments434

Developmental rates depended more on body size than past or current435

environments, and reproductive rates were more strongly affected by the436

environments than by body size. For final body size (i.e., growth), the effect of the437

environment was almost fully encompassed by starting body size, while for other438

demographic responses, body size only accounted for a quarter to half of the439

environmental explanatory power. These results demonstrate that demographic440

responses differed in their sensitivity to the environment and the proportion of441

environmental effects transmitted through an individual’s body size (e.g., Ozgul et al.442

2012; Ozgul et al. 2010).443

We expected to find significant effects of the past environment on444

developmental rates because previous work demonstrated that soil mites can exhibit445

strong delayed life-history effects in response to densities and food regimes446

(Beckerman et al. 2003; Plaistow et al. 2006; Cameron et al. 2013). However, in our447

experiment, these effects were almost completely overlapped by the current448

environment. Previous experiments, that found effects of past environments on449

development rates utilized very different food levels (high vs low food for individuals,450

or stochastically varying food with high frequency for populations) (Beckerman et al.451

2003; Plaistow et al. 2006; Cameron et al. 2013). In the current experiment, on a daily452
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basis, food and population density was strongly autocorrelated, meaning that current453

and previous environments were on average similar across the experiments. Under454

these conditions, the impact of current conditions on developmental rates was very455

strong. One exception was in the fluctuating environment where, after controlling for456

the effects of body size and the current environment, developmental rates declined457

over time (supplementary Fig. S1). This could be due to delayed density dependence458

driven by the high densities during the first 3 weeks of the experiments in response to459

the first peak of food availability (Beckerman et al 2003, Benton et al 2005). Cohorts460

of juveniles born under high densities grow and develop slowly and can only recruit461

when competition for food is very low (Benton et al 2005). In the fluctuating462

treatment, competition for food was very low at the beginning of the second peak of463

food availability, when density was low, leading to a peak of fecundity and generating464

a new cohort of juveniles born under even higher densities.465

As expected, our results indicate that females adjusted their reproductive effort466

according to their environment more than their current body condition (Fig. 4).467

Reproduction increased with food availability, which was especially evident in the468

fluctuating environment where a ten-fold rise in reproduction coincided with a spike469

in food supply (Figs 2 and 3). For both reproductive rates, the explanatory power of470

the environment not encompassed by body size was substantial (Fig. 4). Under these471

experimental conditions, female soil mites were on the income breeding end of the472

income to capital breeding life-history continuum, relying more on current income473

than on stored resources for reproduction (Stearns 1989). However, we know that474

under conditions where food differs radically between different parts of the life-475

history, females raised in low food environments are lower quality and when given476

excess food as adults are much less fecund than females raised in high food477
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environments (Beckerman, Benton et al. 2003). It is possible that the duration of our478

fluctuating food experiment was not long enough to observe the effects of this.479

We hypothesized in Fig. 1 that the past environment can affect demography480

via the individual's state. We can observe this as an overlap between the explanatory481

power of body size and the past environment. Interestingly, fecundity showed482

substantial overlap between these two components. So a portion of the effects of the483

past environment experienced by a female and her ancestors (effects we know exist in484

this model organism) were integrated into body size.485

After accounting for the effects of body size and current environment, the486

gradually declining environment further reduced both reproductive rates. Also, the487

past environment had 6% non-overlapping explanatory power. Together, these results488

support previous findings that females adjust their reproduction through a489

combination of evolutionary, plastic, and maternal effects in addition to their current490

environment and condition (e.g., Plaistow et al. 2007; Benton and Plaistow 2008,491

Cameron et al 2013).492

Unexplained demographic rates in the soil mite case study493

Observed daily survival of individuals was independent of environments and494

body size and may have been artificially high due to reduced density dependent495

effects during the 24h of sampling. Maternal effects on egg size were not observed in496

this experiment, but effects may have been transmitted through unobserved pathways497

such as epigenetics (Youngson & Whitelaw 2008) or nutrient investment (Benton et498

al. 2008). Transition rates only responded to the environment with marginal499

significance. Although our experimental design did not allow for collection of further500

data, the estimation of some of the vital rates can be improved by increasing the501

sample sizes in future experiments (Fig. 3).502
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503

General applicability504

The soil mite S. berlesei is an attractive model system because much is known505

about the potential interplay between current and past environments in determining506

phenotypic variation (Beckerman et al. 2003; Plaistow et al. 2006; 2007); yet a507

critical conclusion from the detailed work on individuals under controlled conditions508

is that the interaction between current and past environments to determine the509

phenotype is itself highly plastic. The purpose of this investigation was not to develop510

a mechanistic understanding of an already well-studied system. Instead, this new511

variance decomposition method is useful because it is a way of generating an overall512

picture across a range of environments, of the average interplay between historical513

and current drivers of phenotypic dynamics.514

More generally, this method is useful for examining the shared and unique515

contributions in multiple regression beyond demographic studies, including linear and516

generalized linear regression. Researchers often wonder which explanatory variables517

have the greatest influence on their responses  a complicated issue when there is518

multicollinearity among explanatory variables (Graham 2003). The method described519

by Ip (2001) and used here for intuitively visualizing the shared explanatory power520

and interdependence of variables has not yet been adopted by the ecological literature.521

Here we have expanded upon this method by applying it to nonlinear regression using522

GAMs rather than linear regression and presenting the results using area-proportional523

Venn diagrams (Micallef & Rodgers 2014). We propose this method as a technique524

complementary to those discussed by Graham (2003), including principal components525

regression, structural equation modeling, and residual and sequential regression.526
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Future work could extend this method further to include confidence intervals527

estimated by bootstrapping.528

In demographic studies, there are more mechanistic ways of quantifying the529

effects of the environment and individual states on life-history processes and530

population dynamics than our method. More mechanistic methods will lead to531

stronger inference and the ability to make predictions. These include physiologically532

structured population models which characterize individuals based on multiple533

physiological traits such as their size, age, stage, and energy reserves (de Roos 1997).534

They also include mechanisms such as the consumption and digestion of resources.535

These models require either data detailed enough to parameterize or a priori536

assumptions about the underlying physiological mechanisms. As is the case in most537

experimental and wildlife population studies, we did not have such detailed data538

available in this study. However, our non-mechanistic model has the strength of being539

flexible enough to apply in these data-limited situations and will be useful for540

identifying patterns and generating hypotheses that can later be explored with more541

mechanistic models and experiments with more detailed data collection.542

The demographic method presented here can be applied to any dataset in543

which an individual state variable, individual fates, and relevant environmental544

covariates are available for a population in a variable environment, including data545

from wild plant and animal populations e.g., St John’s wort (Buckley, Briese & Rees546

2003); Soay sheep (Ozgul et al. 2009); yellow-bellied marmots (Ozgul et al. 2010).547

When sufficient data are available to develop mechanistic demographic models, the548

assumption that the state variables chosen are good proxies of the environmental549

effects on phenotypic traits should be tested. If, as in our study, the state variables550

only encompass a small portion of the effect of the environment, then additional551
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environmental variables may need to be measured and included as predictors. Several552

IPMs (e.g. Ozgul et al 2012, Coulson 2011) and physiologically structured population553

models (e.g., Persson & de Roos 2006; Le Bourlot, Tully & Claessen 2014) accounted554

for current environmental effects on life history and demography. Also these types of555

models can implicitly account for delayed life-history effects because the past556

environment can affect the current state of individuals and thus their life-history557

trajectory (de Roos et al. 2003). However, an explicit consideration of the past558

environment on demographic responses is so far missing, mainly due to the difficulty559

of mechanistically modeling delayed life-history effects such as delayed density560

dependence (Beckerman et al. 2003), and this is one of the main challenges left to be561

achieved to improve the predictions of mechanistic demographic models.562

Overall, body size and environmental variation are simply variables that were563

convenient for answering the bigger question of how good is an easily observable,564

individual state variable as a proxy for the nutritional effects of environments in a565

population model. A comparative study using the approach presented here could offer566

further refinement of our understanding of what kinds of organisms (e.g., capital vs.567

income breeders) and patterns of environmental variations (e.g., magnitude and568

temporal frequency of variation relative to generation time) are most likely to be569

associated with a complex and limited ability of a single individual state variable to570

predict demographic rates.571
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