
This is a repository copy of Meromorphic analogues of modular forms generating the 
kernel of Shintani's lift.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/90997/

Version: Submitted Version

Article:

Bengoechea, Paloma (2015) Meromorphic analogues of modular forms generating the 
kernel of Shintani's lift. Mathematical Research Letters. pp. 337-352. ISSN 1945-001X 

https://doi.org/10.4310/MRL.2015.v22.n2.a2

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



ar
X

iv
:1

30
4.

56
53

v2
  [

m
at

h.
N

T
] 

 2
5 

Se
p 

20
14

MEROMORPHIC ANALOGUES OF MODULAR FORMS

GENERATING THE KERNEL OF SHINTANI’S LIFT

PALOMA BENGOECHEA

Abstract. We study the meromorphic modular forms defined as sums
of −k (k ≥ 2) powers of integral quadratic polynomials with negative
discriminant. These functions can be viewed as meromorphic analogues
of the holomorphic modular forms defined in the same way with pos-
itive discriminant, first investigated by Zagier in connection with the
Doi-Naganuma map and then by Kohnen and Zagier in connection with
Shimura-Shintani lifts. We compute the Fourier coefficients of these
meromorphic modular forms and we show that they split into the sum
of a meromorphic modular form with computable algebraic Fourier co-
efficients and a holomorphic cusp form.

1. Introduction

Eisenstein series are defined as sums of −k powers (k > 2 an even inte-
ger) of all linear functions with integer coefficients and variable in the upper
complex half plane and play a crucial role in the theory of modular forms.
It seems natural to look at similar series where we sum over functions with
integer coefficients and higher degree. Sums of this kind, taken over qua-
dratic polynomials with fixed positive discriminant, have been introduced
in [Zag75] in connection with the Doi-Naganuma correspondence between
elliptic modular forms and Hilbert modular forms. More precisely, for each
discriminant D > 0, the sum

(1) fk,D(z) = π−k
∑

(a,b,c)∈Z3

b2−4ac=D
a>0

1

(az2 + bz + c)k
(k ≥ 2)

is a cusp form of weight 2k for SL(2,Z) which arose, in the case where D is a
fundamental discriminant, by considering the restriction to the diagonal z1 =
z2 of a family of Hilbert modular forms wm(z1, z2) (m = 0, 1, 2, . . .) of weight
k for the Hilbert modular group SL2(O), where O is the ring of integers
of the real quadratic field with discriminant D. The functions wm(z1, z2)
are the Fourier coefficients of the kernel function for the Doi-Naganuma
correspondence. They are well defined for all positive discriminants D and
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2 PALOMA BENGOECHEA

so is fk,D(z). The Fourier coefficients of fk,D(z) at infinity are calculated
in [Zag75] in terms of a Bessel function.

The functions 2πkDk−1/2fk,D(z) reappeared in the kernel function for the
Shimura and Shintani lifts between half-integral and integral weight cusp
forms ( [KZ81]). They can be interpreted as theta lifts: they are obtained
by integrating the D-th weight k + 1

2 classical cuspidal Poincarï¿ 1
2 series

against Shintani’s theta function projected into Kohnen’s plus space (with
respect to Petersson’s inner product).

In [BKV13], the authors generalized the functions fk,D to a natural fam-
ily of local Maass forms of weight 2k which may also be viewed as theta
lifts of the D-th Poincarï¿1

2 series generalized to the context of weak Maass
forms (with respect to Borcherds’s regularized version of the Petersson inner
product that one can find in [Bor98]).

In [KZ84], Kohnen and Zagier calculated the period polynomials of the
functions fk,D(z) for D > 0. Later, Bringmann, Kane and Kohnen intro-
duced in [BKK12] the theory of locally harmonic weak Maass forms and they
found again the explicit even period polynomials of fk,D as an application
of their theory.

Also the even parts of the Eichler integrals of fk,D for D > 0 have been
studied because of their link with Diophantine approximation, reduction of
binary quadratic forms, special values of zeta functions and Dedekind sums
( [Zag99], [Ben14]).

The functions fk,D(z) with D < 0 have been investigated in author’s Ph.D.
thesis [Ben13] and have become interesting because of the similar properties
with the case D > 0. In the case D < 0 , they have a non-holomorphic part
determined by the points of complex multiplication of discriminant D. In
the next section we prove the convergence of these functions and we calcu-
late their Fourier coefficients in terms of a modified Bessel function. In the
third section, we decompose fk,D(z) with D < 0 into a meromorphic part
with computable algebraic Fourier coefficients and a holomorphic cuspidal
part with, a priori, transcendent Fourier coefficients. We denote by Γ the
group SL(2,Z), by H the Hilbert class field Q(j(OD),

√
D) of Q(

√
D), and by

SH
2k(Γ) the H-vector space of cusp forms of weight 2k for Γ with Fourier co-

efficients (in the expansion at infinity) in H. We denote by HD(X) the class
polynomial of discriminant D and by h(D) the class number. Throughout
the paper we also use the standard notation j(z) and ∆(z) for the modular
j-invariant and the modular discriminant respectively. Writing

ΦD(z) = HD(j(z))∆(z)h(D)/w ,

where w = 1 if D 6= −3,−4; w = 2 if D = −4, and w = 3 if D = −3, we
have

Theorem I The function ΦD(z)
kfk,D(z) belongs to the space

(2) SH
(

12h(D)
w

+2
)

k
(Γ) + SC

2k(Γ)ΦD(z)
k.
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In this decomposition, the modular form in SH
(

12h(D)
w

+2
)

k
(Γ) is computable.

We use a theorem of Borcherds ( [Bor99]) to find linear combinations
of Hecke operators which, by acting on the functions fk,D(z), give explicit
integral polynomials on these functions without any transcendent part in
decomposition (2). Indeed, given λ = {λn}∞n=1 ∈ ⊕∞

n=1Z, denoting by Tn the
n-th Hecke operator acting on the space of meromorphic modular forms of
weight 2k for Γ, and writing

φλ =

∞
∑

n=1

λnTn, fk,D,λ(z) = fk,D|φλ(z),

we have
Theorem II If there exists a weakly holomorphic modular form

gλ =
∞
∑

n=1

λnq
−n +O(1) ∈ M !

2−2k(Γ),

then the function ΦD(z)
kfk,D,λ(z) belongs to SH

(

12h(D)
w

+2
)

k
(Γ).

In the appendix, we illustrate the results of section 3 giving the explicit
decompositions of the functions fk,D(z) and fk,D,λ(z) (for a convenient λ)
when D = −3 and k ∈ {2, 3, 4, 5, 6, 7}.

2. Convergence and Fourier coefficients

Given an integer D < 0 congruent to 0 or 1 modulo 4, and an integer
k ≥ 2 we define, for z ∈ H,

fk,D(z) = π−k
∑

(a,b,c)∈Z3

b2−4ac=D
a>0

1

(az2 + bz + c)k
.

The positivity condition on a does not play any important role, we include it
to avoid summing simultaneously over [a, b, c] and [−a,−b,−c]. The factor
π−k is just a normalization factor.

Given a Γ-equivalence class A of integral binary quadratic forms with
discriminant D < 0, we define

(3) fk,D,A(z) = π−k
∑

[a,b,c]∈A
a>0

1

(az2 + bz + c)k
(z ∈ H, k ≥ 2).

Proposition 2.1. The sums fk,D(z) and fk,D,A(z) converge absolutely and
uniformly. They are meromorphic modular forms of weight 2k for Γ.
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Proof. For z = x+ iy ∈ H, we have

πk|fk,D(z)| ≤
∑

b2−4ac=D
a>0

1
∣

∣

∣
a
(

z +
b+

√
D

2a

)(

z +
b−

√
D

2a

)∣

∣

∣

k

≤
∑

b2−4ac=D
a>0

1

|a|kmax
(∣

∣

∣
x+

b

2a

∣

∣

∣
,
∣

∣

∣
y +

√

|D|
2a

∣

∣

∣

)k
max

(∣

∣

∣
x+

b

2a

∣

∣

∣
,
∣

∣

∣
y −

√

|D|
2a

∣

∣

∣

)k
.

For R > 0 we count the number N(R) of elements (a, b) that occur in the
last sum such that

R ≤ |a| max
(∣

∣

∣
x+

b

2a

∣

∣

∣
,
∣

∣

∣
y +

√

|D|
2a

∣

∣

∣

)

max
(∣

∣

∣
x+

b

2a

∣

∣

∣
,
∣

∣

∣
y −

√

|D|
2a

∣

∣

∣

)

< 2R.

The inequality
∣

∣

∣
a
(

y2 − |D|
4a2

)∣

∣

∣
< 2R

implies a = O(R). For fixed a, the inequality

∣

∣

∣a
(

x+
b

2a

)2∣
∣

∣ < 2R

implies b = O(R
1
2 ). Hence N(R) = O(R

3
2 ) and

πk |fk,D(z)| ≪
∞
∑

n=0

N(2n)

2nk
≪

∞
∑

n=0

1

2n(k−
3
2
)
,

where the implicit constant depends on z, but it is still bounded for z in a
compact set. The last sum converges for all k > 3

2 .

The convergence of fk,D,A(z), which is a partial sum of fk,D(z), is imme-
diate, and since the sum is taken over a Γ-equivalence class, we obtain the
modularity.

The modularity of fk,D(z) follows, on the one hand, from the invariance
of the discriminant D under the action of Γ; on the other hand, from the fact
that a is always translation invariant and, for D < 0, the coefficients a and c

have the same sign, so the sign of a is also invariant under the transformation
(

0 1
−1 0

)

. �

Proposition 2.2. For z ∈ H with ℑ(z) >

√
|D|

2 , the Fourier expansion of
the function fk,D(z) is

fk,D(z) = π−k
∞
∑

r=1

cr e
2πirz,
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(4) cr =
2k+

1
2 πk+1 rk−

1
2

|D|k2− 1
4 (k − 1)!

∞
∑

a=1

a−
1
2 Sa,D(r) Ik− 1

2

(πr
√

|D|
a

)

,

where

(5) Sa,D(r) =
∑

b (mod 2a)
b2≡D (mod 4a)

eπirb/a

and Ik− 1
2

is a modified Bessel function, related to the Bessel function of the

first kind Jk− 1
2

by Ik− 1
2
(x) = i−k+ 1

2 Jk− 1
2
(ix).

Proof. We can calculate the Fourier expansion of fk,D(z) by splitting the
sum:

πkfk,D(z) =

∞
∑

a=1

fa
k,D(z),

where

fa
k,D(z) =

∑

b∈Z
b2≡D (mod 4a)

(

az2 + bz +
b2 + |D|

4a

)−k
.

We can split the sum again:

fa
k,D(z) =

∑

b (mod 2a)
b2≡D (mod 4a)

∑

n∈Z

(

a(z + n)2 + b(z + n) +
b2 + |D|

4a

)−k
.

The first sum is finite and for each term in the sum, the r-th Fourier coeffi-
cient is given by

(6)

∫ ∞+iC

−∞+iC

(

az2 + bz +
b2 + |D|

4a

)−k
e−2πirzdz (C >

√

|D|
2

).

This integral vanishes for r ≤ 0 and we can calculate it for r > 0 changing
variables z = it− b

2a :

∫ ∞+iC

−∞+iC

e−2πirz

(

az2 + bz +
b2 + |D|

4a

)k
dz = −i eπirb/a

ak

∫ C+i∞

C−i∞

e2πrt

(

t2 − |D|
4a2

)k
dt

=
2k+

1
2 πk+1 rk−

1
2

|D|k2− 1
4
√
a (k − 1)!

eπirb/a Ik− 1
2

(πr
√

|D|
a

)

.

(The last integral is calculated in [AS65], (29.3.60)). �
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3. Algebraic properties of Fourier coefficients

Before we state and prove the main theorems of this section, we introduce
the notation and some results in the theory of modular forms that we need.
All the results mentioned here can be found in [BHvGZ08], in the first part,
written by D. Zagier. For a discriminant D < 0 we denote by HD(X) the
class polynomial

HD(X) =
∏

z∈Γ\ZD

(X − j(z))1/w ,

where ZD ⊂ H is the set of CM points of discriminant D and

w =







3 if D = −3
2 if D = −4
1 if D 6= −3,−4.

We write

(7) HD(j(z)) =
ΦD(z)

∆(z)h(D)/w

with ΦD(z) ∈ M 12h(D)
w

(Γ).

For a Γ-equivalence class A of integral binary quadratic forms of discrim-
inant D < 0, we denote by z a CM point of A and we define the modular
form ΦA(z) of weight 12

w by

ΦA(z) = ((j(z)−j(z))∆(z))1/w =







E4(z) if D = −3
E6(z) if D = −4
E4(z)

3 − j(z)∆(z) if D 6= −3,−4.

The poles in H of the functions fk,D,A(z) and fk,D(z) are the respective
sets Γz and ZD. But Γz and ZD are also the respective sets of zeros of
the functions ΦA(z) and ΦD(z). Hence the functions ΦA(z)

kfk,D,A(z) and

ΦD(z)
kfk,D(z) are cusp forms of respective weight (12w +2)k and (12h(D)

w +2)k.

Since ΦA(z)
kfk,D,A(z) and ΦD(z)

kfk,D(z) are holomorphic on the upper-
half plane, they have a Taylor expansion in a neighborhood of each point
z = x+ iy ∈ H. The Taylor expansion in the classic sense is not the natural
expansion for modular forms because it only converges on a disk centered
at z and tangent to the real line, whereas the domain of holomorphy of a
modular form is the whole upper-half plane H. Recall that, for fixed z ∈ H,

the map sending z′ ∈ H to w =
z′ − z

z′ − z̄
is an isomorphism between H and

the open unit disk centered at z (the inverse map sends w to z′ =
z − z̄w

1− w
).

It is then more natural to expand a modular form under the action of the

transformation

(

−z̄ z

−1 1

)

∈ SL(2,C) in power series of w (see (9) below).

Throughout the paper, we call this new expansion modified Taylor expansion.
Another classical concept which is usually modified in the theory of mod-

ular forms is the concept of derivative. The classical derivative of a modular
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form not being modular, several differentiation operators have been intro-
duced. We consider the operator defined, for a modular form f(z) of weight
2k, by

(8) ∂f(z) =
1

2πi

df

dz
(z) − 2k

4πy
f(z),

where y = ℑ(z). The function ∂f(z) is not holomorphic anymore, but it is
modular of weight 2k + 2. Moreover, if K is an imaginary quadratic field,
z ∈ K ∩ H is a CM point, and the Fourier coefficients of f(z) belong to an
algebraic field L, then, for all n ≥ 0, the value ∂nf(z) is an algebraic multiple
(the constant of multiplication belongs to L) of the (2k + 2n)-th power of
the Chowla-Selberg period ΩK defined by (see [BHvGZ08], the corollary in
ï¿1

26.3)

ΩK =
1

√

2π|D|





|D|−1
∏

m=1

Γ
( m

|D|
)χD(m)





w/2h(D)

.

Finally, the natural expansion of a modular form f(z) of weight 2k in a
neighborhood of a point z = x+ iy ∈ H in terms of the operator (8) is given
explicitly by (Prop. 17 on p. 52 in [BHvGZ08])

(9) (1− w)−2k f
(z − z̄w

1− w

)

=

∞
∑

n=0

∂nf(z)
(4πyw)n

n!
(|w| < 1).

The main interest of this expansion is that, after normalization dividing by
suitable powers of the period ΩK , all the coefficients are algebraic and belong
to the field of definition of the Fourier coefficients of f(z).

Below we keep the notation H = Q(j(OD),
√
D) of the introduction.

Theorem 3.1. For k ≥ 2, we have

(10) ΦA(z)
kfk,D,A(z) ∈ SH

( 12
w
+2)k(Γ) + SC

2k(Γ)ΦA(z)
k,

(11) ΦD(z)
kfk,D(z) ∈ SH

(

12h(D)
w

+2
)

k
(Γ) + SC

2k(Γ)ΦD(z)
k,

In these decompositions, the modular forms in SH
( 12

w
+2)k

(Γ) and SH
(

12h(D)
w

+2
)

k
(Γ)

are computable.

Proof. Since the proofs of (10) and (11) are analogous, we focus on the proof
of (10). The value w does not play any role in the proof either, so we assume
w = 1 to avoid tedious notation.

In the usual fundamental domain for the action of Γ on the upper-half
plane, the function fk,D,A(z) has only one pole z = x+ iy, which is the root
in H of some reduced binary quadratic form [a, b, c] ∈ A. By considering the
definition (3) we have, in a neighborhood of z,

(12) fk,D,A(z) =
1

(πa(z − z)(z − z))k
+ O(1).
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Replacing fk,D,A in (12) by its image by the transformation

(

−z′ z

−1 1

)

, we

have

(13) (1− w)−2kfk,D,A

(z− zw

1− w

)

=
w−k

πk (2aiy)2k
+ O(1) (|w| < 1).

Since z is a zero of order k of Φk
A(z), the first non-zero coefficient in the

modified Taylor expansion of Φk
A(z) is the coefficient of wk:

(14) (1− w)−12kΦk
A

(z− zw

1− w

)

=

∞
∑

n=k

∂nΦk
A(z)

(4πyw)n

n!
.

Combining (13) with (14), we compute the expansion of Φk
A fk,D,A up to the

(k − 1)-st power (included):
(15)

(1−w)−14kΦk
A fk,D,A

(z− zw

1− w

)

=

k−1
∑

n=0

∂k+nΦk
A(z)

(4πyw)n

(n + k)! a2k (−y)k
+O(wk).

Since the function ΦA(z)
k fk,D,A(z) belongs to the space S14k(Γ), it can

be written as

(16) ΦA(z)
k fk,D,A(z) = ∗E4(z)

δ E6(z)
ǫ∆(z)M ,

where ∗ is a complex constant and

14k = 4δ + 6ǫ+ 12M,

with δ ∈ {0, 1, 2}, ǫ ∈ {0, 1}, M = dim(S14k(Γ)) =
[

14k
12

]

. Moreover, the
triple (δ, ǫ,M) and the constant ∗ are uniquely determined.

The functions

Ψm,A(z) = (j(z) − j(z))m E4(z)
δ E6(z)

ǫ ∆(z)M (0 ≤ m ≤ M − 1)

are a basis for the space S14k(Γ) (as a C-vector space). We can write
ΦA(z)

k fk,D,A(z) in this basis:

(17) ΦA(z)
k fk,D,A(z) =

M−1
∑

m=0

cmΨm,A(z)

with cm ∈ C for m = 0, . . . ,M − 1. The functions
Ψm,A(z)

Φk
A(z)

are cusp forms

of weight 2k for m = k, . . . ,M − 1. We need to compute the coefficients cm
for 0 ≤ m ≤ k − 1 and show that they belong to H. We can expand again
ΦA(z)

k fk,D,A(z), using now the expression (17), in terms of the coefficients
cm and the modified Taylor expansion of the functions Ψm,A in a neighbor-
hood of z (recall that z is a zero of order m of Ψm,A and so the first non-zero
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coefficient in the expansion of Ψm,A is the coefficient of the term of order
m):
(18)

(1− w)−14kΦA(z)
k fk,D,A

( z− zw

1− w

)

=

M−1
∑

m=0

cm

∞
∑

n=m

∂nΨm,A(z)
(4πyw)n

n!
.

By comparing the expansions (15), and (18) and by matching the coefficients
for each power of w from both expressions, we make explicit the constants
cm for m = 0, . . . , k − 1:

c0 =
∂kΦk

A(z)

k! a2k (−y)k Ψ0,A(z)
,

cm =
m! ∂m+kΦk

A(z)

(m+ k)! a2k (−y)k ∂mΨm,A(z)
−

∑m−1
n=0 cn ∂

mΨn,A(z)

∂mΨm,A(z)
.

For j, l ≥ 0, the values ∂j Ψl,A(z) and ∂j+kΦA(z)
k belong to Q(j(z), z)Ω14k+2j

D ,
so the coefficients cm belong to the field Q(j(z), z) for all m = 0, . . . , k−1. �

We call transcendent parts the projections on the second space with com-
plex coefficients in the decompositions (10) and (11). The transcendent parts
are cuspidal but unfortunately we cannot compute them. We show below
how we use a theorem of Borcherds to find certain explicit integral polyno-
mials in the functions fk,D (k is fixed and D takes negative values) which
get rid of the transcendent parts. These polynomials are given by suitable
linear combinations of Hecke operators acting on fk,D(z). For each prime p,
the action of the p-th Hecke operator Tp on fk,D is given in [KZ81] by the
closed form

(19) fk,D|2kTp = p2k−1fk,Dp2 +

(

D

p

)

pk−1fk,D + fk, D
p2
,

with the convention fk, D
p2

= 0 if p2 ∤ D (the proof of this relation is exactly

the same as the proof of the analogous statement for non-holomorphic mod-
ular forms of weight zero given in [Zag81] (proof of equation (36))). Since
the Hecke algebra is generated in an explicit way by the p-th Hecke operators
through the identities

Tmn = TmTn if (m,n) = 1,
Tpr+1 = TprTp − pk−1Tpr−1 if r ≥ 1 and p is prime,

the action of the n-th (n not necessarily prime) Hecke operator Tn on fk,D
can also be written in a closed form, as an explicit integral polynomial in
the functions fk,D.

Given λ = {λn}∞n=1 ∈ ⊕∞
n=1Z and k ≥ 2, we write

φλ =

∞
∑

n=1

λnTn, fk,D,λ(z) = fk,D|φλ(z).
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Theorem 3.2. If there exists a weakly holomorphic modular form

(20) gλ =
∞
∑

n=1

λnq
−n +O(1) ∈ M !

2−2k(Γ),

then the function ΦD(z)
kfk,D,λ(z) belongs to the space SH

(

12h(D)
w

+2
)

k
(Γ).

(Note that λn = 0 ∀n ≥ N for some N ≥ 0, so gλ has only finitely many
non-vanishing terms in its principal part.)

Proof. According to Theorem 3.1, the function ΦD(z)
kfk,D,λ(z) belongs to

the space

(21) SH
(

12h(D)
w

+2
)

k
(Γ) + SC

2k(Γ)ΦD(z)
k.

We have to show that there is no transcendent part in the decomposition
(21) if there exists a weakly holomorphic modular form gλ of the form (20).

If there exists a weakly holomorphic modular form such as 20, then, by
[Bor99] (section 3),

(22)

∞
∑

n=1

λncn = 0 for any f =

∞
∑

n=1

cnq
n ∈ S2k(Γ).

If f =
∑∞

n=1 cnq
n is a cusp form of weight 2k for Γ, so is Tm(f), which

Fourier expansion is (see [BHvGZ08], ï¿ 1
24.1 of the first part)

(23) Tm(f) =

∞
∑

n=1

(

∑

a|n
a|m

ak−1cnm/a2

)

qn.

Hence (22) implies

(24)
∞
∑

n=1

λn

(

∑

a|n
a|m

ak−1cnm/a2

)

= 0.

But the expression in (24) is the m-th coefficient in the Fourier expansion of
f |φλ, so f |φλ = 0. In particular, if we denote by f(z) the transcendent part
in the decomposition

fk,D(z) ∈
SH
( 12
w
+2)k

(Γ)

ΦD(z)k
+ SC

2k(Γ),

we have f |φλ = 0. �

Remark 3.3. In the proof of Theorem 3.2, we deduce the statement (i) below
from the statement (ii):

(i) f |φλ = 0 for any cusp form f ∈ S2k(Γ),
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(ii) there exists a weakly holomorphic modular form

gλ =

∞
∑

n=1

λnq
−n +O(1) ∈ M !

2−2k(Γ).

In fact these two statements are equivalent. On the one hand, the statement
(ii) and the condition (22) are equivalent (see [Bor99]). On the other hand,
the function f |φλ =

∑∞
n=1 λnTn(f) in statement (i), defined from a cusp

form f =
∑∞

n=1 cnq
n, is identically zero if and only if

(25)
∞
∑

n=1

λn

(

∑

a|n
a|m

ak−1cnm/a2

)

= 0 ∀m ≥ 1.

For m = 1 (25) becomes

∞
∑

n=1

λncn = 0.

4. Appendix: Explicit examples

In this section we give the explicit decomposition (11) for D = −3 and
k ∈ {2, 3, 4, 5, 6, 7}. We also give a sequence λ such that, for any k in the
previous set, fk,−3,λ(z) has no transcendent part in the decomposition (21).

There is only one Γ-equivalence class of binary quadratic forms of discrim-
inant -3; we denote by [1, 1, 1] the reduced quadratic form in this class and

by z−3 =
1 +

√
3i

2
its root in H. The Hilbert extension of the quadratic field

Q(
√
3i) is trivial. For k ∈ {2, 3, 4, 5, 7}, the space S2k(Γ) is trivial, so there

is no transcendent part in the decomposition (11) of fk,−3. The value k = 6
is more interesting, so we give the details of the calculations for f6,−3(z) and
we list the calculated expressions of fk,−3(z) in a table for k ∈ {2, 3, 4, 5, 7}.

For k = 6, the space S36(Γ) is generated by ∆3(z),∆2(z)E3
4 (z),∆(z)E6

4 (z).
There are three complex constants C0, C1, C2 such that

(26) E6
4(z)f6,−3(z) = C0∆(z)3 + C1∆(z)2E4(z)

3 + C2∆(z)E4(z)
6.

In order to compute C0 and C1 we compare the modified Taylor expansions
in a neighborhood of z−3 from both sides of the equality (26). We have

(1− w)−36∆3
(z−3 − z−3w

1− w

)

= − Ω36
−3 − 23 · 3 π3 Ω42

−3 w
3 +O(w6);

(1− w)−36∆2E3
4

(z−3 − z−3w

1−w

)

= −212 · 33 π3 Ω42
−3 w

3 +O(w6);
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(1− w)−36∆E6
4

(z−3 − z−3w

1− w

)

= O(w6);

(1− w)−24E6
4

(z−3 − z−3w

1−w

)

= 224 · 36 π6 Ω36
−3 w

6 − 225 · 37 · 5 π9 Ω42
−3 w

9 +O(w12);

(1− w)−12f6,−3

(z−3 − z−3w

1−w

)

=
w−6

π6 36
+O(1).

The equation (26) becomes

224Ω36
−3−225·3·5π3Ω42

−3w
3+O(w6) = −C0Ω

36
−3−(23·3C0+212·33C1)π

3Ω42
−3w

3+O(w6).

If we compare the constant terms and the cubic powers of w, we find

C0 = −224, C1 = 213.

Hence

f6,−3 =
−224∆3 + 213∆2E3

4

E6
4

+C2∆,

where C2 is the coefficient of q in the Fourier expansion of f6,−3(z). It is
given by (4) and has the numerical value C2 ≈ −550.5139.

For k ∈ {2, 3, 4, 5, 6, 7} the expressions of fk,−3 are listed in the table
below:

k fk,−3

2 −28
∆

E2
4

3 − 29E6∆

3
√
3E3

4

4
216 · 32 ∆2 − 26∆E3

4

3E4
4

5
217 · 33E6 ∆

2 − 25 · 13E3
4 E6 ∆

34
√
3E5

4

6
−224∆3 + 213∆2E3

4

E6
4

+ C∆, where C ≈ −550.5139

7
−225 · 35 · 5E6 ∆

3 + 213 · 32 · 31E3
4 E6 ∆

2 − 27E6
4 E6 ∆

36 · 5
√
3E7

4

Note that if k ∈ {2, 3, 4, 5, 7}, then

E14−2k(z)

∆(z)
= q−1 +O(1) ∈ M !

2−2k(Γ).

If we choose λ = (1, 0, 0, . . .), then fk,−3,λ = fk,−3 and, according to Theo-
rem 3.2, there is no transcendent part in the decomposition (11) (this agrees
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with the triviality of S2k(Γ)).

For k = 6, since

E4(z)
2E6(z)

∆(z)2
= q−2 + 24q−1 +O(1) ∈ M !

−10(Γ),

if we choose λ = (24, 1, 0, 0, . . .), then

f6,−3,λ = 24 f6,−3|T2 + f6,−3

= 24
(

211f6,−12 + 25
(−3

2

)

f6,−3

)

+ f6,−3.

The functions f6,−3 and f6,−12 have both transcendent cuspidal parts:

f6,−12 =
−212 · 32∆3 + 2 · 41∆2E3

4

32E6
4

+ C ′∆,

but the new combination f6,−3,λ is again purely algebraic:

f6,−3,λ =
−224 · 3 · 13∆3 + 213 · 167∆2E3

4

3E6
4

.

Acknowledgements. This work is part of my PhD thesis. I wish to
express my gratitude to Don Zagier for his precious advice in discussing
mathematics in his supervising. I would like to thank Pilar Bayer for her
careful reading of this paper.

References

[AS65] Abramowitz, M.; Stegun, I.: Handbook of mathematical functions, New York:
Dover (1965).

[Ben14] Bengoechea, P.: From quadratic polynomials and continued fractions to modular

forms, to appear in JNT, arXiv:1301.7024 [math.NT] (2013).
[Ben13] Bengoechea, P.: Corps quadratiques et formes modulaires, Ph.D. thesis, (2013).
[Bor98] Borcherds, R. E.; Automorphic forms with singularitues on Grassmannians, In-

vent. Math. 132 (1998) 491-562.
[Bor99] Borcherds, R. E.; The Gross-Kohnen-Zagier theorem in higher dimensions, Duke

Math. J. 97 (1999) 219-233.
[BKK12] Bringmann, K.; Kane, B.; Kohnen, W.: Locally harmonic Maass forms and the

kernel of the Shintani lift, to appear in IMRN, arXiv:1206.1100 [math.NT] (2012).
[BKV13] Bringmann, K.; Kane, B.; Viazovska, M.: Theta lifts and local Maass forms,

Mathematical Research Letters 20 (2013) 213-234.
[BHvGZ08] Bruinier, J.; Harder, G.; van der Geer, G.; Zagier, D.: The 1-2-3 of Modular

Forms: Lectures at a Summer School in Nordfjordeid, Norway (ed. K. Ranestad)
Universitext, Springer-Verlag, Berlin-Heidelberg-New York (2008).

[KZ81] Kohnen, W.; Zagier, D.: Values of L-series of modular forms at the center of the

critical strip, Invent. Math. 64 (1981) 175-198.
[KZ84] Kohnen, W.; Zagier, D.: Modular forms with rational periods, in: Modular Forms,

R.A. Rankin (ed.), Ellis Horwood, Chichechester (1984) 197-249.
[Zag75] Zagier, D.: Modular forms associated to real quadratic fields, Invent. Math. 30

(1975) 1-46.



14 PALOMA BENGOECHEA

[Zag81] Zagier, D.: Eisenstein series and the Riemann zeta function, in: Automorphic
Forms, Representation Theory and Arithmetic, Springer-Verlag, Berlin-Heidelberg-
New York (1981) 275-301.

[Zag99] Zagier, D.: From quadratic functions to modular functions, Number Theory in
Progress. Vol 2 (K. Gyory, H. Iwaniec and J. Urbanowicz, eds.), Proceedings of In-
ternat. Conference on Number Theory, Zakopane 1997, de Gruyter, Berlin (1999)
1147-1178.

Department of Mathematics, University of York, York, YO10 5DD, United

Kingdom

E-mail address: paloma.bengoechea@york.ac.uk


	1. Introduction
	2. Convergence and Fourier coefficients
	3. Algebraic properties of Fourier coefficients
	4. Appendix: Explicit examples
	References

