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Abstract

This paper investigates the relationship between smoking and ill-health, with a focus on the
onset of cancer. A discrete latent factor model for smoking and health outcomes, allowing for
these to be commonly affected by unobserved factors, is jointly estimated, using the British
Health and Lifestyle Survey (HALS) dataset. Post-estimation predictions suggest the reduction
in time-to-cancer to be 5.7 years for those with an exposure of 30 pack-years, compared to
never-smokers. Estimation of posterior probabilities for class membership shows that individuals
in certain classes exhibit similar observables but highly divergent health outcomes, suggesting
that unobserved factors influence outcomes. The use of a joint model changes the results
substantially. The results show that failure to account for unobserved heterogeneity leads to
differences in survival times between those with different smoking exposures to be overestimated
by more than 50% (males, with 30 pack-years of exposure).
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1 Introduction

This paper develops a joint model of smoking, mortality and cancer, with a particular focus
on the timing of the onset of cancer. The model is estimated with data from the British
Health and Lifestyle Survey (HALS) from 1984-85, linked to the most recent follow-ups on
mortality and cancer registration from July 2009. It features joint estimation of the decisions of
individuals to start smoking, their age of starting, the pack-years of smoking exposure, time-to-
cancer registration and age of death to analyse the relationship between individual lifestyles,
socioeconomic circumstances and cancer. The model accounts for the possibility of common
observable and unobservable factors that influence both smoking and all of the health outcomes.

The model brings together two approaches to modelling health and lifestyles, that have
been developed using the HALS dataset. In the first approach, (Contoyannis and Jones| (2004)
specified an economic model of health production and lifestyle choices from which they derived an
empirical specification that is estimated as a recursive model for a set of binary measures of health
outcomes and health-related behaviours, including smoking. Common unobservable factors are
assumed to have a multivariate normal distribution and the model is estimated as a multivariate
probit. There is evidence from this model of a statistically significant correlation between
unobservables that influence smoking and that influence the health outcomes, indicating the
presence of selection bias. Estimates from the multivariate model show that being a non-smoker
in 1984, along with sleeping well and taking exercise, are associated with a higher probability
of reporting excellent or good self-assessed health in 1991, with non-smoking increasing the
probability by 0.15. |Contoyannis and Jones| (2004) also find that a large proportion of the impact
of lifestyles on socioeconomic inequality in health is masked if the unobserved heterogeneity is
ignored. Balia and Jones| (2008) extended the multivariate model by adding a binary indicator for
deaths that had occurred by the time of the May 2003 longitudinal follow-up of the HALS deaths
data. They find that being a non-smoker in 1984 is associated with a 0.22 lower probability
of dying by 2003. Their decomposition analysis of a Gini coefficient for mortality suggests
that lifestyle factors contribute strongly to inequality in mortality, reducing the direct role of
socioeconomic status. They also reinforce the finding that ignoring unobserved heterogeneity
leads to an under-estimate of the contribution of lifestyle to socioeconomic inequality, showing

that this applies to mortality as well as self-assessed health.



A second strand of models, initiated in [Forster and Jones| (2001)), focuses on richer measures
of the timing of decisions about smoking and derives estimates of hazard functions for starting
and quitting smoking. Balia and Jones| (2011)) developed this approach by estimating a recursive
system of equations for starting smoking, the age of starting, the number of years smoked and
age of death, with data from the April 2005 deaths follow-up. The equations in their model
are tied together and estimated as a system by allowing for common unobservables that are
modelled as discrete latent factors, following the approaches of Heckman and Singer| (1984) and
Mroz (1999). In line with the epidemiological literature such as |Doll et al.| (2004), |Balia and
Jones| (2011) find a difference of about 12 years in median survival between current and never
smokers and about 3.6 years between current and former smokers.

The link between smoking and ill-health in general, and many specific diseases, is well-
established. It is estimated that men born in the first 30 years of the 20th Century who took
up smoking cigarettes, and did not stop, suffered a reduction of 10 years in their lifespan, with
smoking cessation at the age of 40 associated with an increased life expectancy of 9 years over
those who continued to smoke (Doll et al., 2004)). The risks of smoking have been explored since
the link between smoking and lung cancer was made by Doll and Hill| (1954). Smoking has been
associated with a greater propensity to develop various cancers and other diseases (for example,
deaths from lung cancer are estimated to occur with between 10.8 and 24.9 times the frequency
in smokers as in non-smokers (Doll, [1998])) and is estimated to be responsible for approximately
30% of all cancer deaths in developed countries, as well as causing deaths from respiratory,
circulatory and other problems (Department of Health and Human Services, |1989; |Jones et al.|
2007; [Peto et al., 2006; |Vineis et al., |2004). [Vallejo-Torres and Morris| (2010]) estimate that 2.3%
of all socioeconomic inequality in health between 1998 and 2006 was due to smoking. Successive
reports by the US Surgeon General (Department of Health and Human Services, 1989, 2004,
2010) have examined the evidence linking smoking with mortality and diseases including cancer,
making stronger causal links over time, with 30 diseases listed in the 2004 report for which
evidence was ‘sufficient to infer a causal relationship’. |Doll (1998]) provides a useful summary of
the history of evidence regarding the (causal) links between smoking and ill-health.

One of the most influential studies into the effects of smoking on health is the British

Doctors Study (see Doll and Hill| (1954) and subsequent papers), a prospective cohort study with



longitudinal follow-ups. Although vital in establishing the link between smoking and ill-health,
studies based on this dataset necessarily focused solely on one small stratum of society — 34,494
male doctors working in Britain — and, as such, cannot inform research into the existence or
otherwise of social gradients in health. Questions regarding smoking status sought to establish
whether the doctor had ever smoked (one cigarette per day, for one year or more), whether he
was a current smoker, the age at which he began to smoke and the amount that he was currently
smoking!. Further, existing literature does not seek to account for individuals’ unobservable
characteristics which jointly affect behaviours and outcomes. While this is not an area where
evidence from randomised trials is available, other, much smaller-scale, studies have since been
carried out using innovative methods to confirm the causal relationship, such as following pairs
of smoking and non-smoking twins to track health outcomes in order to control for possible
genetic factors that predispose individuals to both smoking and disease (Kaprio and Koskenvuol,
1989).

The existence of socio-economic gradients in health is well-established (Marmot|, 2007; |Thomas
et al., |2010; |Wilkinson, 1996; Wilkinson and Pickett, [2010), with the socio-economic gradient in
smoking explaining part of this (Schaap and Kunst, [2009). Such inequality in health outcomes
is potentially of greatest concern where equality of opportunity in society is considered to be the
appropriate goal. One useful model of this allows for some variation in health to be due to effort
and some to be due to circumstances (Roemer], [1998; |[Rosa Dias and Jones, 2007; |[Rosa Dias|,
2009). While strong evidence exists regarding a social gradient in mortality risk overall, and
regarding illnesses such as cardiovascular disease, the existence of a social gradient in cancer is
more controversial. Deaton| (2002) argues that the Whitehall Studies (Marmot et al., 1978 1991)
show no social gradient in any cancer apart from lung cancer, the gradient in which is entirely
explained by differential smoking behaviours between the occupational grades. Despite finding
social gradients in health overall and in many diseases, |Wilkinson and Pickett (2010) find no
social gradient in breast cancer, and ‘only small class differences’ in prostate cancer. Further,
much attention has focused on incidence of cancer rather than time-to-cancer (for instance,
Singh et al.| (2003); Banks et al.| (2006)); Dalstra et al.| (2005)).

This paper takes the analysis of HALS a step further. By adding new cancer registration

In contrast to, for instance, the HALS dataset, which asked for an average number of cigarettes smoked over
the period during which the individual (had) smoked.



data and deaths data, from July 2009, we extend the model to add a duration model for the
onset of cancer. Previous papers using HALS have used information regarding only whether
an individual was a current smoker, former smoker or never-smoker, failing to account for
either duration of smoking or intensity of smoking. In order to capture a measure of lifetime
exposure to smoking, we calculate and include a measure of pack-years. This is constructed from
variables included in the original dataset (which separately recorded an individual’s self-reported
smoking duration and intensity of smoking) in order to augment data on the number of years
smoked with a measure of the quantity of cigarettes consumed. Results derived using the
joint modelling approach employed in this paper exhibit differences in the implied predicted
survival function for cancer, suggesting a role for unobserved heterogeneity in explaining cancer
outcomes and mortality. This is further illustrated by the estimation of posterior probabilities for
each individual’s class membership: large differences in health outcomes are exhibited between
individuals in different latent classes, despite similar observable characteristics. Post-estimation
prediction of median survival times shows the reduction in time to cancer to be 5.7 (5.8) years
for men (women) who were smokers at the time of HALS, with a total observed exposure of 30

pack-years, compared to never-smokers at the time of HALS.

2 The Health and Lifestyle Survey Data

This paper uses baseline data from the British Health and Lifestyle Survey 1 (HALS1), conducted
between 1984 and 1985, which sought to examine behaviourial (such as smoking and alcohol
consumption) and socioeconomic factors for a large cross-section of a representative sample of
individuals aged 18 or over in Great Britain (Cox et al., |1993). Data collection consisted of
a one-hour face-to-face interview to collect information on individuals’ lifestyles, a visit from
a nurse to collect information on physiological and cognitive function, and a self-completed
questionnaire to gather information regarding psychiatric health and personality (Cox et al.,
1993; |Jones et al., [2007). Details of individuals’ diagnoses of cancer and information relating to
individuals’ deaths (such as date and cause of death) were subsequently provided to the HALS
team. Such data, including details from death certificates and cancer diagnoses are available
to the beginning of July 2009 — the Seventh Deaths Revision and Fourth Cancer Revision

(University of Cambridge Clinical School, 2009). 9,003 individuals were initially entered into the



study of whom, as of this revision, the status of 97.8% has been flagged on the NHS’s Central
Register at the Office for National Statistics: 2,883 individuals have been flagged as dead and
1,468 coded for cancer.

Individuals were excluded where they had been diagnosed with cancer prior to the initial
HALS1 survey?. While the exclusion of those living with cancer in 1985 does mean that the
sample is necessarily less representative of the population, this avoids the problem of the inclusion
of such individuals with a negative time-to-cancer.

It must be borne in mind that there were delays involved in the registration of deaths and
developing cancer, and that these delays were not uniform in all cases. The latest HALS follow-up
manual suggests that cancer registrations tend to be slower to reach the Central Register than
death notifications (although such registrations are probably complete up to the end of 2007),
and that missing cases will exist due to patchy returns from regional registries (University of
Cambridge Clinical School, [2009). A spike is recorded in more recent years (with 14 such cases
in 2008 and 2009, more than in the previous 13 years combined) for individuals who died with
cancer present without ever being registered as developing such a disease (Table Appendix),

3. Furthermore, the age at the

suggesting that some late returns may exist for this revision
time of an individual’s first cancer registration is not the same as the age of the individual first
developing cancer. Diagnosis of cancer does not immediately take place upon the individual
developing the disease, nor does it occur at the same stage of development of the cancer across
different individuals, or over time. In particular, the stage at diagnosis has varied over time,
with \US National Cancer Institute| (2006) showing declines in the rates of late-stage diagnoses of
cases of cancers of the cervix, colon, prostate and rectum between 1980 and 2006.

A further challenge posed by unobservable hetereogeneity is the potential for the introduction
of bias in that individuals can only appear in the HALS dataset if they were alive at the time
of HALS1. While observables may suggest a balanced sample, this dataset may reflect the

omission of certain groups who differ in important unobservable characteristics. For instance,

individuals who would have been of age to be included in HALS1 and who had smoked are

2The data were also cleaned to remove inconsistencies, and missing values for those variables included in the
model.

3These data are obtained using the Stata icd9 command to search for individuals whose death certificate shows
any cancer (codes in the range 140 to 239.99). Comparison of the previous HALS follow-up (to April 2005) with
data held in this latest follow-up shows, however, that no cancer registrations were late — i.e. were included in the
July 2009 follow-up with a date of April 2005 or earlier — but that 7 death registrations were late by this measure.



more likely to have died before HALS1 took place. While this sample may be a representative
sample of smokers in the UK at the time of HALSI, if individuals select into smoking based on
their life expectancy, HALS1 may exclude frailer or less frail individuals (depending on the joint
distribution of underlying frailty and the effect of smoking on the health of such individuals).
Only individuals aged 45 or over at the time of HALS1 are included in the analysis, to reduce the
confounding of mortality and cancer registrations with genetic factors unrelated to the covariates
used in the health outcome models, and to ensure that as full a spell of smoking as possible is
observed for individuals in the sample.

There is censoring of the smoking variables at the time of the survey, with no follow-up made
on smoking habits. For instance, an individual who is recorded as having quit at the time of
HALS1 may take up smoking again, or an individual recorded as a current smoker at the time of
HALSI may quit soon after. The value for years spent smoking only considers the known years
of smoking at the time of HALS1. Further, and similarly, socioeconomic variables in the model
such as social class (based on occupation) and marital status, and lifestyle variables such as
alcohol consumption and time spent exercising are effectively assumed to be time-invariant: there
is no way to observe how these variables changed over time. The reliability of the HALS1 data
further is enhanced by accurate recall and reporting of individuals’ smoking habits: evidence on
this suggests that, while smoking status is generally recalled accurately, the number of cigarettes
smoked per day over time is frequently recalled with some error, with relatively poorer recall for
ex-smokers (Krall et al., [1989; Bernaards et al., [2001), potentially introducing bias at the point

of data collection.

3 Methods

3.1 The model

A system of five equations, including a binary outcome of whether an individual ever smoked, as
well as duration models for starting smoking, quitting smoking, mortality, and cancer registration,
is estimated. This extends the approach of Balia and Jones (2011), who estimate similar models,
but without cancer registration, for an earlier HALS follow-up. The model adopts a discrete
latent factor approach for dealing with the effect of unobserved heterogeneity in systems of

equations Heckman and Singer| (1984) and |Mroz| (1999).



This section outlines each of the components of the overall loglikelihood function for the
model, which includes contributions for the probability of ever-smoking and the hazards for
age of starting smoking, pack-years exposure to smoking, age of onset of cancer and age at
death. These components explicitly model the issues of left-truncation and right-censoring of
the duration data that were discussed in Section [2| These contributions are bound together by

the latent factor specification of unobserved heterogeneity in the joint likelihood function.



! !
! !
a - | |
] ¢ [ i >
i i Never-
b o ! + ! } smokers
I v I
[ [
¢ Al i
I —x& 7x | i >
[ [ Quitters
i —hA /_\i o+ | }
! T
! !
e— [ A I | ----- >
: | 1984-5
— | — 4 @ + | smokers
i i
[ [
8 | o i g L R
! i Never-
h| ! - N : smokers
i ! !
— —h Ay “ Fo---- >
! ! Quitters
. | |
1 A At - + i
! !
i i
L ° A i = F----- >
i | 1984-5
1 ° N — L smokers
— ° A = - |
[ [
m | o oo _ - ! Aged under 45
: | at HALST
n ! i } Died prior
B S
: | to HALS1
i i
! !
| |
HALS1 Seventh deaths
1984-5 revision, July
2009
Key
. Birth a Cancer registration
A Starting smoking + Death
A Quitting smoking

Figure 1: Types of observed outcomes

Figure [1] illustrates the basic possibilities for observed durations for different types of
individual: all of these cases are incorporated into the specification of the likelihood function for
our joint model. The horizontal axis represents time, with events to the left occurring before

events to the right, and examples of subject types appear on the vertical axis. Date of birth



and dates of starting and quitting smoking were collected in the initial HALS1 survey, and date
of death in subsequent follow-ups. Using this information, a solid line denotes known years
alive (survival time in the lifespan model), with a solid circle denoting birth, a hollow square
denoting cancer registration (failure in the cancer registration model), and a cross denoting
death (failure in the lifespan model). The dashed line beyond July 2009 represents the fact that
these observations are right-censored at this point as such individuals’ status as alive or dead (or
registered as having been diagnosed with cancer, or not) is not known beyond this. Individuals
of type m are not included in the sample due to being aged under 45 at the time of HALSI.
Individuals of type n also do not appear in HALS (and are not used in this analysis), due to

their having died prior to HALS1 and being left-truncated.

3.1.1 Starting smoking

Individuals become ‘at risk’ in this model at the time of their birth, as indicated by the solid
circle. Given that, in this sample, individuals are (due to exclusions) aged at least 45, with
a mean age of 60, they are likely to have started to smoke if they were ever to smoke. The
dependent variable in the duration model is years observed without starting smoking. A solid
triangle on the diagram indicates that an individual is recorded to have started to smoke before
HALSI (a ‘failure’ in this model). Such individuals (¢ to f and ¢ to [ in Figure [1)) score 1 on the

ever_smoker variable. This is modeled by a probit model with loglikelihood contribution?:

I =In(®(w)) (1)

where:

w1 = B1z1+ 1 (2)

and (7 is an individual-specific intercept term, reflecting unobserved individual characteristics
that influence the probability of ever smoking, and ® refers to the normal cumulative density
function.

Those who started smoking are also used in the starting duration model (in which all are

4This split population approach to modelling the initiation of smoking follows [Douglas and Hariharan (11994));
Forster and Jones| (2001)) and Balia and Jones| (2011)).
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failures) and all contribute to the loglikelihood with a logged loglogistic density function®:

= _ 1/ i _ i _ _ o 1/4y
Iy In (1 + (waty) 1) + (’Yl 1> Inwy + (% 1> Int; —Invy In (1 + waty ) (3)
where:

wy = exp (— Bz + @2]) (4)

and (o is again individual-specific intercept term, reflecting unobserved individual character-
istics that influence the age at starting to smoke.
t1 is time to censoring or failure, and ~; is the loglogistic duration dependence parameter.
Individuals who are not observed to start smoking before HALS1 (a, b, g and h in Figure|l|) score

0 on the ever_smoker variable, enter the probit model and provide loglikelihood contribution:

I =In(®(—wi)) (5)

These individuals are not used in the duration model for starting smoking.

3.1.2 Exposure to smoking

Only those who scored 1 on the ever_smoker variable (those who had ever smoked, i.e. types ¢
to f and i to [ in Figure 1)) contribute to the likelihood function for this part of the model. The
dependent variable here is not time spent smoking (smoke_years), but total exposure to smoking
before quitting (for individuals with a complete spell) or before HALS1 (for individuals whose
observations are censored). In Figure [I| smoke_years is denoted by the length of the solid line
between the solid triangle, denoting starting smoking, and either the hollow triangle, denoting
quitting, or the point at which HALS1 was conducted. The dependent variable, pack_years, is
smoke_years multiplied by individuals’ self-reported average number of packs of (20) cigarettes
smoked per day (n_cigs/20), giving a more complete picture of total exposure to smoking.
Individuals who are observed to quit before HALS1 (¢, d, ¢ and j in Figure [1)) have a “complete
spell” for this function and individuals who are observed as current smokers (e, f, k and [ in

Figure [1)) at HALS1 are censored observations. The overall contribution of each individual to

®Hazard functions for each duration model are selected according to statistical criteria to find the best-fitting
parametric distribution. See Table Appendix.
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the loglikelihood is the logged Gompertz likelihood function,

Is = q- (In (ws) + 7atz) — % (exp (7at2) — 1) (6)

where ¢ denotes an individual has quit smoking, ¢3 is time to failure or censoring,

w3 = exp (— [Bsz3 + ¢3]) (7)
and s is the Gompertz shape parameter.

3.1.3 Age of death

The mortality model includes all individuals in our sample of those aged 45 and above. Such
individuals are entered into the model conditional on survival at the time of HALS1%: individuals
are only ‘at risk’ from this time onwards as they cannot be observed to have died before the
point at which the survey is completed. The dependent variable here is time observed alive
(lifespan). In Figure |1} lifespan is denoted by the distance between the solid circle, denoting
birth, and either a cross, denoting death, or the point at which the July 2009 follow-up was
conducted. Individuals whose death has been reported at the time of the HALS follow-up in July
2009 (b, d, f, h, j and 1) have a complete spell for this outcome and individuals whose death
has not been reported (a, ¢, €, g, i and k) are censored at this time. The overall contribution to

the loglikelihood is the logged left-truncated Weibull likelihood function:
ls=d-(In(ws) +In(a) + (o —1)In(t3)) — wa (1§ + t5) (8)
where tg is the age of the individual at HALS1, d denotes whether an individual has died:
wy = exp (B4z4 + ¢4) (9)

and « is the Weibull shape parameter.

5 Additional data that are not included in the original HALS1 dataset provided by the Economic and Social
Data Service, regarding the date of the initial interview was provided by Brian Cox and merged into the HALS1
dataset, matching by serial number. This allows greater accuracy in the measurement of smoke_years.
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3.1.4 Cancer registration

All individuals are included in this model. While the intuition behind this is not as straightforward
as that in the mortality model (individuals can be, and indeed are, observed to have developed
cancer before the survey began), individuals who had developed cancer before HALS1 may be
more likely to have died before the survey took place. Those 147 individuals with pre-existing
cancer registrations are dropped from the sample: the inclusion of such individuals would lead to
some negative survival times in the left-truncated survival model. Individuals who are registered
as dead at the time of the most recent follow-up are checked for any mention of a cancer on their
death certificate. Such individuals are treated as failures in this model, with a failure time of
their age at death. The dependent variable here is healthy time observed (cancer_age): i.e. time
before an individual is observed to have developed cancer’. Individuals who have been registered
as developing cancer at the time of the July 2009 HALS follow-up (g to [ in Figure , or who
have a cancer included on their death certificate, have a complete spell observed for this model
(the distance from birth to cancer registration, denoted by a hollow square) while individuals who
have never been registered as developing cancer at this time (a to f) are censored. The overall

contribution to the loglikelihood is the logged left-truncated loglogistic likelihood function:

Is =1In (1 + (w5t0)1/”4> —

1 1 1 1 (10)
In <1 + (wsty) I 4 [’74 Inws + <74 - 1> Inty —Invy —In (1 —I—wﬁi“)])

where

ws = exp (— [Bsxs + ps)) (11)

to is again the age of the individual at HALSI, t5 is time to censoring or failure, and =4 is the
loglogistic duration dependence parameter.
The cancer registration model is clearly more problematic than the mortality model in terms

of interpretation. While cancer registration, if it occurs, must clearly precede death, death

"Any use of terms such as “time-to-cancer” or “age”, with regard to this model, requires some clarification.
What is being modelled in the cancer model is time to cancer in the absence of death. Individuals who die
before developing cancer are treated as non-informative censored observations within the model, and contribute
to the modelled likelihood as such. This means that, for instance, a predicted probability of survival at age 75 is
calculated under the assumption that people could be observed to be at risk of cancer forever, and would not die
and thus be censored in this way. Any use of the term “age” must be seen in this light.

13



cannot precede cancer registration®. Consequently, individuals can be censored in this model for
two reasons: that they are not registered as having developed cancer at the time of the follow-up
(a, ¢ and e), or that they have died without developing cancer (b, d and f). These two types
of censorings clearly differ. While survival (i.e., being alive and not registered as having been
diagnosed with cancer) at HALS] is plausibly non-informative, death (particularly from certain
causes) is not: for instance, cardiovascular disease and some cancers (such as lung cancer) share
risk factors. Death from such diseases is therefore likely to be correlated with cancer registration;
those dying from, for instance, CVD are likely to, absent such a death, have developed cancer.
The example of CVD is particularly pertinent given that smoking causes CVD with a relatively
short lag and lung cancer with a much longer lag (Cutler et al., 2006). As such, deaths are
not accurately characterised as non-informative censorings but, where the cause of death is
etiologically similar to cancers or the individual has common unobservables associated with an
elevation in both the hazard of death and the hazard of cancer diagnosis(Esteve et al., 1994)),
death is likely to be correlated with the potential for cancer registration absent death. Although
the model employed does allow for four latent classes of individuals to exist, each of which could
potentially have the same or opposing directional effects on lifespan and time-to-cancer, a formal
specification of the joint distributions of survival times for cancers and deaths is required to
entirely eliminate any biases. Such information is, however, inherently unavailable (Esteve et al.|

1994; [Honoré and Lleras-Muneyl, 2006).

3.2 Joint likelihood

While some of the potential effect of unobservable heterogeneity is muted by including only
those aged over 45 at the time of HALS1 (the most frail individuals being those likely to die
earliest (Gutierrez, 2002))), as discussed in |Contoyannis and Jones| (2004)), Balia and Jones| (2008,
2011)) and |Adda and Lechene (2013) unobservable heterogeneity poses potential problems for any
analysis. This unobserved heterogeneity may reflect genetic variation, differences in initial health
during childhood, as well as susceptibility to addiction and self-control, and differences in time
and risk preferences. If unobservable heterogeneity exists and is ignored, estimated coefficients

may be biased. With particular regard to the effect of smoking, this includes factors which affect

8 Although, as discussed, individuals can have a cancer registration age equal to their age at death, where
cancer appears on the death certificate without the disease ever being previously diagnosed.
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life expectancy, and also affect, for instance, the decision to smoke. This could include factors
such as underlying congenital and hereditary conditions leaving individuals prone to early death.

Individuals with lower prior life expectancies may select disproportionately into smoking
due to the relatively low opportunity cost of smoking in terms of life years foregone, an effect
which is potentially greater if the individual also considers morbidity as a future health outcome
(Contoyannis and Jones, 2004; [Balia and Jones, 2011)%. Alternatively, frailer individuals may
disproportionately fail to select into smoking as the marginal value of additional good health is
greater for such people. |Adda and Lechene (2013) present evidence suggesting that the former
is true, even when factors such as social class are controlled for, more accurately characterises
smoking behaviour: individuals with lower life expectancies disproportionately take up smoking,
smoke more cigarettes and are less likely to quit than those with longer life expectancies.
Contoyannis and Jones| (2004), however, present evidence suggesting that frailer individuals
select out of smoking and are more likely to quit sooner. In either case, the consequence is that
smoking behaviours are potentially endogenous in health outcomes. Further, the probability of
starting smoking may be endogenous in both the time at which an individual starts and the
total pack-years exposure of the individual, and the age at starting smoking may be endogenous
in the total exposure to smoking.

The joint model is estimated by using a latent factor specification for the joint distribution
of the random intercepts in each equation, ¢ ... s, where p; = Tju+pjv (5 =1,...,5), v and
v are discrete factors, and 7 and p are the factor loadings.

Mixing probabilities, 7, representing the proportions of the sample composing each of the k
latent classes, are recovered via estimation of the joint probabilities of observing combinations of
the Bernoulli random variables u and v, taking a value 1 with probability 6; and 6y respectively.

These probabilities are given a logistic form:

er

0p = T4 o (p=1,2) (12)

and are recovered by estimation of the parameters, (,. The structure of the latent factor model

9While this model does allow individuals to make decisions based on any information regarding their future
probability of developing cancer, individuals are likely to have less private information regarding this than regarding
future mortality. Hereditary or congenital factors affecting an individual’s chance of developing cancer are less
common: only a small proportion (5-10%) of cancers are attributable to genetic defects, with the remainder
attributable to environment and lifestyle (Anand et al., [2008]).
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is summarised in Table [Il

Mass point, k& v v ¢;

1 0 0 O

2 1 0

3 0 1 Pj

4 1 1 vij=1j+p;

Table 1: Mass points: 4 points of support

When all equations for all latent classes are combined, the final total likelihood function is:

T (expli k) (explay) (expls ) (explay) (expls i) (13)

b.
Il
I

Further assumptions are required to identify the distribution of latent factors. Mass points
at 0 and 1 (i.e. where u =v =1 and 7+ p = v) are fixed by Balia and Jones| (2011)), and the
same approach is employed here. While, as argued by [Balia and Jones| (2011)), the model should
in principle be identified by the non-linear form of each equation with no need for exclusion
restrictions, in order to aid identification, the full model is estimated using three procedures.
Each equation in the model is first estimated individually, using the preferred baseline hazard
function according to AIC and BIC scores'’. The parameter estimates derived from this stage
are used as starting values (along with postulated approximate latent class parameters) in a
second model, which estimates the full model with various parameter restrictions''. All of
these estimates, including the estimated latent factor parameters, are used as starting values to
estimate the final model, without parameter restrictions. Various different parameter restrictions
in the initial stages are employed, and the final results are found to be robust to changes to
these.

Where possible the generalised gamma, Gompertz, Weibull, lognormal and loglogistic dis-
tributions are compared for each duration equation. Gompertz and Weibull distributions are
commonly used in duration analysis of human mortality (see, for example, Wilson| (1994) who

finds, using 1988 US Census data, that Weibull, Gompertz and loglogistic distributions provided

10See the Appendix.

1The effect of each latent class parameter is, for example, initially postulated to be the in the same direction
for cancer and lifespan. Where Byariable,; denotes the coefficient estimate for the given variable in equation j, the
restrictions invoked are: Bsci2,5 = Bsci2,4; pa = —4ps; 74 = —475; 71 = —1.1p;. Different combinations of these
restrictions are invoked, with no effect on the final parameters derived.
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good fits in simple models of human mortality). The generalised gamma distribution is compared,
where possible, with the other forms of the baseline hazard, but given its heavy computational
demands, particularly within the context of a jointly-modelled system of five equations such as
this, estimation is not always possible’?. In addition to these commonly-used distributions, the
expopower distribution (Saha and Hilton, |1997)), a flexible parametric distribution, nesting the
exponential, Weibull and lognormal distributions is also compared. While a bathtub-shaped
hazard is less plausible given the exclusion of all individuals aged under 45 at the time of
HALSI, some cancers (such as testicular cancer) are more likely to occur earlier in life and, as
such, it is useful to include such a distribution which allows for this while also remaining less

computationally-intensive than, for example, the generalised gamma distribution.

3.3 Key covariates and interpretation of parameters

Summary statistics for the variables used in the analysis are presented in Table

Table 2: Variable definitions and summary statistics (all 3784 observations)

label description mean std dev min
max

Male; mother smoked 0.02 0.14 0 1
Female; mother smoked 0.02 0.15 0 1
Male; father smoked 0.28 0.45 0 1
Female; father smoked, 0.32 047 0 1
Male; both parents smoked 0.09 0.28 0 1
Female; both parents smoked 0.11 0.31 0 1
Other smokers in house 0.33 0.47 0 1
Lives in a rural area 0.21 0.41 0 1
Lives in a surburban area 0.46 0.50 0 1

Started smoking after 1954 (first

Doll et al BMJ article) but 0.04 020 0 1

before 1971
Started smoking after 1971 (first

smoking public health campaign) 0 0.05 0 1

Number of years non-smoking 34.08 2248 4 96
Years of smoking exposure 21.77 1998 0 72
Average number of cigarettes 10.41 1246 0 97

smoked per day

Registered as having been

diagnosed with cancer, or cancer | 0.27 0.44 0 1

on death certificate

Age of cancer registration or age

of censoring (July 2009)
Continued on next page

77.22 9.01 47.20 115.23

121n fact, the generalized gamma is not preferred by AIC or BIC scores for any of the single-equation models for
which it provides parameter estimates. While it nests many of the other distributions, the expopower distribution
(which also nests the Weibull and log distribution) often outperforms it even on its loglikelihood score.
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In the health outcomes equations, pack_years (and its squared term) is interacted with being
a current smoker, and separately with being an ex-smoker. These variables are separated to
mark those individuals for whom smoke_years is complete rather than right-censored at the time
of HALS1: smoking status is unknown beyond the point at which such data was collected!®. The
separation of current smokers and quitters is useful due to the fact that risk of death for certain
cancers, such as lung cancer, has been found to be elevated for ever-smokers over never-smokers
for a period of up to 20 years, but declines with time after quitting smoking (Reid et al., 2006)).

While the identification of the parameter estimates of coefficients of the various pack-years

13Examination of the HALS2 dataset, a follow-up on the original sample seven years later in which similar data
was again collected, reveals that — of those in the sample here whose smoking status could be ascertained — 27%
of those who were current regular smokers at HALS1 had quit smoking by the time of this survey in 1991-1992. It
must be noted that, however, over 45% of regular smokers at HALS1 were missing for this variable at HALS2.



variables seems clear, interpretation of these coefficients is not as straightforward. Due to the
censoring of the smoking duration variables at the time of HALSI, this does not represent the
elevated hazard (or acceleration of time to failure) of exposure to one additional pack-year of
smoking. This coefficient represents the association of an increase of one pack-year of observed
smoking on the increased hazard of failure, conditional on smoking status in 1985. While this
model could be estimated using smoking status at HALS1 (i.e. whether an individual is a current
smoker, quitter, or has never smoked) as the only smoking-related regressors, this would seem to
discard useful information: that some individuals smoke for longer and with greater intensity
than others.

Balia and Jones| (2011) model the influence of parental smoking but do not allow for different
relationships for male and female offspring. Here, parental smoking is interacted with gender
to investigate any differential result of effects of different parents smoking on different genders
of children. |Brown and van der Pol (2014) suggest that the presence of such relationships,
especially for mothers and daughters, for whom the intergenerational transfer of risk and time
preference explains a significant part of the correlation between smoking outcomes.

In addition to variables regarding smoking status'®, another key lifestyle variable, a dummy
variable for heavy consumption of alcohol, is included in the model. This is defined as those
drinking over 20 units per week!® — the NHS describe alcohol consumption over this level as
‘high’ 16, While moderate consumption of alcohol may be protective against some diseases (Doll
et al., (1994 2005), evidence suggests up to 40% higher all-cause mortality for heavy consumers
(Doll et al., [1994)!7.

As well as alcohol consumption, a variable for individuals’ exercising habits is included in
the lifespan model. This exercise dummy is derived from a composite measure of hours of
exercise spent in the last two weeks, tothrsex, created from HALS data for total time spent
involved in: keep fit exercises, cycling, golf, jogging, swimming, table tennis, basketball, football,
rugby, badminton, tennis, squash, fives, rackets, cricket, windsurfing, sailing, self-defence, boxing,

wrestling, backpacking, hiking and dancing. Individuals who exercised for more than 5 hours in

1 With smoking take-up defined as ever having smoked on average at least one cigarette per day, for a period of
at least six months (Cox et al.| |1987).

15This is measured in HALS using data from the previous week only. The mean consumption of alcohol by
those in the sample recorded as drinking over 20 units in the last week is 38 units.

16See, for instance, http://www.nhs.uk/Conditions/Alcohol-misuse/Pages/Treatment .aspx

YDoll et al.| (1994) group the heaviest consumers of alcohol as those drinking 43 or more units per week.
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the previous two weeks are classed as having exercised for the recommended period of time in
this model'®. Further, consumption of red meat (redmeat3, defined as consuming red meat at
least three times per week), linked to colorectal cancer, the second most common form of the

disease ((Cutler, 2008), is included in the cancer registration model.

4 Results

4.1 Main results

Five equations are estimated jointly: a probit model for smoking initiation, and duration models
for time before smoking initiation (for ever-smokers only), pack-years of exposure to smoking
(for ever-smokers only), time until death (conditional on being alive and cancer free at HALS1)
and time until developing cancer (conditional on being alive and cancer free at HALS1).

The Appendix presents AIC and BIC scores for the single equations estimates of the full range
of survival distributions that could be estimated for each outcome: age of starting, exposure
before quitting, age of cancer registration, and age of death. Those models with the best AIC
and BIC scores are italicised. Accordingly, a loglogistic baseline hazard function is chosen for
starting smoking, Gompertz for smoking exposure, Weibull for mortality, and loglogistic for
cancer registration.

Full results for the parameter estimates from the five equation discrete latent factor model
(DLFM) are provided in Tables [3| and Table |3| shows the coeflicients associated with
the covariates and Table [4]shows the factor loading and probabilities of class membership for
the latent factor model. Single-equation estimates for the cancer equation are provided, for

comparison, in Table [f

18The NHS recommends that adults exercise for 30 minutes, five times a week. More details are available at
http://www.nhs.uk/Livewell/fitness/Pages/Howmuchactivity.aspx
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Table 3: DLFM results — main coeflicients

Variable smoker starting pack-years lifespan cancer
Male; mother smoked 0.562***  -0.008

Female; mother smoked 0.557*%*  _0.047

Male; father smoked 0.472%**  _0.041%*

Female; father smoked 0.280***  _0.057**

Male; both parents smoked 0.523***  -0.048*

Female; both parents smoked 0.682*%**  _0.105%**

Ezxcluded: neither parent smoked

Individual in social class 2 or 3 0.305** -0.087*%**  _0.263 0.128 -0.030
Individual in social class 4 or 5 0.538%**  _0.126*** _(.413** 0.394** -0.046*
Ezxcluded: individual in social

class 1

Highest qualification is degree -0.438***  0.067** 0.139 -0.530%** 0.054*
Other highest qualification -0.244 0.059 -0.290 0.006 0.061
Highest qualification is A-Level  0.100 0.045* 0.177 -0.342 0.026
Highest qualification is sk sk

O-level /CSE -0.169 0.046 -0.019 0.011 -0.000
Highest qualification is .

HND/HNC -0.264 0.117 0.017 -0.269 0.010
Ezxcluded: lower or no highest

qualification

Male 0.649***  _0.201*** -0.079 0.442%** -0.026%**
Born in 1920s 0.302***  _0.050*%** -0.019 -0.008 -0.023*
Born in 1930s -0.001 -0.085***  0.175 -0.046 -0.045%**
Born in 1940s -0.070 -0.265***  0.052 0.267 -0.016
Ezxcluded: born prior to 1920

Started smoking after 1954 but 0,347

before 1971 '

Started smoking after 1971 0.921%+**

Ezxcluded: started smoking prior

to 1954

Number of years non-smoking 0.049%+*

Other smokers in house -0.752%F% 0.109 -0.015
Long term unemployed -0.479%* 0.548** -0.061%*
Not WOrkiI.lg d.u.e to permanent 0,364 0.785%%% 0025
sickness/disability

Retired 0.113 -0.136 0.023*
Ezcluded: employed /

self-employed

Single -0.187 0.257%* 0.015
Separated/Divorced -0.729***  -0.027 -0.005
Widowed -0.394%%* 0.078 0.017
Excluded: married

Lives in a rural area 0.256%** -0.091 -0.004
Lives in a surburban area 0.130%* -0.041 -0.003
Excluded: lives in an urban area

Pack-years (HALS1 quitter) 0.014%** -0.001**

Pack-years squared /10000
(HALS1 quitter)
Pack-years (HALS1 current
smoker)

-0.557%* 0.027

0.037#** -0.003%+*

Continued on next page
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Pack-years squared / 10000 sk ks
(HALSI current smoker) -3.082 0.243
Heavy alcohol drinker 0.184* -0.022
At least 5 hours of exercise in

-0.402%**
last two weeks
Eats red meat 3+ times per week -0.123** 0.011
Constant -0.706%F*  3.126%**F  -4.786%**  _56.533%FF* 4 718%H*
o' 0.141%**  0.008*** 0.065***
a 12.327#%*
N. of cases 3784
*p <0.10, ** p < 0.05, ¥* p < 0.01
Equation Parameter Latent class, k=1...4
k 1 2 3 4
Smoker »1 0 0.287** -0.144 0.143
Starting V2 0 -0.075*** 0.010 -0.065%**
Pack years 3 0 -0.463***  0.577** -0.114
Lifespan ©4 0 2.356%HF  1.341%**  3.697HF*
Cancer 5 0 -0.276%*%  _0.211%FF  -(.487***
Mixing probability 0.353*** (0.443***  0.090***  (0.113***

*p < 0.05, ¥ p < 0.01

Table 4: DLFM results (2) — latent factor coefficients and class membership mixing probabilities

Relative to the benchmark of latent class 1 (35% of the sample), latent classes 2 (44% of the
sample) and 4 (11% of the sample) consist of individuals who are more likely to start smoking,
start earlier in life, smoke more cigarettes after starting, die sooner, and get cancer earlier in life.
Latent class 4, in particular, exhibits individuals with a strong tendency to get cancer earlier in
life. Latent class 3 (9% of the sample) consists of individuals who are less likely to start smoking,
start later in life, smoke fewer cigarettes if they do start, but die sooner and get cancer earlier in
life.

Different point estimates of the relationships between parental smoking and individuals’
smoking behaviours are observed according to the gender of the parent and the gender of the
offspring. The relationship with the probability of starting smoking of one of either a mother or
father smoking on the offspring is found to be greater on men than women, when point estimates
are compared. The correlation with the probability of smoking of the offspring is estimated to
be greater for a mother who smokes than for a father. The relationship with time to starting
is also estimated to be greater for women than men. While these results are broadly in line

with those of Balia and Jones| (2011)), a major difference lies in the large divergence observed
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Variable Coefficient
Pack-years (HALS1 quitter) -0.002°**
Pack-years squared / 10000 (HALS1 quitter) 0.025
Pack-years (HALS1 current smoker) -0.005%***
Pack-years squared / 10000 (HALS1 current smoker) 0.320**
Other smokers in house -0.013
Heavy alcohol drinker -0.028
Eats red meat 34 times per week 0.015
Highest qualification is degree 0.073
Other highest qualification 0.050
Highest qualification is A-Level 0.050
Highest qualification is O-level/CSE 0.004
Highest qualification is HND/HNC 0.016
Long term unemployed -0.096**
Not working due to permanent sickness/disability -0.025
Retired 0.023
Male -0.036**
Social class 2 or 3 -0.054
Social class 4 or 5 -0.073
Single -0.003
Separated /Divorced 0.004
Widowed 0.027
Lives in the countryside -0.019
Lives in a surburban area -0.001
Born in 1920s 0.031
Born in 1930s 0.043
Born in 1940s 0.187
Constant 4.559%F*
y 0.164%**
N. of cases 3784

**p < 0.05, ¥ p <0.01

Table 5: Single equation - cancer registration
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between the relationships according to the genders of parents and children. Further, while
Balia and Jones (2011)) find a cohort effect for those born subsequent to the publication of the
first evidence showing a link between smoking and ill-health in 1954, a much larger deceleration
in time to starting smoking is observed (over the cohort born between 1954 and the first public
health campaign) for the cohort born after the first anti-smoking public health campaign in 1972.
Parental smoking has little direct relationship with total exposure to smoking (the dependent
variable in the pack-years equation) conditional on starting smoking. Those in social class 4
or 5, and those with other smokers in their household at the time of HALS1, are observed to
have a significantly lower hazard of quitting smoking at any given level of cumulative pack-years
exposure.

Additional exposure to smoking increases the hazard of death, with a stronger relationship
observed for current smokers than for quitters, and a declining relationship with total exposure
on the increase in hazard (as shown by the opposing coefficient on the squared terms). The
interpretation of these coefficients is complicated by the censoring of durations of current smokers
at HALS1 (as well as the lack of data regarding whether quitters ever started smoking again,
and, if so, for how long). Social class is correlated, independent of lifestyle choices, with an
elevation in the hazard of death for those in social class 4 or 5 roughly equivalent to that of an
exposure of approximately 12 observed pack-years (for HALS1’s current smokers) at the time of
HALS1, compared to those in social class 119,

Results on cancer registration differ somewhat. Being male, and being long-term unemployed
at HALS1 are significantly related with reducing time to failure in this model. Evidence of a
social gradient in cancer is found — with those in social class 4 or 5 having a significantly shorter
(by approximately 5%) predicted healthy time before developing cancer than those in the highest
social class — even after accounting for the effect of disproportionate smoking among those in
a lower social class, and before accounting for the effect of reduced lifespans in preventing the
observation of cancer registrations among those who would, had they not died, have been more
prone to be diagnosed with such a disease?’. This is equivalent to an exposure to smoking of

approximately 19 pack-years?!. One crucial problem with the HALS follow-up dataset, which

19This comparison is obtained from our estimated coefficients in the lifespan equation, where 12Bpack-years_start —
122 (/Bpack,years,sttm‘tQ/10000) ~ ﬁsc45-

2ONote that this gradient relates to all causes of cancer. There is evidence that the social gradient differs
substantially for different types of cancer (see, for example, |[Merletti et al.| (2011]))

2IThis is calculated using the same method as in footnote 19. However, caution should be attached to this,
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could lead to the underestimation of the social gradient in cancer, is the number of individuals
(107) who die with cancer present (according to death certificate data) but without ever being
registered as being diagnosed with the disease, suggesting a disproportionate failure to diagnose

(and, presumably, therefore, to treat) those in lower social classes.

4.2 Posterior probabilities

Individuals are here sorted into the most likely latent class to which they belong, based on their

observed outcomes. This means, for each class k£ and individual 4:

T - L

Poi=———
Yooy m - Ly

(14)

Sorting individuals into their most likely class based on these posterior probabilities — that is,
assigning each individual ¢ to class k for which Py; is highest — allows individuals to be classified
into four sub-samples. Table [6] presents descriptive statistics for key variables for each of these

sub-samples.

Class 1 2 3 4

n 1247 1968 101 468
HALSI age 60.22 61.52 59.77 58.38
Social class 1 0.02 0.02 0.02 0.02
Social class 2/3 0.65 0.66 0.65 0.67
Social class 4/5 0.32 031 032 0.30
Ever-smoker 0.69 055 100 0.71
Smoker at HALS1 0.40 0.20 0.85 0.37
Quitter at HALS1 029 036 0.15 0.34
Pack-years of exposure (ever-smokers only) 31.74 24.31 59.60 30.26
Developed cancer 0.02 031 059 0.71
Age of cancer (developed cancer) 87.14 76.94 70.95 65.30
Lifespan (dead only) 88.19 79.76 71.82 66.83

Table 6: Descriptive statistics, by most probable latent class based on posterior probabilities.

Table [6] shows that those individuals most likely to be part of class 1 are highly unlikely to
ever develop cancer: only 2% of individuals most likely to be in class 1 are observed to have

developed cancer, despite this class being made up of individuals with approximately similar

given that smoking and social class are likely to affect both time-to-cancer and lifespan.
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smoking characteristics and social class, and of similar ages, to those most likely to be members
of class 4, of which 71% of individuals are observed to have developed cancer by July 2009.
Furthermore, differences in observed lifespan are striking, with a difference of over 20 years
between individuals in class 1 and class 4. This points to unobservable factors which explain
large elevations in an individual’s hazard of being diagnosed with cancer and early death, even

when such individuals are in the same social class and adopt similar lifestyles.

5 Counterfactual simulations

This section presents counterfactual predictions of survival times — healthy years without cancer.
This is done by amending the observed values for all individuals’ smoking behaviours and
holding other individual characteristics (and the estimated coefficients associated with these
characteristics) constant, in a post-estimation analysis.

Survival probabilities for cancer are estimated for each of the k(k =1,...,4) latent classes,

using the loglogistic survival function:

5u(t) = (14 [t~ exp (~Br¥Xes + @] 7) (15)

where X refers to the counterfactual values for variables. These probabilities are multiplied by
the associated mixing probabilities of class membership, 7, and averaged to calculate a survival

function for the full distribution:

4
S(t) = 3 mi - Si(t) (16)
k=1

Results for median survival times to onset of cancer, with men and women considered
separately, are presented in Table [7] with estimated median survival curves presented in Figures

to[d Results for median lifespan are presented in Table
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Male Female
Estimated Difference Estimated Difference

survival time from full survival time from full
(from birth) sample (from birth) sample
Full sample 85.0 - 88.7
Counterfactuals
Non-smoker 87.8 +2.8 90.4 +1.7
20 pack-years 83.5 -1.5 86.1 -2.6
30 pack-years 82.1 -2.9 84.6 -4.1

Table 7: Counterfactual estimates — median survival time to onset of cancer (years)

Male Female
Estimated Difference Estimated Difference
survival time from full survival time from full
(from birth) sample (from birth) sample
Full sample 82.8 - 86.9
Counterfactuals
Non-smoker 85.6 +2.8 88.7 +1.8
20 pack-years 81.4 -1.4 84.3 -2.6
30 pack-years 80.0 -2.8 82.9 -4.0

Table 8: Counterfactual estimates — median lifespan (years)

Survival

= Full sample N
0.2 1 —..0pack.vears N
0 pack-years S
20 pack-years
0.1 - .
= 30 pack-years
0.0
45 55 65 75 85 95

Age

Figure 2: Estimated survival curves for cancer onset by smoking behaviour (males)
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While the ¢ parameter is, for each latent class, estimated as a constant, these estimated
survival curves do not represent parallel shifts of each other, due to the non-linear relationship
between ¢, and S(¢). Individuals in latent class 1, in particular, exhibit large increases in
survival probabilities at all ages over others in the sample.

The difference between survival probabilities at older ages is particularly striking. As
illustrated in Figure 3] at the age of 75, 98% of males in latent class 1 are predicted to have
survived; in latent class 4, the corresponding probability is just 6%22. For women, survival at 75
is predicted to be over 99% in latent class 1, and 11% in latent class 4. At the age of 95, these
probabilities are 68% for men (79% for women) in latent class 1 and below 0.2% (below 0.4%) in
latent class 4.

As illustrated in Figure [2] at an age of 75, 68% of males who are observed to have an exposure
of 30 pack-years at the time of HALS1 are predicted to remain cancer-free, compared to 79% of
those who had not smoked. For women, these respective probabilities are 74% and 83%. At
the age of 95, these probabilities are 23% for men (28% for women) with an exposure of 30

pack-years and 35% (40%) for non-smokers.

22This figure illustrates survival curves for men only.
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Figure 3: Estimated survival curves for cancer onset by latent class (males). For information on
the make-up of each latent class, refer to Tables [4] & [6]
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Figure 4: Estimated survival curves for cancer onset (males) — comparison of single-equation
and full model results
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Figure 5: Estimated percentage reduction in time-to-cancer by smoking exposure — comparison
of single-equation and full model results for current-smokers

The difference between results obtained using single equation estimates and those from
the full DLFM (Figures 4| and [5)) for men is also notable. The different duration dependence

parameters () estimated by the two models cause the implied survival functions from the
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two models to have completely different shapes: the single equation model implying more
early failures but also more very late failures. Furthermore, the reduction in survival time,
at the median, from having different observed smoking exposures is predicted to be smaller
when using the joint model rather than single equation estimates. The reduction in estimated
median survival time (for males) between the counterfactual estimates for non-smokers and those
with 30 pack-years of exposure is 9.3 years in the single equation model, and 5.7 in the joint
model. Figure 5| further illustrates this using non-counterfactual methods, displaying the implied
reduction in cancer-free time for different levels of smoking exposure. These results suggest a
role for unobserved heterogeneity in explaining differences in survival times. Failure to account
for this unobserved heterogeneity leads to differences in survival times between both individuals

in different social classes, and individuals with different smoking exposures, to be overestimated.

6 Conclusion

Existing literature on the relationship between smoking behaviours and cancer is very limited:
we are aware of no existing research employing duration techniques to examine such relationships.
Research using data from the British Doctors Study (Doll and Hill, [1954)), while employing a
large sample over a long time period, looks at only a small stratum of society — male doctors
in the UK — and smoking data in the BDS dataset is much less rich than that contained in
HALS. In addition to introducing cancer outcomes, we, here, build on earlier work by modelling
smoking exposure by pack-years rather than simply duration, and allowing health outcomes to
vary with different exposures to smoking, rather than by whether the individual was a current
smoker, former smoker, or never-smoker at the time of HALS]1.

The use of a joint model for smoking behaviours and health outcomes changes the results
substantially. The duration dependence parameter in the single equation model for cancer is
more than twice as great as that in the joint model, leading to a much flatter estimated cancer
survival function, and more early and late failures. Further, the differences in estimated survival
times associated with smoking exposure are higher when using single equation estimation rather
than a joint model. Single-equation estimation yields estimates (for men) of this difference that
are 2.4 years greater for the gap between the highest and lowest social classes, and 2.6 years

greater for those with 20 observed pack-years of exposure than those with no observed years of
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exposure.

Assuming that individuals are rank-identical in the elevation of their respective hazards for
cancer and death, the coefficients obtained in the main cancer model should be seen as lower
bounds on the actual effect on healthy survival time without cancer, given that some individuals
— who were likely to be registered as having been diagnosed with cancer sooner than others who
remained at-risk — died before such a registration was possible. Interpretation of coefficients
in the cancer registration model is complicated by the way in which those who do not develop
cancer are censored: (at least some) deaths are informative censorings, and are symptomatic of
the tendency of the individual to develop cancer, in the absence of death.

The reduction in time to cancer is estimated to be 5.7 years for male current smokers (5.8
years for women) at the time of HALS1 with 30 observed pack-years of exposure, compared to
those who had never smoked at this time. At an age of 75, 93% of men with no observed smoking
exposure are predicted to be cancer free, compared to only 82% of those with an observed
exposure of 30 pack-years.

The latent class model appears to separate out some groups of individuals who are highly
likely to develop some form of cancer due to unobserved factors, and others of those highly
unlikely to do so. For instance, latent class 1 is composed of individuals of whom, under
counterfactual simulations, almost 99% of men (over 99% of women) do not develop cancer by
age 75, while the corresponding probability for individuals in latent class 4 is below 5% for men
(below 10% for women). When posterior probabilities of class membership are estimated, and
individuals sorted into their most likely class based on these probabilities, these differences are
made even more stark: despite very similar lifestyle and circumstances for such individuals, only
2% of individuals most likely to be members of latent class 1 are observed to have developed
cancer in the most recent follow-up, compared to 71% of those in latent class 4. The difference
in lifespan for those individuals in each group who are observed to be deceased is approximately
20 years. These results point strongly to unobservable factors explaining a large part of the
differences in health outcomes.

Our results suggest a fruitful avenue of future research that would arise from collecting richer,
long-panel data regarding smoking behaviours, and health outcomes. Further, larger datasets

would allow more information to be collected on specific types of cancer, rather than merely
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grouping these into a single category. Duration analysis could be used to examine cancer-specific

outcomes with fewer assumptions.
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A Appendix

Year of death No. of deaths Percentage

1984 0 0.00
1985 5 3.45
1986 17 11.72
1987 14 9.66
1988 18 12.41
1989 27 18.62
1990 22 15.17
1991 5 3.45
1992 1 0.69
1993 4 2.76
1994 4 2.76
1995 1 0.69
1996 1 0.69
1997 2 1.38
1998 0 0.00
2000 2 1.38
2001 1 0.69
2002 2 1.38
2006 2 1.38
2007 1 0.69
2008 10 6.90
2009 4 2.76
Total 145

Table Al: Deaths where cancer is listed on an individual’s death certificate, with the
individual never registered as developing cancer
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AIC and BIC scores for single-equation models are presented below:

Model Observations  Loglikelihood d.f. AIC BIC
Starting

Expopower 2388 -7306.624 21 14655.25 14776.59
Exponential 2388 -9282.463 20  18604.93 18720.49
Loglogistic 2388 -6964.628 21  13971.26 14092.6
Weibull 2388 -7300.492 21 14642.98 14764.33
Gompertz 2388 -7967.207 21 15976.41 16097.76
Smoking exposure

Generalised gamma | 2388 -6063.621 24 12175.24 12313.92
Expopower 2388 -6058.478 24 12164.96 12303.63
Exponential 2388 -6069.637 22 12183.27 12310.39
Loglogistic 2388 -6119.277 23 12284.55 12417.45
Weibull 2388 -6069.346 23 12184.69 12317.59
Gompertz 2388 -6059.03 28  12164.06 12296.96
Cancer registration

Generalised gamma | 3784 -4469.158 29  8996.316 9177.233
Expopower 3784 -4472.943 29 9003.887 9184.804
Exponential 3784 -4544.547 27 9143.093 9311.534
Loglogistic 3784 -5045.162 28  10146.32 10321
Weibull 3784 -4471.475 28 8998.949 9173.628
Gompertz 3784 -4477.419 28 9010.838 9185.517
Mortality

Generalised gamma | 3784 -8598.828 30  17257.66 17444.81
Exponential 3784 -9021.817 28  18099.63 18274.31
Loglogistic 3784 -8943.939 28  17943.88 18118.56
Weibull 3784 -8599.991 29  17257.98 17458.9
Gompertz 3784 -8603.764 29  17265.53 17446.45

Table A2: Comparison of baseline hazards
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