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Healthcare Cost Regressions: Going Beyond the Mean to
Estimate the Full Distribution
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Summary

Understanding the data generating process behind healthcare costs remains a key empiri-
cal issue. Although much research to date has focused on the prediction of the conditional
mean cost, this can potentially miss important features of the full distribution such as tail
probabilities. We conduct a quasi-Monte Carlo experiment using English NHS inpatient
data to compare 14 approaches to modelling the distribution of healthcare costs: nine of
which are parametric, and have commonly been used to fit healthcare costs, and five others
designed specifically to construct a counterfactual distribution. Our results indicate that
no one method is clearly dominant and that there is a trade-off between bias and precision
of tail probability forecasts. We find that distributional methods demonstrate significant
potential, particularly with larger sample sizes where the variability of predictions is re-
duced. Parametric distributions such as log-normal, generalised gamma and generalised
beta of the second kind are found to estimate tail probabilities with high precision, but
with varying bias depending upon the cost threshold being considered.

JEL classification: C1; Ch
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1 Introduction

Econometric models of healthcare costs have many uses: to estimate key parameters
for populating decision models in cost-effectiveness analyses (Hoch et al., 2002); to adjust
for healthcare need in resource allocation formulae in publically funded healthcare systems
(Dixon et al., 2011); to undertake risk adjustment in insurance systems (Van de Ven and
Ellis, 2000) and to assess the effect on resource use of observable lifestyle characteristics
such as smoking and obesity (Johnson et al., 2003; Cawley and Meyerhoefer, 2012; Mora
et al., 2014). The distribution of healthcare costs poses substantial challenges for econo-
metric modelling. Healthcare costs are non-negative, highly asymmetric and leptokurtic,
and often exhibit a large mass point at zero. The relationships between covariates and
costs are likely to be non-linear. Basu and Manning (2009) provide a useful discussion of
these issues. The relevance and complexity of modelling healthcare costs has led to the
development of a wide range of econometric approaches, and a description of these can be
found in Jones (2011).

Much of the focus in comparisons of regression methods for the analysis of healthcare
cost data has centered on predictions of the conditional mean of the distribution, E(y|X)
(Deb and Burgess, 2003; Veazie et al., 2003; Basu et al., 2004; Buntin and Zaslavsky, 2004;
Gilleskie and Mroz, 2004; Manning et al., 2005; Basu et al., 2006; Hill and Miller, 2010;
Jones, 2011; Jones et al., 2013, 2014). Applied researchers commonly model cost data using
generalised linear models (GLMs) (Blough et al., 1999). This framework offers a relatively
simple way to incorporate non-linearities in the relationship between the conditional mean
and observed covariates. Furthermore, GLMs allow for heteroskedasticity through a choice
of a ‘family’ which specifies the conditional variance as a function of the conditional mean.
GLMs use pseudo-maximum likelihood estimation where the researcher is required only
to specify the form of the mean and the variance. Unlike maximum likelihood estimation,
where consistency requires that the whole likelihood function is correctly specified, pseudo-
maximum likelihood is consistent so long as the mean is correctly specified with the choice
of ‘distribution’ affecting the efficiency of estimates. Whilst the GLM framework has
attractive properties for researchers concerned only with E(y|X), there are important

limitations with this method. GLMs have been found to perform badly with heavy-



tailed data (Manning and Mullahy, 2001), and they implicitly impose restrictions on the
entire distribution. For example, whatever distribution is adopted, the skewness is directly
proportional to the coefficient of variation and the kurtosis is linearly related to the square
of the coefficient of variation (Holly, 2009). Whilst they may be well placed to estimate
E(y|X) and Var(y|X), they cannot produce estimates of F(y|X) or P(y > k|X).

While the mean is an important feature of a distribution, which is essential when
the analysis is concerned with the expected total cost, it is generally not the only aspect
that is of interest to policymakers (Vanness and Mullahy, 2007). Analysis based solely on
the mean misses out potentially important information in other parts of the distribution
(Bitler et al., 2006). As a result, a growing literature in econometrics has developed
techniques to model the entire distribution, F'(y|X), thus ‘going beyond the mean’ (Fortin
et al., 2011). In health economics there is a particular emphasis on identifying individuals
or characteristics of individuals that lead to very large costs and there is a demand for
empirical strategies to “target the high-end parameters of particular interest” including
tail probabilities, P(y > k) (Mullahy, 2009).

Alternatives to GLM have typically been motivated by their ability to better capture
conditional moments of the distribution or regression coefficients — either empirically or
theoretically. Less is known about how well these methods can consistently estimate
the full distribution and features such as tail probabilities. In this paper we conduct a
quasi-Monte Carlo experiment to compare the fit of the full distribution of healthcare
costs using competing approaches proposed in the economics literature. We therefore
consider approaches which offer greater flexibility in terms of their potential applications
by estimating F'(y|X), imposing fewer restrictions on skewness and kurtosis and allowing
for a greater range of estimated effects of a covariate.

We first consider developments in the use of flexible parametric distributions for mod-
elling healthcare costs (Manning et al., 2005; Jones et al., 2014), which have been applied
to healthcare costs principally in order to overcome the challenge posed by heavy-tailed
data. Unlike the GLM framework, these models impose a functional form for the entire
distribution with estimation by maximum likelihood. As a result, an estimate of f(y|X)

is produced, which can then be used to calculate E(y|X), Var(y|X) and P(y > k|X) as



required.! By using flexible distributions, the restrictions on skewness and kurtosis can
be relaxed somewhat (McDonald et al., 2013), which is likely to lead to a better fit of the
full distribution according to measures based on log-likelihood (Jones et al., 2014).

A related development is the use of finite mixture models (FMM), which allow the dis-
tribution to be estimated as a weighted sum of distribution components (Deb and Trivedi,
1997; Deb and Burgess, 2003). These are also estimated using maximum likelihood, but
are often referred to as semi-parametric, since the number of components could, in princi-
ple, be increased to approximate any distribution. In this paper we group FMM with the
fully parametric distributions given the similarities to these approaches, especially since we
use a fixed number of components. For all of these approaches, if the likelihood function is
correctly specified then the parameters of the distribution are consistently estimated and
the resulting estimates of tail probabilities are also consistent.

Other developments regarding the estimation of f(y|X) for healthcare costs are less
parametric, typically involving dividing the outcome variable into discrete intervals and
estimating parameters for each of these intervals. Gilleskie and Mroz (2004) propose using
a conditional density approximation estimator for healthcare costs to calculate E(y|X) and
other moments, with the density function approximated by a set discrete hazard rates. To
implement this, Jones et al. (2013) use an approach based on Han and Hausman (1990),
where F'(y|X) is estimated by creating a categorical variable that denotes the cost interval
into which each observation falls, and running an ordered logit with this as the dependent
variable.? This implementation is slightly different from what is proposed by Gilleskie and
Mroz (2004), but has the advantage of being conceived in order to fit F(y|X) and ties
into a related literature on semi-parametric estimators for conditional distributions (Han
and Hausman, 1990; Foresi and Peracchi, 1995; Chernozhukov et al., 2013). While the
ordered logit specification used in the Han and Hausman (1990) method allows for flexible
estimation of the thresholds in the latent scale, methods such as Foresi and Peracchi (1995)
instead estimate a series of separate logit models.

More recently, Chernozhukov et al. (2013) propose that a continuum of logits should

'Note that population moments may not be defined for all ranges of parameter estimates (Mullahy,
2009).

2We implement this method using an ordered logit for the distribution, which involves maximum like-
lihood estimation and so consistency is achieved, if correctly specified, for tail probabilities corresponding
to boundary values of the cost intervals.



be estimated (one for each unique value of the outcome variable) to allow for an even
greater range of estimates for the effect of a covariate. In an application to Dutch health
expenditures, de Meijer et al. (2013) use the Chernozhukov et al. (2013) method to de-
compose changes in the distribution of health expenditures between two periods. The
authors find that the effect of covariates varies across the distribution of health expendi-
tures, which would have been missed if analysis had focused solely on the mean. They
also find that pharmaceutical costs are growing mainly at the top of the distribution due
to structural effects, whereas growth in hospital care costs is observed more in the mid-
dle of the distribution and can be explained by changes in the observed determinants of
expenditure.

The methods described above seek to estimate the full distribution, by modelling
F(y|X) for different values of y (interval thresholds) and imposing varying degrees of
flexibility on the covariate effects for these. An alternative is to construct F'(y|X) through
the inverse of the distribution function, the quantile function ¢,(X).> We consider two
methods which estimate a range of quantiles separately as functions of the covariates to
allow for flexibility as to the estimated effects of each regressor across the full range of
the distribution. The first was proposed by Machado and Mata (2005) and Melly (2005)
and uses a series of quantile regressions to estimate the full range of quantiles across
the distribution (hereafter MM method). Quantile regressions have been used where the
outcome variable was healthcare costs for analysing the varying effects of race at different
points of the distribution (Cook and Manning, 2009). However we were unable to find
any applications of the MM method to construct a complete estimate of F(y|X) with
healthcare costs as the outcome variable, although the applications in the original papers
were to wages, which share similar distributional characteristics. Quantile functions can
alternatively be estimated using recentred-influence-function (RIF) regression (Firpo et al.,
2009), where the outcome variable is first transformed according to the recentred-influence-

function and then regression used to model the effects of covariates.*

37 € (0,1) denotes the quantile being considered.

“The methods described in Chernozhukov et al. (2013), Machado and Mata (2005) and Melly (2005)
produce “uniformly consistent and asymptotically Gaussian estimators for functionals of the status quo
and counterfactual marginal distributions of the outcome” such as tail probabilities (Chernozhukov et al.,
2013). For our purposes the method described in Foresi and Peracchi (1995) is identical to the method in
Chernozhukov et al. (2013) when the tail probability corresponds to boundary values of the cost intervals
(apart from choice of linear probability model for the latter and logit for the former, discussed later).



This paper provides a systematic comparison of parametric and distributional meth-
ods® for fitting the full distribution of healthcare costs using real data in a quasi-Monte
Carlo design. As such, it is novel in two ways: firstly, it provides a methodology for com-
paring the distributional fit of models which are neither special cases nor estimated using
the same procedure, and secondly it is the first paper to compare competing econometric
approaches for modelling the distribution of healthcare costs. We find that distributional
methods demonstrate significant potential in modelling tail probabilities, particularly with
larger sample sizes where the variability of predictions is reduced. Parametric distribu-
tions such as log-normal, generalised gamma and generalised beta of the second kind are
found to estimate tail probabilities with high precision, but with varying bias depending
upon the cost threshold being considered.

The study design is described in the next section, followed by a detailed description
of the methods compared. We then discuss the results, and place these in the context
of related research, and remark upon some of the limitations of our study and possible

extensions for future work.

2 Methodology and Data

2.1 Overview

Rather than comparing competing approaches for estimating F(y|X), which is the
focus of most empirical work in this area (Mullahy, 2009), we assess performance in terms
of tail probabilities, P(y > k), for varying levels of k to assess the fit of the entire dis-
tribution, F(y|X). We compare a number of different regression methods, each with a
different number of estimated parameters. Since more complex methods may capture id-
iosyncratic characteristics of the data as well as the systematic relationships between the
dependent and explanatory variables, there is a concern that better fit will not necessarily
be replicated when the model is applied to new data (Bilger and Manning, 2014). To
guard against this affecting our results, we use a quasi-Monte Carlo design where models

are fitted to a sample drawn from an ‘estimation’ set and performance is evaluated on a

®This term was used in Fortin et al. (2011).



‘validation’ set. This means that methods are assessed when being applied to new data.’
Each method is used to produce an estimate of the whole distribution F'(y|X), which can
then be used to produce a counterfactual distribution given the covariates in the ‘valida-
tion’ set. The counterfactual distribution could be constructed for certain X values, such
as patients aged over 65 years old, or female patients only. In this paper we construct the
counterfactual distribution for all X values, which forms the basis of the main results. In
addition, we investigate the performance of all approaches for different subsets of possible
X values. This provides information on the data properties that are required for good
predictive performance, since the empirical distribution of y varies widely across these

subsets (see Figure 3). We evaluate performance based on forecasting tail probabilities,

Py > k).

2.2 Data

Our data comes from the English administrative dataset, Hospital Episode Statistics
(HES)®, for the financial year 2007-2008. We have excluded spells which were primarily
mental or maternity healthcare and all spells taking place within private sector hospitals.”
The remaining spells constitute the population of all inpatient episodes in English NHS
hospitals, including outpatient visits and A&E attendances resulting in inpatient care, that
were completed within 2007-2008 (where treatment was not primarily mental or maternity
healthcare). Spells are costed using tariffs from 2008-2009'° by applying the relevant tariff
to the most expensive episode within the spell (where a spell can be thought of as a discrete
admission).!! Our analysis is undertaken at the patient level and so we sum the costs in all

spells for each patient to create the dependent variable, giving us 6,164,114 observations

SThere are substantial precedents for using split-sample methods to evaluate different regression meth-
ods for healthcare costs, for example Duan et al. (1983); Manning et al. (1987).

"The values of k are not used in estimating the distribution F(y|X).

8HES is maintained by the NHS Information Centre, now known as the Health and Social Care Infor-
mation Centre.

9This dataset was compiled as part of a wider project considering the allocation of NHS resources
for secondary care services. Since a lot of mental healthcare is undertaken in the community and with
specialist providers, and hence not recorded in HES, the data is incomplete. In addition, healthcare budgets
for this type of care are constructed using separate formulae. Maternity services are excluded since they
are unlikely to be heavily determined by ‘needs’ (morbidity) characteristics, and accordingly for the setting
of healthcare budgets are determined using alternative mechanisms.

10Reference costs for 2005-2006, which were the basis for the tariffs from 2008-2009, were used when
2008-2009 tariffs were unavailable.

HThis follows standard practice for costing NHS activity.
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Figure 1: Empirical density and cumulative distribution of healthcare costs

in total. The empirical density and cumulative distribution of the outcome variable can

be seen in Figure 1 and descriptive statistics are found in Table 1.12

N 6,164,114
Mean £2,610
Median £1,126
Standard deviation | £5,088
Skewness 13.03
Kurtosis 363.18
Minimum £217
Maximum £604, 701

% observations | % of total costs
> £500 82.96% 97.20%
> £1,000 55.89% 89.80%
> £2,500 27.02% 72.35%
> £5,000 13.83% 54.65%
> £7,500 6.92% 38.67%
> £10,000 4.09% 29.35%

Table 1: Descriptive statistics for hospital costs

In order to tie in with existing literature on comparisons of econometric methods for
healthcare costs, we use a set of morbidity characteristics which we keep constant for
each regression method. In addition, we control for age and sex using an interacted,

cubic specification, which leaves us with a set of regressors similar to a simplified resource

12Costs above £10,000 are excluded in these plots to make illustration clearer.
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Figure 2: Empirical distribution of log-costs for each of the 5 quintiles of the linear index
of covariates

allocation formula where health expenditures are modelled as a function of need (proxied
using detailed socio-demographic and morbidity information) (Dixon et al., 2011). In total
we use 24 morbidity markers, adapted from the ICD10 chapters (WHO, 2007), which are
coded as one if one or more spells occur with any diagnosis within the relevant subset of
ICD10 chapters (during the financial year 2007-2008) and zero otherwise.

To give some illustration of the features of the data conditional upon these covariates
we construct an index using these regressors and divide the data from the ‘estimation’
set into five quantiles (quintiles) according to the value of the index.'® For each quintile
we display the empirical distribution of log-costs'® in Figure 2, and in particular pick out
those that exceed In(.£10,000). It is clear from Figure 2 that the conditional distributions
of log-costs (and thus costs) vary dramatically by quintile of covariates in terms of their
shape, range and number of high cost patients, with 17% of observations with annual costs
greater than £10,000 in the most morbid patients, compared to a population average of
4.09% (and 0.14% in the least morbid quintile). An analysis looking only at the mean of

each quintile would overlook these features of the data.

13This is constructed by regressing cost against the regressors using OLS and taking the predicted cost.
1A log-transformation is used to make the whole distribution easier to illustrate and P(y > k) =
P(In(y) > In(k)) since it is a monotonic transformation.



We also carry out a similar analysis, this time using untransformed costs and dividing
the ‘estimation’ set into 10 quantiles (deciles) of the linear index of covariates, where we
plot the kurtosis of each decile against its skewness. Parametric distributions impose re-
strictions upon possible skewness and kurtosis: one-parameter distributions are restricted
to a single point (e.g. the normal distribution imposes a skewness of 0 and a kurtosis of 3),
two-parameter distributions allow for a locus of points to be estimated, and distributions
with three or more parameters allow for spaces of possible skewness and kurtosis combi-
nations. Figure 3'° shows that the data is non-normal and provides motivation for flexible
methods, since they appear better able to model the higher moments of the conditional
distributions of the outcome variable analysed here.'® We do not represent the other ap-
proaches used in this paper in this Figure, since the skewness and kurtosis space is not
defined for these approaches. This is because they discretise the distribution or estimate

several models, or both, and the effects on implied skewness and kurtosis is unclear.

2.3 Quasi-Monte Carlo design

In order to fully exploit the large dataset at our disposal, before we undertake analysis
we randomly divide the 6,164,114 observations into two equally sized groups: an ‘estima-
tion’ set and a ‘validation’ set (each with 3,082,057 observations). Because researchers
using observational data from social surveys typically have fewer observations in their
datasets than are present in our ‘estimation’ set, we draw samples from within the ‘es-
timation’ set. On these samples we estimate the regressions that will later be evaluated
using the ‘validation’ set data. In total we randomly draw 300 samples with replacement:
100 samples of each size Ny (Ng € 5,000; 10,000; 50,000), where samples with Ny =
5,000 or 10,000 may be thought of as having a similar number of observations as small
to moderately sized datasets (Basu and Manning, 2009). We estimate 14 methods using
the outcome and regressor data from each sample, where each method can be used to

construct a counterfactual distribution of costs F(y|X) (more details on each method are

15Key for abbreviations: GB2 — generalised beta of the second kind, SM — Singh-Maddala, B2 — beta of
the second kind, GG — generalised gamma, LN — log-normal, WEI — Weibull, and a subscript of U or L
stands for upper and lower bounds of the permissible space, respectively.

Y6 A similar analysis can be found in Pentsak (2007). Note also that the lower bound of the Pearson
Type IV distribution, used in Holly and Pentsak (2006), is equal to the upper bound for the beta of the
second kind distribution (also known as Pearson Type VI).

10
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Figure 3: Kurtosis against skewness for each of the 10 deciles of the linear index of
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Note: Taken from Jones et al. (2014) and adapted from McDonald et al. (2013). The dots shown on Figure 8
were generated as follows: the data were divided into ten subsets using the deciles of a simple linear predictor for
healthcare costs using the set of regressors used in this paper. Figure 8 plots the skewness and kurtosis coefficients
of actual healthcare costs for each of these subsets, the skewness and kurtosis coefficient of the full estimation
sub-population (represented by the larger circle with cross) and theoretically possible skewness-kurtosis spaces and

loci for parametric distributions considered in the literature.
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found in the Empirical Models section).

Then using all 3,082,057 observations in the ‘validation’ set, we use the covariates from
the data (but not the outcome variable) to construct F'(y|X) for each method. Depending
upon which method is being considered, we can either directly obtain P(y > k|X), which
we then integrate out over values of X to produce an estimate of P(y > k), or we can
use F(y|X), which we integrate out over values of X, to give F(y), to then estimate
P(y > k). Once the estimate of P(y > k) is produced for the ‘validation’ set using either
method, it can be compared to the observed empirical proportion of costs in the data that
exceeds the threshold k.17 In this paper we choose round values for k throughout the
distribution of the outcome variable (numbers in brackets correspond to % of population
mean): k € £500 (19%); £1,000 (38%); £2,500 (96%); £5,000 (192%); £7,500 (287%);
£10,000 (383%).'® Results displayed look at performance across each replication for given
method with a given sample size. We construct a ratio of predicted P(y > k) to observed
P(y > k) and look at the average of these across all replications. In addition, we analyse
the variability of these ratios, for each method and a given sample size, using the average
absolute deviation from the average computed ratio, as well as their standard deviation
and their range. Finally we analyse the performance of forecasted P(y > k) for subsets
of the data based on X values. This is done by constructing a linear index of covariates
— where the weightings for each covariate is obtained from a linear regression of y against
X in the full ‘estimation’ set — and dividing the ‘validation’ set into deciles based on the

index.

3 Empirical models

3.1 Overview

We compare, in total, the performance of 14 different estimators, which we divide into
two groups: parametric methods and distributional methods. In addition, we compare

results to a naive estimate based purely on the sample, where the researcher is assumed

1t is worth noting that the practice of comparing observed versus empirical probabilities forms the
basis of the Andrews (1988) chi-square test, although this is designed for use with parametric methods
only, and as such is not implemented in this paper, where we are interested in the performance of both
parametric and semi-parametric approaches.

8Table 1 gives the proportion of observations in the population that exceed these thresholds.

12



to forecast the same tail probability for the ‘validation’ set as observed in the ‘estima-
tion’ sample (without considering the observed covariates in either dataset). First we
describe each of the parametric distributions and provide its conditional probability den-
sity function — f(y|X) — the equation to calculate P(y > k|X), as well as the procedure
for integrating over X in order to produce an estimate of P(y > k). For the remaining
five methods, the procedure is more varied and complex, so we provide a detailed account
of the steps required to produce estimates of P(y > k) for all of these distributions. Table
2 provides a key for the abbreviations used for each method throughout the remainder of

the paper.

GB2_.LOG generalised beta of the second kind (log link)
GB2_SQRT generalised beta of the second kind (,/-link)

GG generalised gamma (log link)
GAMMA two-parameter gamma (log link)
LOGNORM | log-normal (log link)

WEIB Weibull (log link)

EXP exponential (log link)

FMM_LOG two-component finite mixture of gamma densities (log link)
FMM_SQRT | two-component finite mixture of gamma densities (\/—link)

HH Han and Hausman

FP Foresi and Peracchi

CH Chernozhukov, Ferndndez-Val and Melly (linear probability model)
MM Machado and Mata — Melly (log-transformed outcome)

RIF recentered-influence-function regression (linear probability model)

Table 2: Key for method labels

3.2 Parametric methods

All nine of the parametric approaches that we consider, including two variants of finite
mixture models'?, are estimated by specifying the full conditional distribution of health-
care costs using between one and five parameters. While it is possible in principle to allow
shape parameters to vary with covariates, preliminary work showed that this produced
unreliable and uninterpretable results, so in all cases we only specify location parameters
as functions of covariates. This means that all models have only one parameter depending
upon covariates, except FMM_LOG and FMM_SQRT which have scale parameters in each
component that are allowed to vary with covariates. All other parameters are estimated as

scalars. In Table 3 we give the conditional probability density function and the conditional

YThese are elsewhere considered to be semi-parametric, since the number of components can vary, but
we fix the number of components as two, meaning that they are essentially parametric.

13



survival function for each model we compare.?°

2ONote that certain distributions’ notation could be simplified, the parameterisation is chosen to max-
imise the reader’s ability to see how distributions are related to one another.

14
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The generalised beta of the second kind?! is a four-parameter distribution that was
applied to modelling healthcare costs by Jones (2011) specifying the location parame-
ter as a linear function of covariates using software developed by Jenkins (2009). Jones
et al. (2014) estimated the distribution with a log link (GB2_LOG) making it more com-
parable with commonly used approaches. With this specification, for example, GG (as
proposed by Manning et al., 2005) becomes a limiting case of GB2_.LOG. Jones et al.
(2013) also compared GB2_SQRT as well as GB2_LOG against a broad range of models,
finding that the GB2_SQRT performed particularly well in terms of accurately predicting
mean individual healthcare costs. GG has been compared more extensively in terms of
predicting mean healthcare costs, having been found to out-perform a GLM log link with
gamma-distribution in the presence of heavy tails using simulated data (Manning et al.,
2005), and a number of models within the GLM framework when a log link is appropriate
using American survey data; the Medical Expenditures Panel Survey (Hill and Miller,
2010). GB2_.LOG, GG and LOGNORM are compared in Jones et al. (2014), with some
indication that GB2_LOG better fits the entire distribution with lower AIC and BIC, al-
though LOGNORM better predicts tail probabilities associated with the majority of high
costs considered. We also consider further special cases of GG (and GB2_LOG) with two
parameters (GAMMA and WEIB) and with one parameter (EXP).??

Finite mixture models have been used in health economics in order to allow for het-
erogeneity both in response to observed covariates and in terms of unobserved latent
classes (Deb and Trivedi, 1997). Heterogeneity is modelled through a number of com-
ponents, denoted C, each of which can take a different specification of covariates (and
shape parameters, where specified), written as f;(y|X), with an associated parameter for
the probability of belonging to each component, 7;. The general form of the probability

density function of finite mixture models is given as:

C
FIX) = Y7861 %) (1)

21 Also known as generalised-F, see Cox (2008).

22The parametric distributions chosen are the set of distributions that are typically used in health
economics. There are many other candidate distributions, for example Walls (2005) uses the skew-normal
distribution to model film returns (which should exhibit empirically similar distributions).
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We use two gamma-distributed components in our comparison.?? In one of the models
used, we allow for log links in both components (FMM_LOG), and in the other we allow
for a square root link in both components (FMM_SQRT). In both, the probability of
class membership is treated as constant for all individuals. Unlike the other parametric
methods, this approach can allow for a multi-modal distribution of costs. In this way, finite
mixture models represent a flexible extension of parametric models (Deb and Burgess,
2003). Using increasing numbers of components, it is theoretically possible to fit any
distribution, although in practice researchers tend to use few components (two or three)
and achieve good approximation to the distribution of interest (Heckman, 2001).

Once we have obtained estimates of location parameters (all 8s for each regressor)
and shape parameters for each distribution, these are stored in memory and then used
to generate estimates of P(y > k|X), where values for X are the observed covariates in
the ‘validation’ set. These estimated conditional tail probabilities will vary across each
possible combination of X, and hence for any given individual 4, and so we take the average
in order to ‘integrate out’ these to provide us with a single estimate of P(y > k) for each
method and replication, which can be compared to the proportion of costs empirically
observed to exceed k. In addition, it is possible to average over observations with certain
X values to provide results for the supplementary analysis by deciles of a linear index.
We then take the average across all replications of P(y > k) for each method in order to

assess bias and analyse the variability across replications as an indicator of precision.

3.3 Distributional methods
3.4 Methods using the cumulative distribution function

Of the remaining five methods that we compare, three involve estimation of the con-
ditional distribution function and two operate through the quantile function. First we
consider the methods which estimate the conditional distribution function F'(y|X). Han
and Hausman (1990) adopts a proportional hazards specification, where the baseline haz-

ard is allowed to vary non-parametrically across a number, denoted Dpp, of intervals

ZPreliminary work showed that models with a greater number of components lead to problems with
convergence in estimation. Empirical studies such as Deb and Trivedi (1997) provide support for the two
components specification for healthcare use.
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of a discretised continuous outcome variable. The logarithm of the integrated baseline
hazard for each of the Dy — 1 intervals (one is arbitrarily omitted for estimation) is
estimated as a constant dp,,. The effects of covariates are estimated using a particular
functional form, which is typically linear. This approach is similar to the semi-parametric
Cox proportional hazard model (Cox, 1972), but differs in that the baseline hazard is not
regarded as a nuisance parameter and is better suited to data with many ties of the out-
come variable (or in the case of a discrete outcome). In order to implement this method,
we construct a categorical variable for each observation, indicating the interval into which
the value of the outcome variable falls. This is then used as the dependent variable in
an ordered logit regression on the covariates. The cut-points are estimates of the baseline
hazard within each interval 6p,,,,. The authors argue that given a large sample size, finer
intervals should improve the efficiency of the estimator, without providing guidance on a
specific number of intervals to be used. As a result we carried out preliminary work to
establish the largest number of intervals that could be used for each sample size whilst
maintaining good convergence performance,?* which resulted in a maximum of 33 intervals
for sample sizes 5,000 and 10,000, and 36 intervals for a sample size of 50,000.

Foresi and Peracchi’s (1995) method is similar to Han and Hausman’s (1990) in that
it divides the data into a set of discrete intervals. Rather than using an ordered logit
specification, Foresi and Peracchi (1995) estimate a series of logit regressions. For each
upper boundary of the Dpp — 1 intervals (the highest value interval is excluded), an
indicator variable is created which is equal to one if the observation’s observed cost is
less than or equal to the upper boundary, and zero otherwise. These are then used as
dependent variables in Dpp — 1 logit regressions each using the full set of regressors. In
their application to excess returns in their paper they use zero, as well as the 10th, 15th,
20th, ... , 80th, 85th and 90th percentiles as boundaries. While we do not have information
on patients with zero costs in our dataset, we base our intervals on their specification of
the dependent variables by using the 5th, 10th, 15th, ... , 85th, 90th and 95th percentiles
(vigiciles).

The third approach that we compare is an extension of Foresi and Peracchi (1995) and

is described in Chernozhukov et al. (2013). The crucial difference between the methods

24This was taken to mean that the model converges at least 95 times out of the 100 samples.
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is that Chernozhukov et al. (2013) argue that a logit regression should be used for each
unique value of the outcome variable. A continuum of indicator variables needs to be
generated and then regression models are used to construct the conditional distribution
functions for each value. Given the computational demand of this approach, and lack
of variation in the indicator variables at low and high costs, de Meijer et al. (2013) use
linear probability models in place of logit regressions. We also adopt this approach in our
comparison, since preliminary work showed that, where it was possible to estimate both
logit and linear probability models, there was little difference between the methods.

All of these methods are similar in that they can produce estimates of P(y > k*|X),
where k* represents one of the boundaries of the intervals generated using either Han and
Hausman (1990) or Foresi and Peracchi (1995), or any cost value observed in the sample
when implementing Chernozhukov et al. (2013). Since models are estimated without
knowing what thresholds (k) the policymaker might be interested in, it is not always the
case that k* = k. Therefore, for all three methods described above, we use a weighted
average of P(y > k*|X) for the nearest two values of k* to k when k* # k. Our weight is

based on a simple linear interpolation:

Py > kIX) = P(y > k;1X) + <,f’“k) (Ply > K 1X) — P(y > k51X)) 2)
b a

where k}; and k; represent the thresholds analysed in estimation closest below and closest
above k, respectively.?’

Since we end up with an estimate for each observation of P(y > k|X), we carry out the
same procedure as with the parametric distributions. This means that we take the average
of P(y > k|X), thus ‘integrating out’ over X and giving us an estimate of P(y > k) to be

compared against the empirical proportion.

25This should work well when there are a large number of k* spaced throughout the distribution. When
interested in high values of k this linear interpolation may be more inappropriate if there are few high values
of k™, given the often large distances between a high cost and the next highest observed cost, which will
lead to bias if the linear interpolation is invalid. This could potentially be overcome by using additional
empirical information to inform the ‘within-cell’ distributions of outcomes. Alternatively, values for k*
can be chosen by using a model-fitting algorithm that maximises goodness-of-fit, as in Gilleskie and Mroz
(2004). Both of these are considered beyond the scope of this paper and sensitivity of results to the linear
interpolation assumption can be observed by comparing results from CH and FP approaches, since CH
uses as many values for k™ as possible given the sample.
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3.5 Methods using the quantile function

Machado and Mata (2005) propose a method for constructing a counterfactual distri-
bution based on a series of quantile regressions using the logged outcome variable. They
suggest that a quantile (7) is chosen at random by drawing from a uniform probability
distribution between zero and one. After running the quantile regression for the drawn
value, the set of estimated coeflicients is used to predict the quantile given the covariate
values observed for a randomly selected observation. The authors repeat this process 4500
times with replacement, generating a full counterfactual distribution. The theoretical mo-
tivation for this procedure is that each predicted quantile based on ¢,(X) represents a
draw from the conditional distribution of healthcare costs (f(y|X)). Therefore drawing a
random observation and forecasting ¢, enough times with random 7 effectively integrates
out X. Running such a large number of quantile regressions is computationally expensive,
and so Melly (2005) suggest running a regression for a fixed number of quantiles spread
over the full range of the distribution, e.g. for each percentile, rather than drawing a quan-
tile at random. We use the Melly (2005) approach for the MM method, running quantile
regressions for each percentile on the ‘estimation’ set, after log-transforming the outcome
variable, and randomly choosing one of these quantiles to forecast for each observation
in the ‘validation’ set.?S For the analysis by deciles of the linear index of covariates a
random quantile is estimated for each of the observations in the decile of interest only.
Once this has been done, the forecasted values represent the counterfactual distribution
of healthcare costs belonging to the ‘validation’ set. Therefore to produce an estimate of
P(y > k) we observe the proportion of the observations in the counterfactual distribution
that exceed k.

Another method to estimate quantiles of the distribution is developed by Firpo et al.
(2009), which employs recentred-influence-function regressions. For a given observed quan-
tile (¢;), a recentred-influence-function (RIF) is generated, which can take one of two val-
ues depending upon whether or not the observation’s value of the outcome variable is less

than or equal to the observed quantile:

26The prediction is exponentiated to achieve the quantile of the distribution of the levels of healthcare
costs.
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Here, g, is the observed sample (7) quantile, 1[y < ¢,] is an indicator variable which

RIF (y;4r) = ¢7 +

takes the value one if the observation’s value of the outcome variable is less than or equal
to the observed quantile and zero otherwise, and f, (¢-) is the estimated kernel density
of the distribution of the outcome variable at the value of the observed quantile. The
recentred-influence-function is then used as the dependent variable in an OLS regression
on the chosen covariates, which effectively constitutes a rescaled linear probability model.?”
These estimated coefficients can then be used to predict the quantile being analysed for
a given observation’s covariates. Following the same thought process as MM, predictions
based on ¢, (X) represent a draw from f(y|X). This means that we can use the estimated
quantile functions to predict a counterfactual distribution in the same way for the RIF

method as we do for the MM method.?®

4 Results

When analysing the performance of the methods, we calculate a ratio of the estimated
P(y > k) to the actual proportion of costs in the ‘validation’ set observed to exceed
the threshold value k (see Table 4). Using a ratio allows for greater comparability when
looking at performance at different thresholds. We will look at the average ratio across
replications (with methods estimated on different samples drawn from the ‘estimation’
set?) as well as the variability of the ratios. The former indicates the bias associated
with each method at a given k, while the latter indicates precision of the method. First
we will look at results across methods for a given sample size and threshold cost value:
N, = 5,000 and k = £10,000.3° Second we consider performance for a given sample size,

with a range of values for the threshold cost value, since different methods may be better

2TFirpo et al. (2009) also describe a RIF approach using a logit regression. In forecasting the quantile
the researcher is required to know the observation’s outcome value, which therefore rules out this approach
as a candidate for our comparison.

28We calculate the recentred-influence-function using the level of costs and so no re-transformation is
required unlike when using MM.

29 Three samples were discarded when N, = 5,000, due to being unable to form the categorical variable
for HH. Only one sample was discarded when Ns = 10,000 and N, = 50, 000.

30We choose these values of N, and k since they are the smallest and most challenging sample size and
the largest and most economically interesting threshold value, respectively.
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at fitting different parts of the distribution of healthcare costs: Ny = 5,000 and (k € £500;
£1,000; £2,500; £5,000; £7,500; £10,000). Then performance at different sample sizes is
evaluated at a given threshold cost value: (Ng € 5,000; 10,000; 50,000) and k& = £10, 000.
And finally we evaluate performance for different deciles of a linear index of covariates,

again with Ny = 5,000 and k = £10, 000.

k % observations in ‘validation’ set > k
£500 82.93%

£1,000 | 55.89%

£2,500 | 27.04%

£5,000 | 13.84%

£7,500 | 6.94%

£10,000 | 4.10%

Table 4: Actual empirical proportion of observations greater than & in the ‘validation’ set

In Figure 4 we present the performance of the 14 methods in predicting the proba-
bility of a cost exceeding £10,000 in the validation set, when samples with Ny = 5,000
observations are used. The points indicate the ratio of estimated to actual probability,
and the capped spikes indicate the range of ratios across all of the replications. A ratio of
one represents a perfect fit, i.e. the method correctly predicted that 4.10% of observations

would exceed £10,000.

From Figure 4, it is clear that performance of the methods varies both in terms of bias
(the point — the average ratio) and precision (the variability of ratios as depicted by the
capped spikes showing the range). There is no clear pattern in terms of parametric versus
distributional methods, since in both groups there are methods where the average ratio
is seen to be near the desired value of one, as well as methods in both groups where the
range of computed ratios does not contain one. In terms of bias, the best method is CH
with an average ratio of almost exactly one. It appears that this is not the most precise
method for k£ = £10,000, however, with a range of ratios: 0.82 — 1.14, that is the fifth
largest of all methods compared (the largest belongs to FMM_SQRT). To more clearly
represent the tradeoff between bias and precision, see Table 5, which gives the rankings of
each method in terms of bias (absolute value of one minus the average ratio), the range of

ratios and also the standard deviation of ratios.
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Figure 4: Performance of methods predicting the probability of a cost exceeding £10,000
at sample size 5,000

From Table 5 it can be seen that three of the parametric distributions — GB2_SQRT,
GG and LOGNORM - demonstrate significant potential in terms of the variability of
their predictions as the three methods with the lowest standard deviations of ratios. MM
performs consistently well across all three measures of performance, especially when vari-
ability is measured by the range of ratios, although the standard deviation is still among
the five lowest of methods compared. From these results it is unclear which method is the
best for forecasting costs greater than £10,000, since there is no outright winner over the
three metrics. Some methods actually perform worse than the naive sample-based method
across all three metrics, namely FMM_LOG and FMM_SQRT (with WEIB and GAMMA
worse on two of three metrics).

Whilst the results outlined previously give some indication of the methods’ respective
abilities to forecast high costs, we are interested in the performance of the regression
methods at all points in the distribution. For this reason we carry out a similar analysis
across a range of cost threshold values. To present these results, once again we plot the
average ratio and the range of ratios across the replications. The results presented in

Figure 5 are undertaken using samples with 5,000 observations.
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Method Bias | Range | Standard deviation
GB2_LOG 6th | 6th 6th

GB2_.SQRT | 13th | 5th 3rd

GG 10th | 4th 2nd

GAMMA 5th | 12th 11th

LOGNORM | 12th | 1st 1st

WEIB 8th | 13th 12th

EXP 11th | 9th 8th

FMM_LOG | 4th | 14th 15th

FMM_SQRT | 9th | 15th 14th

HH 7th | 7th 9th
FP 14th | 3rd 4th
CH 2nd | 10th 10th
MM 3rd | 2nd 5th
RIF 15th | 8th 7th
NAIVE 1st 11th 13th

Table 5: Rankings of methods based on threshold of £10,000 at sample size 5,000
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Figure 5: Performance of methods predicting the probability of costs exceeding various thresholds at sample size 5,000



There is a clear pattern in Figure 5: the higher the cost threshold being considered,
the greater the variability in ratio of estimated to actual probability. Besides this, the way
in which performance varies across different thresholds, including by how much variability
increases with higher thresholds, is different for all methods.

Beginning with the parametric distributions, with log links, there seems to be little
difference in the performance of GB2_LOG and GG, except for that GB2_LOG performs
slightly better at the higher costs considered in terms of bias. Looking at the gamma-type
models, LOGNORM demonstrates potential in terms of producing precise estimates of tail
probabilities if not in terms of bias. Since FMM_LOG represents a two-component version
of GAMMA, comparing the performance of these methods provides some insight into the
returns from using more complex mixture specifications. The pattern of performance at
different thresholds is quite similar for these, and the main difference seems to be that
FMM_LOG produces more variable estimates, especially at low cost thresholds. WEIB
and EXP seem to perform similarly, with high variability forecasts. It is interesting to
note that the square-root link methods differ from their log link counterparts, particularly
in terms of having worse high cost forecasts.

There is considerable variation in performance between the distributional methods.
The methods that use the cumulative distribution function seem to vary predominantly
according to the number of intervals that are used, rather than the specification for pre-
dicting interval membership. CH is practically unbiased for all cost thresholds, illustrating
the strength of this method in forecasting P(y > k) for a range of values of k. As pointed
out earlier, however, the variability of the forecasts across replications is wider than the
majority of other methods considered in this paper. It seems therefore that much of the
bias in HH and FP stems from when £} and k; are not close to the value of £ being
investigated. This is more likely to be the case with FP than with HH, since FP has fewer
intervals (and is highly unlikely using CH — in our application, especially using linear
probit models instead of logit regressions). This is particularly clear with & = £10, 000,
since with HH and FP in this case k; will often be the highest observed cost in the sample.
When this occurs, the linear interpolation that we employ is likely to lead to an overesti-
mation of the forecasted probability (see equation 2 for details). For these three methods

the variability of ratios is roughly similar, but when looking also at the methods using
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Figure 6: Performance of methods predicting the probability of a cost exceeding £10,000
at different sample sizes

the quantile function, it is clear that MM offers an improvement upon the variability. Its
performance, however, in terms of bias varies across values of k. RIF seems to perform
badly both in terms of bias and precision.

To analyse the effect of sample size on result, we vary the number of observations that
are present in the drawn samples used for estimation. To do this, we return to the style
of graph used for Figure 4, but illustrate performances for the three sample sizes analysed
(Ns € 5,000; 10,000; 50,000). The results are therefore only for one value of k, but results

at other values followed a similar pattern.

From Figure 6 we can see that there is a clear effect of sample size on the performance of
the regression methods fitting the whole distribution. Having more observations does not
particularly affect the bias of each method, but, as expected, it reduces the variability of

the estimates. This therefore means that methods such as CH perform relatively better at
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bigger sample sizes since they remain unbiased, but forecast costs with increased precision.

Finally, analysis is conducted by decile of a linear index covariates (where the weight-
ings for each covariate are determined in a single linear regression on the full ‘estimation’
set). There is considerable variation within each of the deciles of this index, as shown
in Figure 23!, though the data properties and the proportion of observations with costs
greater than £10,000 of each decile are different (0.1% observations in the ‘validation’ set
exceed £10,000 for the lowest decile of the index of covariates, whereas the corresponding

figure for the highest decile is 27.1%).

31This Figure was constructed using quintiles for clarity, but illustrates the same principle.
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Decile number

Method 1 2 3 4 5 6 7 8 9 10
Observed 01% [02% [03% [03% [05% [1.0% |1.8% [3.0% [6.8% |[27.1%
GB2.LOG [05% [05% [06% [08% [1.0% |1.3% 2.7% | 54% | 24.5%
GB2_.SQRT |03% |04% |05% |07% |1.0% |13% |1.9% |3.1% | 5.8%

GG 0.3% | 04% | 05% |0.6% |08% [EA% 1.5% |25% |51% | 23.7%

GAMMA 0.0% 0.0% 0.0% 0.0% 0.0% | 0.1% | 04% | 1.6% | 6.4% 33.4%

LOGNORM | 0.0% | 0.1% |01% |02% |03% |04% |08% | 1.7% | 4.9% |[J271%"
WEIB 0.0% | 0.0% |0.0% |00% |01% |0.3% |0.7% |23% |7.9% | 33.6%
EXP 0.0% | 0.0% |0.0% |01% |0.2% |0.6% |1.3% |3.2% |8.8% | 31.9%

FMM_LOG | 0.0% |[0.0% |01% |02% |03% |0.8% |15% [[80% |16:9% | 27.4%
FMM_SQRT | 0.0% | 0.0% | 0.2% 11% | 2.0% |3.9% | 7.7% | 21.1%

HH 04% | 0.5% | 0.6% 1.0% | 1.3% | 1.8% |3.0% | 6.4% | 28.5%
FP 03% |05% |06% |07% |11% |14% |24% |38% | 7.7% | 31.1%
CH 0.9% | 4.3% |

0.5% | 1.1%
1.8% | 3.5%

MM 0.2%

RIF

Table 6: Forecasted probabilities of a cost exceeding £10,000, sample size 5,000, by decile of linear index of covariates



From Table 6, where the worst (best) performing method for each decile is highlighted
in red (green), it is clear that the linear probability model specification of CH is influ-
ences the forecasted tail probabilities at lower deciles of the index of covariates. CH
performs the worst in seven of the deciles despite being the best performing regression
method when analysing over all values of X, and produces negative tail probabilities in
four of the deciles. The performance of other distributional methods was mixed over the
deciles. FMM_LOG and FMM_SQRT consistently rank highly across all deciles. Generally
speaking the models all seem to do well in picking up the variations in the observed tail
probabilities based on the observed covariates. This provides strong support for a regres-
sion model approach (over a naive approach where observable covariates are not used) to
forecasting tail probabilities when the researcher is interested in forecasting not only for
the whole population, but for non-random sub-groups also. While the relative rankings
of methods varied considerably between the decile-based analysis compared to the overall
results in terms of bias, the rankings were more or less preserved when considering the

variability of predictions (or precision).

5 Discussion

The results of this paper are the first to provide a comparative assessment of paramet-
ric and distributional methods designed to estimate a counterfactual distribution. This
makes them different to most studies concerning econometric modelling of healthcare costs
where performance has largely been judged on the basis of the ability to predict condi-
tional means. Jones et al. (2014) compare parametric distributions (but not distributional
methods) against one another for predicting tail probabilities as well as in-sample fit of the
whole distribution based on log-likelihood statistics. The analysis presented here builds
on this work with a range of thresholds for tail probabilities as well as a broader range
of parametric distributions including mixture distributions and models with a square-root
link as well as those with a log link.

The results of this paper have external validity, beyond applications to English in-
patient data, since the empirical distribution of healthcare costs displays the common

characteristics associated with this type of variable (for example, it is heavily right-hand
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skewed and leptokurtic). However, caution should be taken when extrapolating these re-
sults beyond this data and the regression specification adopted, as previous research has
shown that different methods may perform better in certain healthcare cost contexts over
others (Hill and Miller, 2010). In particular, it should be noted that the healthcare costs
variable in this data has a large number of mass points, owing to the data generating pro-
cess. This may indicate a greater suitability for analysis using the distributional methods
— CH, FP and HH (Chernozhukov et al., 2013). Healthcare costs obtained from other
types of healthcare systems, such as the US insurance-style system — e.g. Medical Expen-
diture Panel Survey (MEPS), may be more continuous and therefore may have a different
ranking of preferred methods. Further research into these open empirical questions will
be valuable to advance the understanding of the performance of these approaches in other
contexts.

As mentioned in the methodology section of the paper, some of these methods have
been automated in order to make the quasi-Monte Carlo study design feasible. For in-
stance, we only allow location parameters to vary with covariates and we restrict the
number of mixtures used in FMM_LOG and FMM_SQRT. In practice, analysts are likely
to train their model for a given sample — testing the appropriateness of covariates in the
specification as well as the number of mixtures that are required etc. Since all methods
have been restricted to some degree, e.g. the regressors are the same for all methods, the
results of this paper give some indication of the relative performance of these methods and
illustrate their pitfalls and strengths.

For our application, CH demonstrates potential even for forecasting probabilities of
high costs — such as costs that exceed £10,000. A function of the adopted methodology
is that CH (as well as HH and FP) is unable to extrapolate beyond the observed sample
support, and so in applications where sample size is small, or if the decision-maker is
interested in the probability of extremely high costs beyond the largest observed, this
method would be unable to provide any information on this parameter. This represents a
limitation for this type of method for fitting the distribution of healthcare costs, where the
underlying data generating process is heavy-tailed, and any observed sample is unlikely
to contain some of the potential extreme outcomes. This could be overcome by applying

some smoothing techniques and moving beyond the non-smooth methodology adopted in
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this paper.

There is considerable variation in the best performing parametric distributions accord-
ing to the specific tail probability being considered. When considering costs that exceed
£10,000, FMM_LOG is the least biased parametric method, but is the most imprecise of all
methods considered. For this threshold, FMM_LOG performs consistently well across all
deciles of the index of covariates. At other thresholds, the distribution with the best fit on
average varies: for example WEIB performs best among parametric distributions for costs
that exceed £7,500. This means that the preferred parametric distribution would depend
upon the decision-maker’s loss function. Some distributions are particularly imprecise at
all tails investigated, notably the mixture models - FMM_LOG and FMM _SQRT — as well
as some of the more restrictive distributions - GAMMA, WEIB and EXP. LOGNORM is
the most precise and thus demonstrates its potential for modelling the whole distribution
of costs, and — in addition — is able to forecast the percentage of costs above £10,000 for
the highest decile of the index of covariates with the least bias of all methods considered.
Whilst other papers have focused on the importance of the link function, which seems to
have a large impact on performance when it comes to predicting mean healthcare costs
(see for example Basu et al., 2006), this paper finds that when we are concerned with
predicting tail probabilities the link function is less of an issue than are the distributional
assumptions more generally.3?

The distributional methods show promise for modelling the full distribution of health-
care costs. In particular, CH is practically unbiased in terms of all forecasted tail prob-
abilities considered. The related methods of FP and HH also perform well in terms of
bias, but not when considering costs that exceed £10,000, because £10,000 is likely to fall
in the highest quantile of costs in either method. CH is better placed to model this tail
probability, since each unique value of costs that is encountered in the sample is used as
the basis for an indicator variable for a separate regression, and using a linear probabil-
ity model does not require variation across all covariates for each value of the dependent
variable. The linear probability model, however, is a source of weakness when forecasting

probabilities of high costs for subsets of observations with covariates associated with low

32The data-indicated link function, for this data, was between a log and square root link using the
extended estimating equations approach (Jones et al., 2013).
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costs on average (and can produce negative predictions). At the smallest sample size of
5,000 observations, these three methods exhibit highly imprecise forecasted probabilities,
but this becomes less of an issue at larger sample sizes where the variability is lower for all
14 methods. MM delivers better precision, but its performance on average varies across

the different tail probabilities. RIF appears to be the worst among the distributional

methods for this dataset and specification.?3
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Appendix A

We use the variables shown in Table Al to construct our regression models. They are

based on the ICD10 chapters, which are given in Table A2.

Variable name Variable description

epiA Intestinal infectious diseases, Tuberculosis, Certain zoonotic bacterial diseases, Other bacterial diseases, In-
fections with a predominantly sexual mode of transmission, Other spirochaetal diseases, Other diseases caused
by chlamydiae, Rickettsioses, Viral infections of the central nervous system, Arthropod-borne viral fevers and
viral haemorrhagic fevers

epiB Viral infections characterized by skin and mucous membrane lesions, Viral hepatitis, HIV disease, Other viral
diseases, Mycoses, Protozoal diseases, Helminthiases, Pediculosis, acaiasis and other infestations, Sequelae of
infectious and parasitic diseases, Bacterial, viral and other infectious agents, Other infectious diseases

epiC Malignant neoplasms

epiD In situ neoplasms, Benign neoplasms, Neoplasms of uncertain or unknown behaviour and III
epiE v

epiF \Y

epiG VI

epiH VII and VIII

epil IX

epiJ X

epiK XI

epiLi XII

epiM XIII

epiN XIV

epiOP XV and XVI

epiQ XVII

epiR XVIII

epiS Injuries to the head, Injuries to the neck, Injuries to the thorax, Injuries to the abdomen, lower back, lumbar

spine and pelvis, Injuries to the shoulder and upper arm, Injuries to the elbow and forearm, Injuries to the
wrist and hand, Injuries to the hip and thigh, Injuries to the knee and lower leg, Injuries to the ankle and
foot

epiT Injuries involving multiple body regions, Injuries to unspecified part of trunk, limb or body region, Effects of
foreign body entering through natural orifice, Burns and Corrosions, Frostbite, Poisoning by drugs, medica-
ments and biological substances, Toxic effects of substances chiefly nonmedicinal as to source, Other and
unspecified effects of external causes, Certain early complications of trauma, Comlications of surgical and
medical care, not elsewhere classified, Sequelae of injuries, of poisoning and of other consequences of external

causes
epiU XXII
epiV Transport accidents
epiW Falls, Exposure to inanimate mechanical forces, Exposure to animate mechanical forces, Accidental drowning

and submersion, Other accidental threats to breathing, Exposure to electric current, radiation and extreme
ambient air temperature and pressure

epiX Exposure to smoke, fire and flames, Contact with heat and hot substances, Contact with venomous ani-
mals and plants, Exposure to forces of nature, Accidental poisoning by and exposure to noxious substances,
Overexertion, travel and privation, Accidental exposure to other and unspecified factors, Intentional self-
harm, Assault by drugs, medicaments and biological substances, Assault by corrosive substance, Assault by
pesticides, Assault by gases and vapours, Assault by other specified chemicals and noxious substances, Assault
by unspecified chemical or noxious substance, Assault by hanging, strangulation and suffocation, Assault by
drowning and submersion, Assault by handgun discharge, Assault by rifle, shotgun and larger firearm dis-
charge, Assault by other and unspecified firearm discharge, Assault by explosive material, Assault by smoke,
fire and flames, Assault by steam, hot vapours and hot objects, Assault by sharp object

epiY Assault by blunt object, Assault by pushing from high place, Assault by pushing or placing victim before
moving object, Assault by crashing of motor vehicle, Assault by bodily force, Sexual assault by bodily force,
Neglect and abandonment, Other maltreatment syndromes, Assault by other specified means, Assault by
unspecified means, Event of undetermined intent, Legal intervention and operations of war, Complications
of medical and surgical care, Sequelae of external causes of morbidity and mortality, Supplementary factors
related to causes of morbidity and mortality classified else

epiZ XXI

Table A1l: Classification of morbidity characteristics

ICD10 codes beginning with U were dropped because there were no observations in the
6,164,114 used. Only a small number (3,170) were found of those beginning with P and

so these were combined with those beginning with O - owing to the clinical similarities.

37



Chapter | Blocks Title

I A00-B99 | Certain infectious and parasitic diseases

II C00-D48 | Neoplasms

111 D50-D89 | Diseases of the blood and blood-forming organs and certain disorders
involving the immune mechanism

v E00-E90 | Endocrine, nutritional and metabolic diseases

A% F00-F99 | Mental and behavioural disorders

VI G00-G99 | Diseases of the nervous system

VII HO00-H59 | Diseases of the eye and adnexa

VIII H60-H95 | Diseases of the ear and mastoid process

IX 100-199 Diseases of the circulatory system

X J00-J99 Diseases of the respiratory system

XI K00-K93 | Diseases of the digestive system

XII L00-L99 Diseases of the skin and subcutaneous tissue

XIIT MO00-M99 | Diseases of the musculoskeletal system and connective tissue

X1V NO0O-N99 | Diseases of the genitourinary system

XV 000-099 | Pregnancy, childbirth and the puerperium

XVI P00-P96 Certain conditions originating in the perinatal period

XVII Q00-Q99 | Congenital malformations, deformations and chromosomal abnormali-
ties

XVIII R00-R99 | Symptoms, signs and abnormal clinical and laboratory findings, not
elsewhere classified

XIX S00-T98 Injury, poisoning and certain other consequences of external causes

XX V01-Y98 | External causes of morbidity and mortality

XXI 700-7Z99 Factors influencing health status and contact with health services

XXII U00-U99 | Codes for special purposes

Table A2: ICD10 chapter codes
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Appendix B

Online only, not for print publication.

Cost threshold (£k)

Method 500 | 1000 | 2500 | 5000 | 7500 | 10000
GB2_LOG 1.045 | 1.076 | 0.927 | 0.759 | 0.859 | 0.950
GB2_SQRT | 1.038 | 1.095 | 0.969 | 0.753 | 0.789 | 0.809
GG 1.044 | 1.082 | 0.935 | 0.745 | 0.821 | 0.887
GAMMA 1.004 | 1.138 | 1.089 | 0.868 | 0.950 | 1.022
LOGNORM | 1.032 | 1.103 | 0.970 | 0.754 | 0.814 | 0.866
WEIB 0.955 | 1.091 | 1.101 | 0.911 | 1.011 | 1.097
EXP 0.899 | 1.018 | 1.061 | 0.913 | 1.028 | 1.125
FMM_LOG 1.030 | 1.058 | 0.995 | 0.844 | 0.927 | 0.984
FMM_SQRT | 1.024 | 1.074 | 1.013 | 0.842 | 0.892 | 0.898

HH 1.006 | 1.018 | 1.003 | 0.977 | 1.021 | 1.078
FP 1.000 | 0.999 | 1.007 | 0.990 | 1.084 | 1.209
CH 0.999 | 0.999 | 0.999 | 0.999 | 0.998 | 0.999
MM 1.043 | 1.011 | 0.929 | 0.806 | 0.920 | 1.013
RIF 0.836 | 0.751 | 0.800 | 0.860 | 1.078 | 1.223
NAIVE 1.000 | 0.998 | 0.998 | 0.998 | 0.997 | 1.000

Table B1: Mean ratios of predicted to actual survival probabilities, sample size 5,000
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Cost threshold (£k)

Method 500 1000 | 2500 | 5000 | 7500 | 10000
GB2_LOG 0.016 | 0.048 | 0.081 | 0.104 | 0.161 | 0.232
GB2_SQRT 0.017 | 0.040 | 0.080 | 0.113 | 0.174 | 0.229
GG 0.017 | 0.044 | 0.080 | 0.108 | 0.156 | 0.206
GAMMA 0.025 | 0.039 | 0.135 | 0.153 | 0.245 | 0.342
LOGNORM | 0.019 | 0.034 | 0.089 | 0.109 | 0.140 | 0.169
WEIB 0.037 | 0.042 | 0.113 | 0.156 | 0.255 | 0.371
EXP 0.028 | 0.060 | 0.121 | 0.137 | 0.204 | 0.295
FMM_LOG | 0.072 | 0.073 | 0.163 | 0.198 | 0.279 | 0.407
FMM_SQRT | 0.065 | 0.110 | 0.191 | 0.242 | 0.318 | 0.431

HH 0.032 | 0.051 | 0.094 | 0.144 | 0.231 | 0.254
FpP 0.026 | 0.054 | 0.082 | 0.163 | 0.219 | 0.195
CH 0.030 | 0.050 | 0.103 | 0.140 | 0.220 | 0.312
MM 0.041 | 0.073 | 0.100 | 0.119 | 0.144 | 0.184
RIF 0.060 | 0.061 | 0.095 | 0.131 | 0.184 | 0.275
NAIVE 0.033 | 0.060 | 0.135 | 0.171 | 0.245 | 0.317

Table B2: Range of ratios of predicted to actual survival probabilities, sample size 5,000

Cost threshold (£k)

Method 500 1000 | 2500 | 5000 | 7500 | 10000
GB2_LOG 0.003 | 0.008 | 0.015 | 0.021 | 0.034 | 0.047
GB2_SQRT 0.003 | 0.007 | 0.015 | 0.021 | 0.031 | 0.041
GG 0.003 | 0.008 | 0.015 | 0.021 | 0.031 | 0.040
GAMMA 0.005 | 0.008 | 0.027 | 0.034 | 0.047 | 0.061
LOGNORM | 0.003 | 0.007 | 0.016 | 0.021 | 0.030 | 0.039
WEIB 0.009 | 0.009 | 0.022 | 0.034 | 0.049 | 0.065
EXP 0.006 | 0.012 | 0.024 | 0.029 | 0.040 | 0.053
FMM_LOG | 0.016 | 0.016 | 0.029 | 0.042 | 0.071 | 0.095
FMM_SQRT | 0.018 | 0.020 | 0.035 | 0.036 | 0.056 | 0.089

HH 0.007 | 0.010 | 0.021 | 0.029 | 0.049 | 0.057
FP 0.005 | 0.011 | 0.017 | 0.035 | 0.045 | 0.045
CH 0.006 | 0.011 | 0.019 | 0.030 | 0.042 | 0.060
MM 0.006 | 0.012 | 0.019 | 0.024 | 0.034 | 0.045
RIF 0.012 | 0.014 | 0.022 | 0.028 | 0.040 | 0.053
NAIVE 0.006 | 0.012 | 0.025 | 0.035 | 0.050 | 0.068

Table B3: Standard deviation of ratios of predicted to actual survival probabilities, sample
size 5,000
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Cost threshold (£k)

Method 500 1000 | 2500 | 5000 | 7500 | 10000
GB2_LOG 1.045 | 1.077 | 0.928 | 0.759 | 0.859 | 0.950
GB2_SQRT 1.037 | 1.095 | 0.970 | 0.753 | 0.789 | 0.808
GG 1.043 | 1.083 | 0.936 | 0.745 | 0.820 | 0.885
GAMMA 1.004 | 1.138 | 1.092 | 0.871 | 0.954 | 1.026
LOGNORM | 1.032 | 1.103 | 0.971 | 0.755 | 0.814 | 0.867
WEIB 0.953 | 1.088 | 1.102 | 0.914 | 1.015 | 1.101
EXP 0.900 | 1.019 | 1.063 | 0.916 | 1.031 | 1.128
FMM_LOG 1.034 | 1.055 | 0.988 | 0.845 | 0.931 | 0.989
FMM_SQRT | 1.028 | 1.076 | 1.002 | 0.835 | 0.890 | 0.901

HH 1.006 | 1.018 | 1.001 | 0.978 | 1.020 | 1.083
FP 0.999 | 0.999 | 1.004 | 0.988 | 1.083 | 1.209
CH 0.999 | 0.999 | 0.999 | 1.000 | 0.997 | 1.002
MM 1.043 | 1.010 | 0.929 | 0.804 | 0.915 | 1.007
RIF 0.836 | 0.747 | 0.800 | 0.862 | 1.080 | 1.222
NAIVE 1.000 | 0.999 | 0.999 | 1.000 | 0.997 | 1.003

Table B4: Mean ratios of predicted to actual survival probabilities, sample size 10,000

Cost threshold (£k)

Method 500 1000 | 2500 | 5000 | 7500 | 10000
GB2_LOG 0.012 | 0.031 | 0.059 | 0.075 | 0.111 | 0.144
GB2_SQRT 0.010 | 0.028 | 0.058 | 0.070 | 0.093 | 0.126

GG 0.011 | 0.026 | 0.055 | 0.081 | 0.122 | 0.159
GAMMA 0.019 | 0.027 | 0.077 | 0.105 | 0.166 | 0.224
LOGNORM | 0.011 | 0.029 | 0.062 | 0.075 | 0.107 | 0.135
WEIB 0.036 | 0.039 | 0.068 | 0.101 | 0.166 | 0.233
EXP 0.016 | 0.034 | 0.070 | 0.088 | 0.140 | 0.195

FMM_LOG | 0.054 | 0.050 | 0.126 | 0.149 | 0.265 | 0.363
FMM_SQRT | 0.073 | 0.096 | 0.112 | 0.135 | 0.213 | 0.321

HH 0.022 | 0.038 | 0.073 | 0.102 | 0.161 | 0.191
FP 0.020 | 0.036 | 0.060 | 0.125 | 0.145 | 0.144
CH 0.020 | 0.035 | 0.064 | 0.094 | 0.138 | 0.238
MM 0.019 | 0.052 | 0.076 | 0.074 | 0.100 | 0.136
RIF 0.043 | 0.062 | 0.104 | 0.103 | 0.158 | 0.225
NAIVE 0.026 | 0.043 | 0.096 | 0.127 | 0.173 | 0.263

Table B5: Range of ratios of predicted to actual survival probabilities, sample size 10,000
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Cost threshold (£k)

Method 500 1000 | 2500 | 5000 | 7500 | 10000
GB2_LOG 0.002 | 0.006 | 0.011 | 0.014 | 0.022 | 0.030
GB2_SQRT 0.002 | 0.005 | 0.011 | 0.015 | 0.021 | 0.027
GG 0.002 | 0.005 | 0.010 | 0.014 | 0.022 | 0.029
GAMMA 0.004 | 0.006 | 0.017 | 0.023 | 0.033 | 0.044
LOGNORM | 0.002 | 0.005 | 0.011 | 0.014 | 0.021 | 0.027
WEIB 0.006 | 0.007 | 0.014 | 0.023 | 0.035 | 0.047
EXP 0.004 | 0.008 | 0.016 | 0.020 | 0.028 | 0.038
FMM_LOG | 0.013 | 0.010 | 0.021 | 0.027 | 0.050 | 0.069
FMM_SQRT | 0.013 | 0.015 | 0.020 | 0.024 | 0.042 | 0.064

HH 0.005 | 0.007 | 0.015 | 0.022 | 0.035 | 0.042
FP 0.004 | 0.008 | 0.011 | 0.026 | 0.032 | 0.028
CH 0.004 | 0.008 | 0.012 | 0.021 | 0.032 | 0.046
MM 0.004 | 0.009 | 0.015 | 0.015 | 0.021 | 0.030
RIF 0.009 | 0.012 | 0.017 | 0.020 | 0.032 | 0.043
NAIVE 0.004 | 0.009 | 0.017 | 0.027 | 0.039 | 0.053

Table B6: Standard deviation of ratios of predicted to actual survival probabilities, sample
size 10,000

Cost threshold (£k)

Method 500 1000 | 2500 | 5000 | 7500 | 10000
GB2_ LOG 1.045 | 1.078 | 0.928 | 0.758 | 0.857 | 0.945
GB2_SQRT 1.037 | 1.096 | 0.970 | 0.753 | 0.787 | 0.806

GG 1.043 | 1.084 | 0.937 | 0.744 | 0.817 | 0.879
GAMMA 1.004 | 1.139 | 1.092 | 0.871 | 0.954 | 1.025
LOGNORM | 1.032 | 1.103 | 0.971 | 0.754 | 0.813 | 0.864
WEIB 0.951 | 1.086 | 1.101 | 0.914 | 1.015 | 1.102
EXP 0.900 | 1.020 | 1.063 | 0.915 | 1.031 | 1.128

FMM_LOG 1.038 | 1.053 | 0.981 | 0.845 | 0.935 | 0.997
FMM_SQRT | 1.033 | 1.079 | 0.996 | 0.828 | 0.885 | 0.899

HH 1.004 | 1.017 | 0.998 | 0.984 | 1.011 | 1.072
FP 0.999 | 1.001 | 1.004 | 0.985 | 1.076 | 1.211
CH 1.000 | 1.000 | 0.999 | 0.999 | 0.994 | 0.995
MM 1.043 | 1.010 | 0.929 | 0.803 | 0.908 | 0.997
RIF 0.834 | 0.745 | 0.803 | 0.861 | 1.072 | 1.204
NAIVE 1.001 | 1.000 | 0.999 | 0.999 | 0.993 | 0.995

Table B7: Mean ratios of predicted to actual survival probabilities, sample size 50,000
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Cost threshold (£k)

Method 500 1000 | 2500 | 5000 | 7500 | 10000
GB2_LOG 0.006 | 0.013 | 0.029 | 0.034 | 0.055 | 0.075
GB2_SQRT 0.006 | 0.011 | 0.030 | 0.037 | 0.052 | 0.064
GG 0.006 | 0.012 | 0.028 | 0.037 | 0.053 | 0.070
GAMMA 0.010 | 0.012 | 0.045 | 0.064 | 0.087 | 0.107
LOGNORM | 0.005 | 0.011 | 0.028 | 0.038 | 0.053 | 0.065
WEIB 0.015 | 0.017 | 0.034 | 0.064 | 0.093 | 0.119
EXP 0.009 | 0.018 | 0.041 | 0.055 | 0.075 | 0.093
FMM_LOG 0.024 | 0.019 | 0.082 | 0.099 | 0.114 | 0.150
FMM_SQRT | 0.008 | 0.016 | 0.034 | 0.059 | 0.101 | 0.136

HH 0.011 | 0.022 | 0.028 | 0.040 | 0.060 | 0.074
FpP 0.011 | 0.021 | 0.026 | 0.053 | 0.075 | 0.063
CH 0.010 | 0.016 | 0.026 | 0.041 | 0.079 | 0.088
MM 0.011 | 0.024 | 0.038 | 0.036 | 0.044 | 0.069
RIF 0.019 | 0.025 | 0.038 | 0.049 | 0.080 | 0.112
NAIVE 0.009 | 0.020 | 0.039 | 0.060 | 0.086 | 0.093

Table B8: Range of ratios of predicted to actual survival probabilities, sample size 50,000

Cost threshold (£k)

Method 500 1000 | 2500 | 5000 | 7500 | 10000
GB2_LOG 0.001 | 0.003 | 0.005 | 0.007 | 0.010 | 0.014
GB2_SQRT 0.001 | 0.003 | 0.006 | 0.007 | 0.010 | 0.013
GG 0.001 | 0.003 | 0.005 | 0.007 | 0.010 | 0.013
GAMMA 0.002 | 0.002 | 0.008 | 0.010 | 0.015 | 0.020
LOGNORM | 0.001 | 0.002 | 0.005 | 0.007 | 0.010 | 0.013
WEIB 0.003 | 0.003 | 0.006 | 0.011 | 0.016 | 0.022
EXP 0.002 | 0.003 | 0.007 | 0.009 | 0.013 | 0.017
FMM_LOG | 0.002 | 0.004 | 0.009 | 0.013 | 0.019 | 0.025
FMM_SQRT | 0.001 | 0.003 | 0.007 | 0.010 | 0.016 | 0.022

HH 0.002 | 0.004 | 0.006 | 0.008 | 0.012 | 0.017
FP 0.002 | 0.005 | 0.005 | 0.012 | 0.014 | 0.011
CH 0.002 | 0.004 | 0.006 | 0.009 | 0.015 | 0.019
MM 0.002 | 0.004 | 0.007 | 0.007 | 0.010 | 0.013
RIF 0.004 | 0.005 | 0.009 | 0.010 | 0.017 | 0.022
NAIVE 0.002 | 0.004 | 0.008 | 0.011 | 0.017 | 0.019

Table B9: Standard deviation of ratios of predicted to actual survival probabilities, sample
size 50,000
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Decile number

Method 1 2 3 4 5 6 7 8 9 10

GB2 LOG 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.003 | 0.012
GB2_SQRT | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.003 | 0.008
GG 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.003 | 0.011
GAMMA 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.003 | 0.007 | 0.017
LOGNORM | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.003 | 0.012
WEIB 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.005 | 0.009 | 0.017
EXP 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.003 | 0.006 | 0.014
FMM_LOG | 0.000 | 0.001 | 0.001 | 0.002 | 0.002 | 0.005 | 0.006 | 0.009 | 0.009 | 0.015
FMM_SQRT | 0.000 | 0.001 | 0.003 | 0.003 | 0.003 | 0.006 | 0.008 | 0.010 | 0.010 | 0.014
HH 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.004 | 0.014
FP 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.003 | 0.005 | 0.014
CH 0.004 | 0.003 | 0.003 | 0.003 | 0.002 | 0.002 | 0.003 | 0.004 | 0.006 | 0.014
MM 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.003 | 0.005 | 0.012
RIF 0.002 | 0.002 | 0.002 | 0.002 | 0.003 | 0.002 | 0.003 | 0.005 | 0.006 | 0.007

Table B10: Standard deviation of predicted probabilities of a cost exceeding £10,000,
sample size 5,000, by decile of linear index of covariates
Decile number

Method 1 2 3 4 5 6 7 8 9 10

GB2 LOG 0.004 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.011 | 0.016 | 0.051
GB2_SQRT | 0.003 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.012 | 0.018 | 0.045
GG 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.007 | 0.008 | 0.010 | 0.015 | 0.045
GAMMA 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.005 | 0.013 | 0.036 | 0.096
LOGNORM | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.002 | 0.004 | 0.007 | 0.016 | 0.046
WEIB 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.005 | 0.010 | 0.019 | 0.043 | 0.096
EXP 0.000 | 0.000 | 0.001 | 0.001 | 0.002 | 0.004 | 0.007 | 0.014 | 0.030 | 0.081
FMM_LOG | 0.002 | 0.003 | 0.008 | 0.011 | 0.008 | 0.019 | 0.022 | 0.032 | 0.051 | 0.082
FMM _SQRT | 0.002 | 0.004 | 0.016 | 0.020 | 0.011 | 0.025 | 0.029 | 0.040 | 0.053 | 0.061
HH 0.002 | 0.002 | 0.003 | 0.003 | 0.005 | 0.005 | 0.008 | 0.011 | 0.022 | 0.068
FP 0.003 | 0.004 | 0.005 | 0.006 | 0.006 | 0.008 | 0.010 | 0.014 | 0.020 | 0.062
CH 0.021 | 0.013 | 0.022 | 0.016 | 0.012 | 0.013 | 0.018 | 0.022 | 0.030 | 0.063
MM 0.001 | 0.002 | 0.002 | 0.004 | 0.004 | 0.006 | 0.009 | 0.016 | 0.024 | 0.061
RIF 0.009 | 0.010 | 0.010 | 0.011 | 0.012 | 0.010 | 0.017 | 0.021 | 0.030 | 0.032

Table B11: Standard deviation of predicted probabilities of a cost exceeding £10,000,
sample size 5,000, by decile of linear index of covariates
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