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University of Leeds, Leeds, United Kingdom 

Abstract 

There is a significant body of research related to the valuation of reliability in transportation. 

Such work has tended to rely on the Stated Preference (SP) methodology where respondents are 

asked to make trade-offs between the mean and standard deviation of travel time. The literature 

has suggested that a Revealed Preference (RP) methodology may provide an alternative means of 

estimating a value of reliability. In this paper we show how emerging data sources reveal 

travellers‟ preferences and, in combination with traditional choice modelling methods, can be 

used to estimate a value of reliability. We illustrate this RP methodology using smart card data 

from the multi-modal public transport network of London, UK. We are able to estimate a useable 

„Reliability Ratio‟ for three of four public transport modes modelled, and account for an 

unexpected result based upon the data available. 
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1.0 Introduction 

 

There has been debate in the literature surrounding reliability in transportation and its formal 

definition. Many authors use the term “travel time variation” (TTV) to indicate that some 

measure of the width of the travel time distribution is actually what is being discussed. Although 

research has introduced alternative methods for understanding reliability (e.g. the scheduling 

approach of Small, 1982) it is this simple idea of the width of the travel time distribution that 

will focus the discussion that follows. 

It is clear from previous research that TTV is an important factor for explaining agents‟ travel 

behaviour (Eddington, 2006), but its valuation remains an active research strand. It has been 

noted that a Revealed Preference (RP) methodology may be instructive in the valuation of TTV, 

but the situations where it can be effectively applied are rare (Bates et al, 2001), and 

consequently this area remains underdeveloped. Instead there has been a reliance on Stated 

Preference (SP) studies in order to value TTV (Ettema and Timmermans, 2006; Batley and 

Ib ƴñez, 2012; Börjesson et al, 2012). Meta-analysis of these SP studies (e.g. Li et al, 2010; 

Carrion and Levinson, 2012), as well as expert workshops (e.g. de Jong et al, 2009), have been 

only partially successful in clarifying the value of TTV. What we will demonstrate in the work 

that follows is that an RP approach, drawing upon existing discrete choice modelling methods, 

can be employed to elicit a valuation of TTV. 

This development is made possible by datasets generated by computerised systems associated 

with the provision of transport services, where both aggregate route performance and traveller 
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behaviour are observed. Examples of such datasets include those collected from consumer 

satellite navigation units, automatic number plate recognition cameras, and public transport 

smart card usage. It is the latter that we will exploit to demonstrate application of our 

methodology. 

Moreover, the specific contributions of our paper are as follows: 

1. To develop a RP methodology for the valuation of TTV 

2. To utilise automatically generated datasets to provide valuation evidence for TTV 

3. To demonstrate the use of such a dataset with existing discrete choice modelling 

techniques  

The paper is arranged as follows. In section two we will explore the concept of TTV and its 

valuation, before examining the literature on valuing reliability using both RP and SP methods. 

In section three we set up a basic TTV model and outline the discrete choice model 

specifications relevant to the valuation of TTV. In section four we introduce an empirical dataset, 

outline the context of the research in relation to the smart card literature, and apply the data with 

choice modelling methods. In section five we discuss the modelling results and conclude by 

commenting on the methodology developed. 

2.0 Background 

2.1 Travel Time Variation (TTV) 

Travel time variation in the context we use it here refers to the widely known phenomenon that 

undertaking a given trip will not always take the same amount of time. The exact nature of this 
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aspect of travel is considered in detail in the literature, which often differentiates between 

recurrent variation and incident related delay (Bates et al, 2001). For the purposes of this paper 

we take a simple approach; we assume that every available travel option is associated with a 

Normal distribution of travel times, and furthermore can be accurately estimated and utilised in 

travellers‟ decision making processes. This approach therefore explicitly draws a relationship 

between the supply (or performance) of a transport system and the demand response from 

travellers; an idea which is formalised by the mean-variance approach. This was initially 

developed in the field of finance (Markowitz, 1959), but has become the most common 

framework for understanding TTV. 

The prevalence of the mean-variance approach is partly due to the simplicity of modelling the 

marginal value of travel time alongside the marginal value of travel time variation. Adoption of 

this approach has resulted in the acceptance of the Reliability Ratio (RR) in value of reliability 

studies, which is given by the ratio of the marginal utility of time risk to the marginal utility of 

mean travel time: 

ܴܴ ൌ డ௎డఙ ఋ௎ఋఓ൙  (1) 

Where 
ఋ௎ఋఓ  is the marginal utility of the mean travel time ߤ with respect to utility U, commonly 

expected to be negative; and  
డ௎డఙ is the marginal utility of the standard deviation of travel time ߪ 

with respect to U, also expected to be negative. The value of RR is therefore usually expressed as 
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a positive value.  It is a value for RR that is estimated by the RP methodology outlined in the 

remainder of the present paper. 

2.2 The Stated Preference (SP) Approach to the Valuation of Travel Time 

Variation 

The preferred method of estimating the reliability ratio to date has been via SP surveys where 

participants respond to a range of hypothetical travel options and are asked to make trade-offs 

between travel time, TTV and cost.  

A key reason for the prevalence of SP studies in this research area is that, while RP studies are 

preferable in principle, practical situations where RP can be conducted successfully are rare 

(Bates et al, 2001). The research community has therefore been largely comfortable in accepting 

the SP method for valuing TTV, as evidenced by the number of studies performed (see the 

review papers of Li et al, 2010; Carrion and Levinson 2012). SP route choice experiments have 

yielded useful insights into the behaviour of travellers in relation to TTV; here we provide a brief 

overview of recent studies, as a basis for developing an alternative method for estimating the 

reliability ratio. 

The SP study conducted in the much cited paper of Bates et al (2001) formed only part of the 

contribution of that paper to the wider TTV literature. However section 6 of that paper, focussed 

on the SP experiment warrants attention in its own right. Presentational issues related to prior 

studies were considered in some depth; a debate which has become very much more prescient in 

the TTV literature due to the complexity of the subject (for a later overview of the issues see 

Tseng et al, 2008). It also employed a discrete choice experiment for the estimation of the value 

D
ow

nl
oa

de
d 

by
 [C

hr
is

to
ph

er
 L

ea
hy

] a
t 0

6:
59

 2
0 

O
ct

ob
er

 2
01

5 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
7 

of reliability. The study did not publish a RR due to confidentiality issues but nevertheless 

confirmed TTV as highly valued by passengers. 

The study of Hollander (2006) was focussed upon empirically estimating a RR using SP. This 

work is quoted widely in the literature due to the outlying nature of its reported RR. Hollander 

(2006) was an attempt to empirically compare the mean-variance approach to the alternative 

scheduling approach (Small, 1982), which was performed using SP and discrete choice 

modelling. This paper again considered the issue of survey presentation. Hollander‟s reported 

reliability ratio of 0.1 was well below most other estimates. A possible explanation for the result 

may be due to the survey being web-based, where respondent-researcher interaction was limited 

and the demographic profile of respondents in the sample was unrepresentative of the wider 

population. 

What the aforementioned SP studies would seem to indicate is that a broad range of RR 

estimates exist. Further evidence of this phenomenon is available in the meta-analyses of Li et al 

(2010), Carrion and Levinson (2012) and Wardman and Batley (2014). The variation of RRs 

might be due to a number of situational factors; for example the demographic characteristics of 

respondents or mode availability. However the focus on presentational issues within the 

literature (of Bates et al, 2001; Hollander 2009 among others) would suggest that they play an 

important role in the estimation of accurate RRs, particularly given the complexity of the subject 

(Tseng et al, 2008). 

In addition to these problems, we might also draw the reader to well documented drawbacks of 

hypothetical choice questionnaires, summarised in a recent review of travel time reliability 
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(Wardman and Batley, 2014). Wardman and Batley suggested that a strategic bias may be 

observed given the contentiousness of TTV or lateness to travellers, particularly when the 

purpose of the study is clear to the respondent. Furthermore we might add that the general 

difficulties related to SP of misapprehension, fatigue and boredom experienced by respondents 

might be exacerbated when dealing with the complexity of TTV issues.  

Returning to the wide range of RR estimates found in the aforementioned meta-analyses, we now 

focus on practical shortcomings of the use of SP studies to estimate a RR; these being the cost, 

resource and knowledge required to conduct such studies. A possible alternative approach for 

practitioners might be to ‟transfer‟ a pre-existing RR which was calculated under similar 

circumstances (i.e. mode, geographic location etc.), but it is clear that an appropriate RR will not 

be available for all situations. This does not take into account issues around context and 

fungibility (Orr et al, 2012), yet this is the current position of practice (see WebTAG Unit A1.3 

for evidence of this from the UK). The reason for this situation is a tacit acknowledgement of the 

difficulty and resources required for conducting a unique choice experiment for each occasion 

that a RR is required. 

It is clear then from the above section that accurate estimates of RRs are necessary, but that 

current methods to estimate it raise questions over their suitability. An alternative or 

complementary solution to the estimation of RRs might be appropriate; one which overcomes:  

 how to make the appropriate choice of RR from the broad range of literature available 

 issues of SP respondent understanding of TTV 

 presentational issues specifically related to TTV SP surveys 
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 general problems related to SP (strategic/protest responses) 

 cost/resource required to estimate a local RR 

To address these issues we turn our attention to the less well research area of RP based estimates 

of the RR. 

2.3 The Revealed Preference (RP) Approach  

A Revealed Preference (RP) approach in the transportation context is based upon what actual 

traveller choices can tell us about their preferences – more specifically how they might trade-off 

between travel time, TTV and other attributes of the journey. An RP based methodology would 

overcome the issues highlighted in the previous section by incorporating participants‟ actual 

decision making choices, including imperfections such as habitual behaviour and partial 

information (Wardman and Batley, 2014). In overcoming the major deficiencies of SP we 

therefore consider that RP is to be preferred (as suggested by Bates et al, 2001) and could 

potentially elicit a more realistic RR. In addition we envisage an RP only approach would utilise 

readily available datasets, the analysis of which could potentially be automated. This approach 

could therefore provide a cost-effective, rapid, temporal/location specific method of estimating a 

RR.   

The general concerns with an RP-only approach are that insufficient situations might exist in a 

dataset for effective estimation of parameters, as well as difficulty for the analyst in knowing the 

completeness of travellers‟ information (as opposed to SP contexts where it can be considered 

perfect). We also note the difficulty specific to mean-variance applications where travel time and 

standard deviation of travel time have been found to be correlated (Batley et al, 2008; de Jong et 
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al, 2009). An additional criticism of RP based methods might be the restriction to situations 

where appropriate data are available (Bates et al, 2001). However, as the present paper hopes to 

demonstrate, this will become less of a problem as automatic data collection systems become 

more prevalent.  

The literature on RP based studies is limited, reflecting the difficulty of obtaining suitable and 

sufficient datasets. The fullest account of their use in the TTV context is provided by Carrion and 

Levinson (2012), from which we note the following key studies. Several RP studies have used 

data from the SR-91 highway in California where drivers were observed making a choice 

between a tolled express route and a standard un-tolled section of freeway. The most widely 

cited of these studies (Small et al, 2005), analysed RP and SP data linked to census income data 

(and other demographic data) using a mixed logit discrete choice model. Of interest is the 

rejection of mean and standard deviation in their utility function, replaced with non-parametric 

indicators. It is also of note that this model represented only a single mode (private car). The 

combined RP/SP model gave an overall RR of 1.1, but an RP only model estimated separately 

did not converge. Lam and Small (2001) was a closer attempt at an RP only methodology using 

SR-91 data loop detector and demographic data, and estimated a RR of 0.77 for males and 1.45 

for females. Other work has attempted to estimate reliability models based upon mode choice: 

Bhat and Sardesai (2006) utilised an RP/SP methodology and incorporated public transport 

modes into their model, estimating a RR of 0.26. Börjesson (2008) specified a mixed-logit 

discrete choice model using RP and SP data and estimated an overall RR of 0.76; this paper 

concluded that there are systematic differences between RP and SP datasets, in that RP 

represents longer term adaptation by travellers to travel conditions. 
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Issues affecting these studies were the effort and resource required to estimate their models, 

since they involved one or more of the following activities: contacting travellers directly to 

obtain information about their route choices, matching SP records to observed number plates, 

making assumptions about missing data, and/or staff involved in the study driving the route 

repeatedly to estimate travel time distributions. None of the studies were able to observe both 

supply and demand aspects of the transport systems of interest without directly asking 

participants, and this need for interaction with travellers potentially introduced some of the 

negative issues with SP that we outlined in the previous section. The mode choice modelled in 

Börjesson (2008) was also reliant upon discrete departure times of the private car which may 

have confused traveller preferences between car (which can usually depart continuously), and 

bus which is subject to timetabled (discrete) departure times.    

In the following section we address these issues by providing a methodology and framework for 

the use of automatically collected data in estimating RRs without the need for extensive 

surveying. 

3.0 Modelling Framework 

3.1 Choice and Risk 

The phrase „choice under uncertainty‟ is often used in the literature on travel time variation, 

however we do not use it here to avoid ambiguity. We instead use the phrase „choice under risk‟ 

to denote the situation where the distribution of outcomes is known by the traveller – a key 

assumption as we progress with our methodology. Although perhaps unrealistic, this is a 

simplifying assumption which will allow a RR to be estimated. Further work (and an extended 
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temporal dimension to the data) could take into account learning or knowledge effects on the part 

of the traveller. We do comply with standard practice in the field in that we utilise the axioms of 

expected utility theory (see von Neumann and Morgenstern, 1947). It has been shown that this 

approach can provide results at odds with actual human behaviour (Kahnemann and Tversky, 

1979), but nevertheless it is accepted in the transportation literature as a useful tool for 

understanding risk. In accepting von Neumann and Morgenstern‟s (vNM) expected utility 

framework, and implementing this through a discrete choice model, we assume that each of the 

travellers observed will have well defined (complete) and stochastically transitive preferences.  

3.2 Mean-Variance 

The mean-variance framework of travel time variation will be utilised as a means for modelling 

passengers‟ behavioural choices. The expected utility function of this framework takes the 

following general form: 

ܷܧ ൌ ߚଵߤ ൅ ߚଶ(2) ߪ 

 

Where ߤ is equal to mean travel time and ߪ is the standard deviation of travel time, and  ߚଵ and ߚଶ are preference parameters for these variables. This representation of travel time risk has 

received criticism for being dependent on a Normal distribution of travel times which is rarely 

observed in reality (van Lint et al, 2008). Small et al (2005) recognised this issue and replaced 

the mean travel time with the median, and the standard deviation with the difference between the 

90th percentile and the median. Both the standard mean-variance and this non-parametric variant 

will be tested in the empirical work that follows.    
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3.3 Data Requirements  

The RP estimation of a reliability ratio will be based upon travellers‟ choice responses to 

observable supply side metrics of a transport system. A requirement of this method is a dataset 

which can provide estimates of mean and standard deviation of travel time and records of 

travellers‟ route choices. Such datasets are becoming more prevalent and can include car based 

trips (e.g. using ANPR systems) or public transport modes – with the latter being more 

straightforward to implement due to the fixed nature of routing.  

The setting up of an experiment must consider situations where all possible routes between an 

origin-destination pair can be observed, and suitable sample sizes are available on each route. 

There must also be some means of knowing which route is taken – through intermediate 

observation or some indication at the origin or destination point.  

3.4 Choice Model Specification 

We will employ a discrete choice model to represent the route choice of the traveller in this 

context. In the empirical section that follows, we apply three well-known discrete choice model 

specifications, namely multinomial logit (MNL), mixed multinomial logit (MMNL) and cross-

nested logit (CNL) (a useful background to these specifications is provided by Train, 2009). The 

logit model is the simplest and most well known of these, where the probability of individual n 

choosing alternative i from choice set J (݅ א ݆ where ,ܬ ൌ ͳǡǥ ǡ  :is given by (ܬ

௡ܲ௜ ൌ ௘ഁᇲೣ೙೔σ ௘ഁᇲೣ೙ೕೕ       (3) 
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Where the observed portion of utility for individual n and alternative j ሺ ௡ܸ௝ሻ is linear in 

parameters and is therefore given by the term ߚᇱݔ௡௝ (where ݔ௡௝ is a vector of observed variables 

for individual n and alternative j). 

The basic logit specification requires the condition of independence from irrelevant alternatives 

(IIA) which is often not satisfied in real-world applications due to correlation between 

alternatives. This correlation can be represented by either a mixture or nested choice model 

specification. Our use of a mixture specification is with the purpose of representing 

heterogeneity across travellers, in line with similar previous studies (Small et al, 2005; Bogers et 

al, 2007). An alternative use of the mixed logit form is to induce correlation between the error 

terms of similar alternatives, thereby representing a hierarchical or nested, structure; described as 

the error components logit interpretation (Batley et al, 2004). The MMNL model is estimated 

over a density of parameters, and therefore takes the general form: 

௡ܲ௜ ൌ ቆ׬ ௘ഁᇲೣ೙೔σ ௘ഁᇲೣ೙ೕೕ ቇ݂ሺߚሻ݀ߚǤ    (4) 

In the case of the MMNL model, the value of ௡ܲ௜ is a weighted value of the MNL formula 

estimated at different values of ߚ. The weighting of ߚ is given by the form of  ݂ሺߚሻ (Train, 

2009). 

A nested structure of the choice problem can be represented within the choice modelling 

software by explicitly defining similar mode alternatives to be contained within a single nest. 

More generally we note that an alternative might have membership of more than one nest, 

meaning that a natural specification for the problem at hand is the cross-nested logit (CNL) 
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model specification. Here we provide the probability function for the Generalised Nested Logit 

(GNL) model, which can be seen as generalised modelling framework wherein CNL represents a 

special case. In particular, the restriction of dissimilarity parameter between modes in a single 

nest k (ߣ௞ሻ to be equal in equation 5 results in a CNL specification (Wen and Koppelman, 2001):  

௡ܲ௜ ൌ σ ൫ఈ೔ೖ௘ೇ೙೔൯ భഊೖ൥σ ቀఈೕೖ௘ೇ೙ೕቁ భഊೖೕאಳೖ ൩ഊೖషభೖ಼సభ
σ ൥σ ቀఈೕೖ௘ೇ೙ೕቁ భഊೖೕאಳೖ ൩ೖ಼సభ ഊೖ .    (5) 

The subscript k represents and indexation of the nests in the model: ݇ ൌ ͳǡǥ ǡ  ௞ denotes aܤ .ܭ

nest of alternatives.  Įik is the allocation parameter which signifies the proportion of membership 

of alternative i to nest k.  

4.0 Empirical Application of the Model 

4.1 Smart Card Data 

In our example we utilised a public transport smart card dataset. Public transport smart cards 

provide a unique research opportunity in their own right (for an overview see Pelletier et al, 

2011). Researchers have recognised the value of smart cards in observing travel behaviour (Choi 

et al, 2012) and monitoring system performance (Jang, 2010), but we are unaware of any smart 

card research which incorporates both supply and demand sides of a transport system.  

The data available for this experiment were the trips made by a 5% sample of Oyster Card users 

on the Transport for London (TfL) public transport network during a single, non-school holiday 

month in 2011. The primary dataset contained details of each trip made, including an encrypted 
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user ID, mode, time, date and location of the beginning and ending for a trip on rail based modes. 

Bus based trips did not have a recorded end point and so were excluded from the RP choice 

modelling that follows. The impact of this is considered in the next section.  

The initial dataset contained approximately 11 million Oyster transaction records. For the 

purposes of this demonstration we decided to concentrate our analysis on the AM peak period. 

To create the relevant dataset we removed non-AM peak journeys (beginning outside 07:00 – 

10:00), weekend journeys, and all bus journeys. It was found that statistically significant 

differences existed between the travel conditions during each of the three peak hours. Models 

were therefore estimated over the AM peak as a whole and by each of the three peak hours. 

Disaggregation of the data down to the hour level did however reduce the number of OD pairs 

available.  

4.2 Identification of Suitable Data 

We were unable to utilise the full dataset for our modelling purposes as many trips were made 

without indication of route choice. Consequently it was necessary to identify the origin 

destination (OD) pairs where a mode choice was observable. This was done by creating an OD 

trip matrix specific to each of the modes available. A database relationship was created between 

each of these matrices to identify ODs where two or more modes were used with a count of 

sample of travellers at 15 or greater. ODs were excluded where one of the choices was 

dominated; i.e. where both the mean and standard deviation of travel time were lower for a given 

option. Unfortunately two modes featured in the sample were represented on only three OD 

pairs. Preliminary experiments showed that estimating parameters on such few choice situations 
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would lead to unreliable parameter estimates and therefore these two modes were removed.  

These processes resulted in 31 candidate OD pairs being available for the AM peak model 

estimation, giving a total of 4,140 usable records (an average of 134 trips per OD). A dataset of 

the three individual peak hours (7-10) was also created, containing a subset of these 31 OD pairs 

where the sample size was adequate in a single peak hour. Using this hour based dataset it would 

be possible to estimate models where the travel conditions were related to the hour of travel (as 

opposed to the whole AM peak period). This dataset consisted of 2,061 records.   

The bus based smart card records did not include the time or location of a passenger alighting the 

vehicle. This presented a challenge for accurately estimating both bus performance and 

passenger behaviour. We therefore estimated choice model parameters based solely upon rail 

based modes, and omitted the bus data from model estimation. An additional concern was that 

there were no highway based modes in the study – including private car. We made the 

simplifying assumption that car would (notionally) exist in an independent „non PT‟ nest, and 

therefore the estimates within the PT nest were unbiased.  The omission of the bus mode was 

more problematic as this would likely cause bias within the PT nest.  

To address this concern we created a list of all 62 origin and destination stations that were in the 

choice dataset. Returning to the full dataset of 11 million records, we were able to identify all 

travellers that interacted with these origins and destinations, including trips made using bus for 

all or part of the trip. We were then able to link transfers between bus and other modes (drawing 

upon the work of Seaborn et al, 2009), and thereby identify instances of travellers using bus for 

all or part of their trip on one of the 31 OD pairs. Some evidence was found of a small number of 

D
ow

nl
oa

de
d 

by
 [C

hr
is

to
ph

er
 L

ea
hy

] a
t 0

6:
59

 2
0 

O
ct

ob
er

 2
01

5 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
18 

travellers using bus between five of the ODs, however the numbers were small (1 or 2 travellers 

for each of these OD pairs). On reflection it was decided to proceed to the analysis stage with the 

full complement of 31 AM peak OD pairs. An alternative would have been to exclude the OD 

pairs where there was evidence of bus use, but much data would have been lost. 

4.3 Data Analysis 

To populate the mean-variance part of the choice model, we assigned an ID to each of the 

traveller records within the dataset based upon which OD they were travelling between. We 

assigned a further separate ID to each traveller based upon the mode of transport they utilised. 

Within this dataset, the use of three public transport modes was identified:  

 Light Rail – also referred to as the Docklands Light Railway, or DLR 

 Metro – also referred to as London Underground, or LU 

 Heavy Rail – standard heavy rail services, including London Overground. Referred to as 

„Rail‟ in the model specification 

Some journeys consisted of two of these modes and so two further modes choices were created 

which were a composite of two of the other modes. Figure 1 demonstrates how each of the six 

modes was composed. The method of grouping suggested that there would be correlation 

between the modes when they contained a common method of transport. This supports use of a 

cross nested logit structure when modelling this data (multinomial logit and mixed multinomial 

logit models will also be estimated, in line with many similar studies in this field (Carrion and 

Levinson, 2012).  
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For any one OD pair, there were only two of the four modes available. We were able to calculate 

a sample mean travel time and standard deviation by using both OD and mode ID (denoted by 

subscript m) – i.e. each OD had two sets of mean-variance values; one for each of the public 

transport travel choices available to the traveller. We present the results of this process in 

Appendix 1 of the present paper. Each individual record, representing a single trip, has assigned 

to it the mean and standard deviation for the two options available.  

A concern remained regarding the issue raised in the literature of correlation between mean and 

standard deviation of travel time (Batley et al, 2008; de Jong et al, 2009), however our analysis 

based upon the information in Appendix 1 suggested that this was not an issue in the present 

context.  

5.0 Choice Modelling 

The models in this section were estimated using Biogeme (Bierlaire, 2003). We utilised four 

choice model specifications: multinomial logit, mixed logit, cross nested logit and cross nested 

logit with mixture parameters. Preliminary work indicated significant differences between travel 

time and risk parameter estimates for each mode: therefore interaction terms between the mean-

variance parameters and mode-based alternative specific constants (ASCs) are included where 

possible. We present results from the four separate model specifications for the AM peak time 

period. We also estimated these same model specifications with an alternative dataset where a 

mean and standard deviation term were calculated for each of the three peak hours as described 

in section 4.2. This process did not improve the results or model fit when compared to the overall 

AM Peak models and are not included further in the paper. Another alternative approach is the 
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specification of a percentile based utility function as described in section 3.2. When modelled, 

this specification did not offer an improved model fit or results. Therefore the results reported in 

Table 1 are related to the standard mean-variance specification where travel time and standard 

deviation are calculated for the entire peak period. The expected utility for individual n is 

therefore determined by the mode used and the OD pair:   

ܧ ௡ܷǡை஽ǡ௠ ൌ ை஽ǡ௠ߤଵߚ  ൅ ߚଶߪை஽ǡ௠ ൅  ௡ (6)ߝ

 

Where ܧ ௡ܷǡை஽ǡ௠ is the expected utility for individual n based on their OD pair (OD) and mode 

choice (m).  ߤை஽ǡ௠ and ߪை஽ǡ௠ represent the mean and standard deviation of the chosen OD pair 

and mode combination. ߚଵ represents the marginal utility of mean travel time. Similarly, ߚଶ 

represents the marginal utility of travel time variation. The error term, ߝ, varies between 

individuals, denoted by subscript n. 

When using a mixed model specification, the parameter estimates were specified to be Normally 

distributed; this was judged appropriate to allow for a proportion (but not all) of the travellers to 

exhibit behaviour that placed a positive marginal utility on travel time and risk. We utilised a 2-

tailed t-test for significance of all parameter estimates.   

5.1 AM Peak Model Estimates 

The AM peak models were run using the non-dominated dataset containing 4,140 trip records. 

Alternative-specific constants (ASCs) were estimated in all cases, except for Metro (London 

Underground) fixed to zero as the reference case. We found that interaction terms between the 
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mode ASCs and mean and standard deviation improved the model results, and they were 

therefore included in the MNL and MMNL models. The inclusion of interaction terms within the 

CNL models caused issues, and they were not therefore retained. We report four key model 

specifications here:  

 Model 1 was a basic MNL specification with three ASCs estimated for each of the modes 

other than London Underground shown in Figure 1. ߚଵ and ߚଶ were estimated for the 

marginal utilities of mean travel time and standard deviation respectively. Each of the 

ASCs was interacted with mean travel time and standard deviation, so as to give mode 

specific estimates of the first and second moments. 

 Model 2 utilised a CNL structure as indicated in Figure 1. The ߙ term defined in equation 

5 was allowed to vary, and each hybrid mode could belong to two nests i.e. LU/DLR 

could belong to both „LU‟ and „DLR‟ nests. In preliminary testing, the inclusion of 

interaction terms caused issues with the ASCs and allocation parameters, and they were 

therefore omitted from the final model. The ASCs and ߚs were specified in the same 

manner as Model 1. 

 Model 3 was a mixed MNL model, specified identically to Model 1 with the exception 

that the ߚ estimate on mean travel time and standard deviation was allowed to vary to 

represent stochastic traveller preferences.  

 Model 4 was a combination of Models 2 and 3; it included the CNL structure and nesting 

parameters of Model 2, and the mixture parameters for the marginal utilities of travel 

time and risk from Model 3. Preliminary estimation of Model 4 showed a similar issue to 

Model 2, in that the model would not converge when the ASCs and interaction terms 
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were specified. In common with Model 2, the interaction terms were therefore 

omitted.With reference to Table 1, the parameter estimates of Model 1 are statistically 

significant with the exception of the risk parameter for the heavy rail mode and the travel 

time parameter for the LU/DLR mode. There are significant differences between the 

modes all else equal, as indicated by the ASCs (defined in relation to London 

Underground only mode). Furthermore, the significance of most of the mean-variance 

interaction terms shows that passengers‟ attitudes towards travel time and risk vary across 

modes. We observe that the marginal utility of travel time is negative as expected across 

all modes. We also observe that the marginal utility of risk is negative on three of the four 

modes modelled. The model fit indicated by the adjusted R2 (of 0.31) is acceptable. 

The CNL specification in Model 2 results in only one parameter estimate for both travel time and 

travel time risk. Both are negative which suggests a rejection of the null hypothesis, however the 

t-statistic of 1.95 on the risk parameter means that strictly speaking the null cannot be rejected at 

the 5% level.  The ASCs are all significant, indicating differences between the modes all else 

equal. The R2 and final log-likelihood measures of model fit are lower than Model 1, indicating a 

poorer fit to the data.   

Model 3 estimates significant parameters similar to those estimated in Model 1, where the risk 

parameter for Rail is found to be insignificantly different from the base case. The mixture 

parameter on the marginal utility of travel time is significantly different from zero, but the 

mixture parameter on travel time risk is not. The marginal utility of travel time is negative for all 
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four modes, and the risk parameter is negative on three of the four modes. The R2 and log-

likelihood measures indicate that the fit of Model 3 is an improvement over Models 1 and 2.  

In Model 4 it is found that both travel time and travel time risk parameters are significant and 

negative. All ASCs are significantly different from zero. In contrast to Model 3, both mixture 

parameters are statistically significant at the 5% confidence level. The fit of this model to the 

data is however the poorest of the four models estimated. 

Table 2 shows the reliability ratios (RRs) estimated. Single RRs were estimated from Models 2 

and 4 as they did not contain interaction terms for each mode. Travel time and travel time risk 

are generally assumed to be viewed as a „bad‟ by travellers. Therefore, negative parameter 

estimates for mean travel time and standard deviation are expected, resulting in a positively 

valued RR. We apply these criteria here and consider negative RRs and RRs calculated using 

positive marginal utilities of travel time and risk to be of less practical use. 

Focussing on Models 1 and 3, valid RR values have been calculated for three of the four modes 

included in this study. These modes are LU, LU/DLR and Rail. The positive parameter estimate 

of risk on the LU/Rail mode meant that a negative (and unsatisfactory) RR was estimated for this 

mode.  We use meta-analysis of Carrion and Levinson (2012) as a comparator for our results. 

They reported average RRs from 17 studies, with a range of 0.1 to 2.51 and a mean average of 

1.09. The RR estimates for the LU mode are 0.54 and 0.35, which are low compared to the 

comparator value of 1.09, but are not unreasonable in relation to some estimates in the literature 

(e.g. Bhat and Sardesai, 2006). Estimates for the LU/DLR RR of 2.29 and 1.14 are reasonable in 

light of the comparison value. The estimates for the mode LU/Rail were negative across all four 
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models, as the parameter estimate of risk for this mode was always estimated as positive. Further 

investigation into this counter-intuitive result reveals that when the LU/Rail mode is available, 

travellers are more likely to use it when the standard deviation is higher on this mode when 

compared to the alternative. This is plotted for all twelve LU/Rail OD pairs, where a general 

positive relationship between the variables is indicative of risk seeking behaviour. It should be 

noted that these same travellers are also strongly averse to travel time. 

Mode specific parameter estimates were not made by Models 2 and 4. This results in only one 

RR value estimated from each as shown in Table 2. Whilst acknowledging that the risk 

parameter in Model 2 is borderline significant (as shown in Table 1), the RR implied by this 

model was 0.40. Although low, this is acceptable in relation to the literature. The RR of 0.71 

implied by Model 4 appears more in line with the literature, and demonstrates a degree of 

sensitivity of the RR to the model specification.   

These model results provide evidence that a dataset such as that provided by a public transport 

smart card system can be used in the estimation of marginal utilities of travel time and travel 

time risk. Model 1 provides acceptable RR estimates for three of the four modes modelled, in the 

range 0.54 to 2.29. Model 3 also estimates three useable RR values between 0.25 and 1.14. 

Models 2 and 4, without interaction terms, estimated single RR values which could be used over 

all modes in an appraisal. 

6.0 Conclusion 

In this paper we have demonstrated a method of estimating a reliability ratio using revealed 

preference data. We initially outlined the benefit of undertaking the research; both in terms of the 
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limitations of the alternative stated preference method (general suitability, high survey cost) and 

the positive aspects of revealed preference (realism, low survey cost). We combined standard 

economic and choice modelling approaches to form the basis for introducing the possibility of 

estimating the reliability ratio from automatically collected data only. We then used one such 

data source, public transport smart card data, to demonstrate the method. We were able to 

estimate a realistic RR across three alternative modes during the AM peak period. The majority 

of these estimates were within an acceptable range when compared to the literature. A range of 

RR estimates in the literature highlights the importance of estimating a RR which is relevant to 

its application, an issue which the methodology outlined in this paper could provide a solution.  

The unexpected result of a positive risk parameter on one of the modes was partially accounted 

for by the data; travellers were seemingly primarily motivated by travel time savings and not by 

travel time risk. In addition, a greater sample size and therefore an increased number of OD pairs 

in the choice dataset may assist with this issue. There is also the possibility that there are omitted 

variables from our model which bias the results. For example, station size or accessibility to 

platforms may impact upon travellers mode choice, but this was not explicitly represented in the 

model. The relatively small sample sizes at the OD level of aggregation meant that it was mainly 

large stations that featured within the dataset, and a station size variable could not be easily 

modelled. Such omitted variables are likely to be the reason for seemingly dominated choice 

options which were nevertheless utilised by travellers.   

The assumption of perfect knowledge on the part of every passenger is also unrealistic. A 

development of the RP method would take into account variability in experience of passengers 
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on a route – this could be performed more accurately where the dataset covered a longer 

temporal duration than one month. In addition, future research might consider datasets that 

contain a cost variable so that monetary values of reliability can be estimated directly, thus 

overcoming the issue of fungibility when utilising a RR alongside separately estimated values of 

time (Orr et al, 2012).  

We would recommend that further empirical research is conducted, where full population smart 

card datasets are collected to overcome issues with sample sizes and to include a wider range of 

modes and geographic locations. Additional data collection to take account of further variables 

should also improve the robustness of RP choice models. 
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Appendix 1 – Observed traveller choices and mean-variance performance data for the AM peak 

OD pairs 

 

   

Mode 1 Mode 2 

  

Mod

e 1 

Mode 

2 

Cou

nt 

Me

an 

Medi

an 

St 

Dev 

Cou

nt 

Me

an 

Medi

an 

St 

Dev 

Arnos Grove_Canary 

Wharf LU 

LU/D

LR 

62.0

0 

55.

48 57.00 

13.1

9 

20.0

0 

55.

55 55.00 7.04 

Woodside Park_Canary 

Wharf LU 

LU/D

LR 

52.0

0 

55.

44 55.00 5.07 

40.0

0 

56.

00 55.50 3.65 

Morden_Canary Wharf LU 

LU/D

LR 

142.

00 

50.

35 49.00 6.04 

22.0

0 

52.

91 52.00 4.16 

East Finchley_Canary 

Wharf LU 

LU/D

LR 

27.0

0 

47.

22 47.00 6.31 

24.0

0 

49.

25 49.00 3.64 

Debden_Canary Wharf LU 

LU/D

LR 

54.0

0 

46.

35 45.00 5.19 

26.0

0 

46.

77 47.50 3.51 

Colliers Wood_Canary 

Wharf LU 

LU/D

LR 

69.0

0 

44.

94 43.00 5.20 

19.0

0 

49.

21 48.00 4.30 

Hornchurch_Canary 

Wharf LU 

LU/D

LR 

85.0

0 

44.

41 43.00 5.57 

23.0

0 

43.

00 42.00 7.05 
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Hampstead_Canary 

Wharf LU 

LU/D

LR 

30.0

0 

44.

17 43.00 4.96 

39.0

0 

44.

92 45.00 3.25 

Kentish Town_Canary 

Wharf LU 

LU/D

LR 

19.0

0 

38.

95 39.00 3.76 

32.0

0 

37.

38 36.50 4.21 

Barkingside_Canary 

Wharf LU 

LU/D

LR 

37.0

0 

38.

70 38.00 3.84 

15.0

0 

41.

67 42.00 1.95 

Buckhurst Hill_Canary 

Wharf LU 

LU/D

LR 

119.

00 

38.

50 37.00 6.85 

15.0

0 

41.

67 41.00 6.24 

Shepherds 

Bush_Canary Wharf LU 

LU/D

LR 

96.0

0 

37.

47 36.00 5.56 

28.0

0 

43.

25 42.00 3.30 

Clapham South_Canary 

Wharf LU 

LU/D

LR 

355.

00 

36.

50 35.00 6.06 

43.0

0 

41.

65 40.00 5.79 

Gants Hill_Canary 

Wharf LU 

LU/D

LR 

143.

00 

33.

21 32.00 5.44 

34.0

0 

37.

21 37.00 4.26 

South 

Woodford_Canary 

Wharf LU 

LU/D

LR 

226.

00 

31.

78 31.00 5.16 

73.0

0 

35.

08 34.00 4.37 

Snaresbrook_Canary 

Wharf LU 

LU/D

LR 

100.

00 

31.

50 30.00 6.21 

23.0

0 

34.

35 33.00 5.84 

Old Street_Canary 

Wharf LU 

LU/D

LR 

71.0

0 

23.

03 22.00 4.50 

50.0

0 

24.

58 24.00 3.60 
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Leyton_Canary Wharf LU 

LU/D

LR 

179.

00 

22.

08 21.00 5.06 

34.0

0 

26.

21 26.00 4.05 

Ealing 

Broadway_Kings Cross LU 

LU/R

ail 

49.0

0 

41.

67 41.00 8.17 

35.0

0 

42.

86 42.00 5.36 

Paddington_Old Street LU 

LU/R

ail 

25.0

0 

30.

68 33.00 

13.9

3 

22.0

0 

35.

45 34.00 5.10 

Walthamstow 

Central_Farringdon LU 

LU/R

ail 

108.

00 

32.

79 32.00 4.53 

15.0

0 

35.

40 36.00 4.42 

Tooting 

Broadway_Victoria LU 

LU/R

ail 

280.

00 

27.

00 26.00 5.35 

16.0

0 

28.

75 28.50 2.91 

Vauxhall_Canary 

Wharf LU 

LU/R

ail 

37.0

0 

31.

14 30.00 5.20 

73.0

0 

28.

67 27.00 5.89 

Seven Sisters_Bethnal 

Green LU 

LU/R

ail 

20.0

0 

37.

15 36.50 2.30 

23.0

0 

26.

74 26.00 5.51 

Harrow On The 

Hill_Marylebone LU 

LU/R

ail 

19.0

0 

33.

89 33.00 4.54 

34.0

0 

21.

21 19.50 5.04 

Brixton_Victoria LU Rail 

546.

00 

13.

73 13.00 2.53 

23.0

0 

12.

13 10.00 4.73 

Richmond_Victoria Rail 

LU/R

ail 

68.0

0 

28.

91 28.00 6.28 

46.0

0 

39.

15 39.00 4.59 

Motspur Park_Victoria Rail LU/R 19.0 33. 32.00 5.97 20.0 38. 37.50 3.35 
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ail 0 37 0 20 

Wimbledon_London 

Bridge Rail 

LU/R

ail 

16.0

0 

38.

63 36.00 8.21 

19.0

0 

36.

47 34.00 8.83 

Earlsfield_London 

Bridge Rail 

LU/R

ail 

18.0

0 

34.

61 35.00 3.22 

22.0

0 

31.

23 30.00 5.75 

Clapham 

Junction_London 

Bridge Rail 

LU/R

ail 

50.0

0 

29.

50 29.50 4.01 

111.

00 

26.

07 24.00 5.34 
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Abbreviations: 

Mean – Sample mean travel time for OD and mode 

St Dev - Sample standard deviation of travel time for OD and mode 

LU – London Underground 

DLR – Docklands Light Rail 

Rail – Overground and/or National Rail 
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Table 1 – Parameter estimates and summary statistics of AM peak choice models 

 

  

Model 1 - 

MNL 

Model 2 - 

CNL 

Model 3 - MNL 

Mixture 

Model 4 - CNL 

Mixed 

Utility 

Parameters 

Estimat

es 

t-

test 

Estimat

es 

t-

test Estimates t-test 

Estimate

s t-test 

ASC_LU 0.00   0.00   0.00   0.00   

ASC_LUDLR 0.85 
2.8

5 
-0.85 

-

2.52 
3.53 3.70 -0.90 -11.40 

ASC_LURAIL -5.05 

-

9.0

8 

-1.53 
-

2.90 
-8.10 -5.01 -1.68 -8.94 

ASC_RAIL -5.13 

-

9.1

1 

-3.34 

-

14.3

1 

-8.48 -5.05 -2.60 -10.94 

B_RISK -0.09 

-

3.2

6 

-0.10 
-

1.95 
-0.31 -2.15 -0.21 -4.47 

B_RISK_LUDLR -0.30 
-

7.1
- - -0.73 -4.28 

- - 
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4 

B_RISK_LURAI

L 
0.44 

5.7

8 - - 
0.38 2.28 

- - 

B_RISK_RAIL 0.04 
0.4

5 - - 
0.14 0.68 

- - 

B_TIME -0.17 

-

9.1

3 

-0.25 
-

2.87 
-0.89 -3.61 -0.29 -4.21 

B_TIME_LUDL

R 
-0.01 

-

1.1

4 - - 

-0.03 -2.26 

- - 

B_TIME_LURAI

L 
0.06 

3.5

0 - - 
0.14 3.17 

- - 

B_TIME_RAIL 0.12 
7.7

8 - - 
0.21 4.46 

- - 

B_RISK_MIXTU

RE 
- - 

- - 
-0.15 -0.45 -0.23 -2.01 

B_TIME_MIXT

URE 
- - 

- - 
1.12 3.48 0.32 2.65 

Model 

Parameters         
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DLR Nest - - 1.00 0.00 - - 1.00 0.00 

- LUDLR     0.76 1.44     0.64 2.85 

LU Nest - - 0.73 2.36 - - 1.00 0.01 

- LUDLR     0.25 0.47     0.36 1.58 

- LURAIL     0.86 1.63     0.95 18.18 

Rail Nest - - 0.22 2.97 - - 8.18 0.52 

- LURAIL     0.15 0.28     0.05 1.03 

Summary 

Statistics         
      

 

  

 

n 4,140  4,140  4,140  4,140  

Adjusted R2 0.312   0.289   0.318   0.281   

Final log-

likelihood 

-

1964.70   

-

2028.26   
-1944.63   -2049.98   
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Table 2 – Reliability ratios estimated by Models 1 to 4 

  Model 1 Model 2 Model 3 Model 4 
 

  
 

  Relia
bility 
Ratio 

 

  
 

  Relia
bility 
Ratio 

 

  
 

 

  
 

Relia
bility 
Ratio 

 

  
 

  Relia
bility 
Ratio 

LU -0.09 -
0.
17 

0.54 -0.10 -
0.
25 

0.40 -0.31 -0.89 0.35 -0.21 -
0.
29 

0.71 

LU/
DLR 

-0.40 -
0.
17 

2.29 -1.04 -0.91 1.14 

LU/
Rail 

0.35 -
0.
11 

-3.11 0.07 -0.75 -0.10 

Rail -0.09 -
0.
05 

1.72 -0.17 -0.68 0.25 
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Figure 1 – Mapping of rail based modes to composite modes used in subsequent modelling 
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Figure 2 – OD plot of the standard deviation of LU/Rail mode against proportion using the 

LU/Rail mode 
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Standard deviation of LU/Rail mode as proportion  of the standard 

deviation on the alternative mode 

D
ow

nl
oa

de
d 

by
 [C

hr
is

to
ph

er
 L

ea
hy

] a
t 0

6:
59

 2
0 

O
ct

ob
er

 2
01

5 


