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DECAYING AND NON-DECAYING BADLY APPROXIMABLE NUMBERS

RYAN BRODERICK, LIOR FISHMAN, AND DAVID SIMMONS

Abstract. We call a badly approximable number decaying if, roughly, the Lagrange constants of integer
multiples of that number decay as fast as possible. In this terminology, a question of Y. Bugeaud (’15)
asks to find the Hausdorff dimension of the set of decaying badly approximable numbers, and also of the
set of badly approximable numbers which are not decaying. We answer both questions, showing that the
Hausdorff dimensions of both sets are equal to one. Part of our proof utilizes a game which combines the
Banach–Mazur game and Schmidt’s game, first introduced in Fishman, Reams, and Simmons (preprint
’15).

1. Introduction

Fix d ∈ N. For each x ∈ Rd, write

L(x) = lim inf
q→∞

q1/dd(qx,Zd)

= sup{c ≥ 0: ‖x− p/q‖ ≥ c/q1+1/d for all but finitely many (p, q) ∈ Zd × N},

where ‖ · ‖ denotes some norm on Rd (e.g. the max norm). The point x is called well approximable if
L(x) = 0, and badly approximable if L(x) > 0. If x is badly approximable and i/j ∈ Q, we can get a trivial
bound on L

(

i
jx
)

in terms of L(x): if L(x) > c, then for all but finitely many (p, q) ∈ Zd × N
∥

∥

∥

∥

i

j
x−

p

q

∥

∥

∥

∥

=
i

j

∥

∥

∥

∥

x−
jp

iq

∥

∥

∥

∥

≥
i

j

c

(iq)1+1/d
=

c

i1/dj

1

q2

and thus

(1.1) L

(

i

j
x

)

≥
1

i1/dj
L(x).

The special case j = 1 gives the bound

(1.2) L(ix) ≥ L(x)/i1/d.

Recently, Y. Bugeaud [3] has investigated the question of whether the bound (1.2) is “optimal”. Precisely,
call a badly approximable point x decaying if there exists C > 0 such that for all i ∈ N,

L(ix) ≤ C/i1/d.

In this terminology, the main result of [3] states that certain algebraic badly approximable points are
decaying. Bugeaud also asks the following question:

Question 1.1 ([3, Problem 4.4]). What is the Hausdorff dimension of the set of decaying badly approx-
imable1 points? of the set of badly approximable points which are not decaying?

The latter question has been recently answered in dimension 1 by a preprint of D. Badziahin and S.
Harrap [1, Theorem 15].2 In this paper, we give a different proof of Badziahin–Harrap’s result, which is
valid in higher dimensions as well. Our proof shows that the set of badly approximable points which are

1The condition “badly approximable” has been omitted in the statement of [3, Problem 4.4], but the question obviously
makes no sense without it.

2In the current version of their paper they do not mention this connection; we informed them of it by private communication
while writing this paper.
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2 RYAN BRODERICK, LIOR FISHMAN, AND DAVID SIMMONS

not decaying is hyperplane winning, which shows that its intersection with certain “nice” fractals has full
Hausdorff dimension; see §2 for more details.

We also answer Bugeaud’s first question in dimension 1, showing that the set of decaying badly approx-
imable numbers has full dimension. Our proof uses the so-called Banach–Mazur–Schmidt game recently
introduced in [4].

Acknowledgements. The second-named author was supported in part by the Simons Foundation grant
#245708. The third-named author was supported in part by the EPSRC Programme Grant EP/J018260/1.
We wish to thank Jayadev Athreya for introducing us to a special case of the theorems proved in this paper
which motivated this work. We thank the anonymous referee for helpful comments.

1.1. Main results. In our first main theorem, we find a full dimension set of badly approximable points
which are not only non-decaying, but non-decaying when multiplied by any chosen sequence of rational
numbers, with as little decay in the Lagrange values as desired. (The full dimension set depends on the
chosen sequence and decay rate.) Precisely:

Theorem 1.2. Let i1
j1
, i2
j2
, . . . ∈ Q be a sequence of distinct rational numbers, and let g : N → (0,∞) satisfy

g(k) → ∞ as k → ∞. Then the set

(1.3)

{

x ∈ BAd : lim sup
k→∞

g(k)L

(

ik
jk

x

)

= ∞

}

is hyperplane winning.

This theorem is quite similar to [1, Theorem 15], with three main differences:

• We allow any sequence of rationals
(

ik
jk

)

k
, rather than just the sequence of all natural numbers.

• We prove the theorem in any dimension, rather than just dimension 1.
• We prove that the set in question is hyperplane winning, whereas Badziahin and Harrap show that
it is Cantor-winning. These concepts share many similar properties and both imply full Hausdorff
dimension, but the former is stronger [1, Theorem 12] and implies strong C1 incompressibility on
sufficiently regular fractals (see [2]).

The special case ik
jk

= k, g(k) = k1/d yields an answer to the latter part of Question 1.1, namely it shows

that the set of badly approximable points which are not decaying is hyperplane winning, and therefore of
full Hausdorff dimension.

We remark that this theorem also answers a related question. Namely, fix an irrational i/j ∈ Q and
consider the sequence ik/jk = (i/j)k. By (1.1) we have L

(

(i/j)kx
)

≥ 1
(i1/dj)k

L(x), so it is natural to ask

about the size of the set of x for which

(1.4) lim
k→∞

(i1/dj)kL
(

(i/j)kx
)

= ∞.

Taking ik/jk = (i/j)k and any g(k) ∈ o
(

(i1/dj)k
)

, Theorem 1.2 implies that for a full-dimension set of

x ∈ BAd there exists a sequence (kn)n such that L
(

(i/j)knx
)

≥ 1
g(kn)

for all n. Fix such an x; applying

(1.1) one then obtains L
(

(i/j)kx
)

≥
(

g(kn)(i
1/dj)k−kn

)−1
for all kn ≤ k < kn+1. It follows easily from

this that (1.4) holds for this x. Thus, the set of x satisfying (1.4) has full Hausdorff dimension in Rd. As
a concrete example, there is a full-dimension set of x ∈ R such that L(2nx) ∈ ω(2−n).

On the other hand, in dimension one we show that the set of x for which L
(

i
jx
)

decays quickly also has

full dimension, providing a complement to both of the above results. Namely, we obtain full dimension for
the set of x for which limk→∞(ij)kL

(

( ij )
kx
)

< ∞, as well as full dimension of the set of decaying badly

approximable numbers, via the following theorem:

Theorem 1.3. The set
{

x ∈ BA1 : L
(

i
jx
)

≤ 1
ij for all reduced i

j ∈ Q
}

has full Hausdorff dimension in

R.

Since the set in question is contained in the set of decaying badly approximable numbers, Theorem 1.3
answers the first part of Question 1.1 by showing that the set of decaying badly approximable points has
full dimension in R.
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2. Games

In this section we describe two variants of Schmidt’s game which will be used in the following sections.
Both games are played by two players, whom we will call Alice and Bob. The hyperplane absolute game
(or just hyperplane game) was introduced in [2] and involves a parameter 0 < β < 1/3 and a target
set S ⊆ Rd. Bob begins by choosing a ball B0 = B(x0, ρ0) ∈ Rd. Inductively, if Bi = B(xi, ρi) have
been chosen for i = 1, . . . , k, Alice chooses a hyperplane Lk+1 and a number 0 < εk+1 ≤ β, determining
a set Ak+1 = N (L, εk+1ρk) = {x ∈ Rd : d(x,L) ≤ εk+1ρk}. Bob then must choose a ball Bk+1 =
B(xk+1, ρk+1) ⊆ Bk \ Ak+1 satisfying ρk+1 = βρk.

3 The sets B0 ⊇ B1 ⊇ B2 ⊇ . . . are closed and nested
with radii tending to zero, so the intersection B∞ =

⋂∞

k=0 Bk is a singleton. The unique point x such
that B∞ = {x} is called the result of the game. If x ∈ S, Alice is declared the winner; otherwise, Bob
wins. If Alice has a strategy to win this game regardless of how Bob plays for each 0 < β < 1/3, then
S is called hyperplane absolute winning, or just hyperplane winning. Hyperplane winning sets intersect
any sufficiently regular fractal in a set of full dimension, and the class of hyperplane winning sets is
closed under diffeomorphisms and countable intersections. Combining these three properties one obtains
strong C1-incompressibility of hyperplane winning sets on “nice” fractals (see [2] for precise definition and
discussion):

Theorem 2.1 ([2, Corollary 5.4]). Let S be a hyperplane winning subset of Rd, let K be the support of
an absolutely decaying and Ahlfors regular measure, and let fi : U → Rd (i ∈ N) be nonsingular C1 maps.
Then

dim

(

∞
⋂

i=1

f−i(S) ∩K

)

= dim(K).

In particular, dim(S) = d.

Many self-similar fractals are supports of absolutely decaying and Ahlfors regular measures so we obtain
for example that when S is a hyperplane winning subset of R and C is the Cantor ternary set, there is a
set of dimension dim(C) consisting of real numbers x ∈ C such that x, x2, x3, . . . are all in S.

The Banach–Mazur–Schmidt game, or BMS game, was introduced in [4]. It is played on a complete
metric space (X, d) with a target set S and parameter 0 < β < 1 being given. Bob again begins by choosing
an arbitrary ball B0 = B(x0, ρ0). Now suppose B0, B1, . . . , Bk have been chosen and write Bi = B(xi, ρi).
Alice then chooses a ball Ak+1 = B(yk+1, βρk) satisfying d(xk, yk+1) + βρk ≤ ρk. (Note that this implies
Ak+1 ⊆ Bk.) Bob then chooses Bk+1 = B(xk+1, ρk+1) satisfying d(xk+1, yk+1) + ρk+1 ≤ βρk. Here Bob is
allowed to choose 0 < ρk+1 ≤ ρk arbitrarily. Again, the balls Bi (i ∈ N) are closed and nested with radii
tending to zero, so the intersection B∞ =

⋂

k Bk is a singleton. Again, the result x is the unique point
such that B∞ = {x}, and we call Alice the winner if and only if x ∈ S. If Alice has a strategy to win
this game regardless of how Bob plays, we say that S is β-BMS winning. If S is β-BMS winning for some
0 < β < 1 then we say that S is BMS winning. Informally, the BMS game is a two-player game in which
the first player (Bob) chooses balls according to the relatively lax rules of the Banach–Mazur game, while
the second player (Alice) chooses according to the stricter rules of Schmidt’s game. Accordingly, the class
of BMS winning sets is very restrictive and has strong geometric properties. To make this precise, we need
the following definition:

Definition 2.2. Given β > 0, a set E ⊆ X is said to be uniformly β-porous if there exists r0 > 0 such
that for every ball B(x, r) ⊆ X with r ≤ r0, there exists an open ball B◦(y, βr) ⊆ B(x, r) such that
B◦(y, βr) ∩ E = ∅.

Theorem 2.3 ([4, Theorem 2.2]). Let (X, d) be a complete, separable metric space and fix 0 < β < 1.
Then a Borel set S ⊆ X is β-BMS winning if and only if X \

⋂∞

i=1 Si is a countable union of uniformly
β-porous sets.

3The original hyperplane game only requires Bob’s radius to satisfy ρk+1 ≥ βρk rather than equality, making the game
discussed here the “modified hyperplane game”. However, the hyperplane game is equivalent to the modified hyperplane
game (this follows from appropriately modifying the proof of [5, Proposition 4.5]), so this distinction is not important.
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When (X, d) is given additional structure, this theorem yields an estimate on the Hausdorff measure of
a BMS winning set. Specifically, we consider metric spaces (X, d) which support a measure of the following
type:

Definition 2.4. A Borel measure on a metric space (X, d) is called Ahlfors s-regular if there exist C > 1
and ρ0 > 0 such that for any x ∈ X and 0 < ρ ≤ ρ0 we have

(2.1)
1

C
ρs ≤ µ(B(x, ρ)) ≤ Cρs.

We say µ is Ahlfors regular if it is Ahlfors s-regular for some s > 0.

If (X, d) supports some Ahlfors s-regular Borel measure, then the s-dimensional Hausdorff measure
on X is Ahlfors s-regular as well [8, Theorem 8.5]. It follows that dimX = s. On a metric space (X, d)
supporting such a measure, BMS winning sets are very large in the sense that their complement has positive
codimension:

Proposition 2.5 ([4, Corollary 2.5]). If X is Ahlfors s-regular and S ⊆ X is BMS winning, then dim(X \
S) < s.

It follows from this that any BMS winning set on a metric space supporting an Ahlfors s-regular measure
must be conull with respect to the s-dimensional Hausdorff measure.

3. Proof of Theorem 1.2

We will need the following lemma due to Davenport (see [7, Lemma 4]) for a version which implies the
one stated here):

Lemma 3.1 (Simplex Lemma). Let d ∈ N, r > 0, and x ∈ Rd. Then the rational points in B(x, r) with

denominator at most (2d!r)−
d

d+1 all lie in a single hyperplane.

Proof of Theorem 1.2. Fix 0 < β < 1/3. Let ρ0 > 0 be the radius of B0. Since g(k) → ∞, after extracting

a subsequence we can assume without loss of generality that β2k+1/(4d!) ≥ g(k)−1/2 for all k. (Taking
a subsequence makes the set (1.3) smaller, so if we can show that (1.3) is hyperplane winning for the
subsequence, then it is hyperplane winning for the whole sequence as well.) Write εk = g(k)−1/2. Alice
will play the game in such a way that she guarantees that if x denotes the result of the game, i.e. the

unique point so that
⋂

j≥0 Bj = {x}, then for each k ∈ N,
∥

∥

∥

ik
jk
x− p

q

∥

∥

∥
≥ εkq

−1+1/d for all sufficiently

large q. She will do this by partitioning N into infinitely many arithmetic progressions Pk = 2k−1 + 2kN0

(k ∈ N) and using her turns corresponding to indices in Pk to ensure that the condition holds for k. (This
argument mimics the original proof of the countable intersection stability of Schmidt’s winning property.)

This ensures that L
(

ik
jk
x
)

is larger than εk.

Fix k ∈ N and ℓ ∈ Pk, and we will describe Alice’s strategy for the turn corresponding to the index ℓ.
Let

Qm =

(

4d!
ik
jk

βℓρ0

)− d
d+1

and let

Qm =

{

jkp

ikq
: Qm−1 ≤ q < Qm

}

.

Note that every (reduced) jkp
ikq

with q sufficiently large is in some Qm (where “sufficiently large” depends on

k). Since ℓ ∈ Pk, we have ℓ = 2k−1 +2km for some m ≥ 0. Given Bℓ = B2k−1+2km, we consider Qm ∩ 2Bℓ,
where 2Bℓ denotes the ball with the same center as Bℓ and twice the radius. Applying Lemma 3.1 with
r = 2(ik/jk)β

ℓρ0, we see that all rationals in a given ball of radius r of the form p

q with Qm−1 ≤ q < Qm lie

on a single hyperplane. Now, the map x 7→ jk
ik
x sends balls of radius 2(ik/jk)β

ℓρ0 to balls of radius 2βℓρ0
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and also sends hyperplanes to hyperplanes, so it follows that Qm ∩ 2Bℓ is contained in a single hyperplane
L. Alice will choose Aℓ to be N (L, βℓ+1ρ0). Then for any x ∈ Aℓ and any jkp

ikq
∈ Qm ∩ 2Bℓ, we have

∥

∥

∥

∥

x−
jkp

ikq

∥

∥

∥

∥

≥ βℓ+1ρ0 =
β2k+1

ik/jk
(ik/jk)β

2k−1+2k(m−1)ρ0

=
β2k+1

ik/jk

Q
−(1+1/d)
m−1

4d!
≥

β2k+1

4d!

1

ik/jk
q−(1+1/d)

≥
εk

ik/jk
q−(1+1/d).

On the other hand, for any jkp
ikq

∈ Qm \ 2Bℓ we have
∥

∥

∥

∥

x−
jkp

ikq

∥

∥

∥

∥

≥ βℓρ0 ≥ βℓ+1ρ0 ≥
εk

ik/jk
q−(1+1/d).

Thus, if Alice plays according to this strategy and x denotes the result of the game, then for each k ∈ N,
∥

∥

∥

ik
jk
x− p

q

∥

∥

∥
≥ εkq

−(1+1/d) for all (p, q) ∈ Zd × N. �

4. Proof of Theorem 1.3

Let FM ⊆ R be the set of real numbers with partial quotients at most M . Recall that the set of badly
approximable numbers is

⋃

M∈N
FM . We will prove that our set has full dimension in R by showing that

it has full dimension within each FM . To this end we prove the following:

Proposition 4.1. For each integer M ≥ 2 and each reduced i
j ∈ Q, the set {x ∈ FM : L

(

i
jx
)

≤ 1
ij } is a

BMS winning set on FM .

Before proving this, we show how it can be used to deduce Theorem 1.3.

Proof of Theorem 1.3. Fix M ∈ N. One can easily check that FM ∩ [0, 1] is the limit set of the con-
tracting family of self-conformal maps {fi}Mi=1 on [a, b], where fi(x) = 1

i+x , a = [0;M, 1,M, 1, . . . ] and

b = [0; 1,M, 1,M, . . . ], and that this system satisfies the open set condition. It follows (see [9, Lemma
3.14]) that the δM -dimensional Hausdorff measure HδM is Ahlfors regular, where δM = dim(FM ). By
Proposition 4.1 the set

{

x ∈ FM : L

(

i

j
x

)

≤
1

ij
for all i, j ∈ N

}

is a countable intersection of BMS winning sets, hence conull with respect to HδM by Proposition 2.5. In
particular,

dim

{

x ∈ R : L

(

i

j
x

)

≤
1

ij
for all i, j ∈ N

}

≥ δM .

Since dim
(
⋃

M FM

)

= dim(BA1) = 1, we have limM→∞ δM = 1, so the theorem follows. �

The main idea of the proof of Proposition 4.1 is as follows: Call an approximation p/q of x “good” if
|x−p/q| < 1/q2. If i/j ∈ Q is fixed and (jp)/(iq) is a good approximation of x, then |x−(jp)/(iq)| < 1/(iq)2,
and rearranging gives |(i/j)x− p/q| < 1/(ijq2). Thus, if x has infinitely many good approximations whose
denominator is a multiple of i and whose numerator is a multiple of j, then L

(

i
jx
)

≤ 1
ij . Alice will direct

the play of the game to numbers x with this property by using her turns to choose digits of the continued
fraction expansion in such a way that infinitely many truncated expansions (i.e. convergents), which are
good approximations to x, have numerator and denominator in the required sets. To show that this is
possible we first prove the following lemma:

Lemma 4.2. For any i, j ∈ N and M ≥ 2, there exists T = T (i, j,M) ∈ N such that for any n ∈ N and
any a1, a2, . . . , an ∈ N, there exist 1 ≤ t ≤ T and an+1, . . . , an+t ∈ {1, . . . ,M} such that [0; a1, . . . , an+t] is
a rational with numerator in jN and denominator in iN.
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Proof. Recall [6, Theorem 1] that if x = [0; a1, a2, . . . ], then the approximations obtained by truncating
the continued fraction expansion of x, pn

qn
= [0; a1, a2, . . . , an], satisfy the recurrence relation

(4.1)
pn
qn

=
anpn−1 + pn−2

anqn−1 + qn−2
·

In other words,
[

pn−1 qn−1

pn qn

]

=

[

0 1
1 an

] [

pn−2 qn−2

pn−1 qn−1

]

.

Now it is well-known (e.g. [6, Theorem 2]) that

(4.2) det

[

pn−1 qn−1

pn qn

]

= (−1)n.

Fix i, j, and M , and let a1, . . . , an ∈ {1, . . . ,M}. We may assume i and j are coprime (i.e. that the
fraction i/j is reduced). We want to choose an+1, an+2, . . . , an+t in such a way that

[

pn+t−1 qn+t−1

pn+t qn+t

]

=

[

0 1
1 an+t

] [

0 1
1 an+t−1

]

· · ·

[

0 1
1 an+1

] [

pn−1 qn−1

pn qn

]

≡

[

m1 m2

j i

]

(mod ij),

where m1,m2 ∈ Z/ijZ satisfy m1j + m2i ≡ (−1)n (mod ij) (such numbers exist since gcd(i, j) = 1). It

will suffice to show that the semigroup H generated by elements of the form ga =

[

0 1
1 a

]

(1 ≤ a ≤ M)

is equal to G = SL±(2,Z/ijZ). (Since G is finite, if H = G then there exists T such that every element
of G is the product of at most T elements of the form ga.) Since G is finite, for any g ∈ H there exist
1 ≤ k1 < k2 such that gk1 = gk2 and therefore g−1 = gk2−k1−1 ∈ H , so H is equal to the group generated
by the elements ga. In particular, we have

[

−a 1
1 0

]

=

[

0 1
1 a

]−1

= g−1
a ∈ H

for all 1 ≤ a ≤ M .

Recall (e.g. [11, p.139]) that

[

1 1
0 1

]

and

[

0 1
−1 0

]

generate SL(2,Z). Since

[

1 1
0 1

]

=

[

−1 1
1 0

] [

0 1
1 2

]

∈ H

[

1 0
1 1

]

=

[

0 1
1 2

] [

−1 1
1 0

]

∈ H

[

0 1
−1 0

]

=

[

1 1
0 1

] [

1 0
−1 1

] [

1 1
0 1

]

=

[

1 1
0 1

] [

1 0
1 1

]−1 [
1 1
0 1

]

∈ H,

it follows that SL(2,Z/ijZ) ⊆ H . Since det(ga) = −1 for all a, we have G = SL±(2,Z/ijZ) = H , which
completes the proof. �

Proof of Proposition 4.1. A modification of the argument of [10, Theorem 1.2] shows that the BMS game is
invariant under quasisymmetric homeomorphisms, and in particular under the coding map π : {1, . . . ,M}N →
FM defined by the formula π(a1, a2, . . .) = [0; a1, a2, . . .]. When the BMS game is played on the space
{1, . . . ,M}N, the gameplay is equivalent to the following: on each of Bob’s moves, he chooses a word in
the alphabet E = {1, . . . ,M} which is an extension of Alice’s most recent word, and on each of Alice’s
moves, she chooses a word in the alphabet E which is an extension of Bob’s most recent word by T letters,
where T ∈ N is fixed at the start of the game. The result of the game is the unique infinite word ω which
extends all of these words, so Alice’s goal is to make the number x = π(ω) satisfy L

(

i
jx
)

≤ 1
ij . Now let T

be given by Lemma 4.2, and let Alice’s strategy be given as follows: if Bob’s most recent word is the move
a1, . . . , an, then Alice’s next move will be the word a1, . . . , an+T , where an+1, . . . , an+t are given by Lemma
4.2, and an+t+1, . . . , an+T are arbitrary. When Alice uses this strategy, each of her moves determines a
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new convergent of the continued fraction expansion of the final word whose numerator is in jN and whose
denominator is in iN.

Now, suppose pk

qk
is a convergent with pk ∈ jN and qk ∈ iN, say pk = jp and qk = iq. Then

∣

∣

∣

∣

x−
jp

iq

∣

∣

∣

∣

=

∣

∣

∣

∣

x−
pk
qk

∣

∣

∣

∣

≤

∣

∣

∣

∣

pk+1

qk+1
−

pk
qk

∣

∣

∣

∣

=
1

qk+1qk
≤
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and hence
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p

q
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∣

∣

∣

=
i

j

∣

∣

∣

∣

x−
jp

iq

∣

∣

∣

∣

≤
i

ji2q2
=

1

ij

1

q2
·

Since this holds for infinitely many fractions p
q , it follows that L

(

i
jx
)

≤ 1
ij . �
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9. R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math.

Soc. (3) 73 (1996), no. 1, 105–154.
10. C. T. McMullen, Winning sets, quasiconformal maps and Diophantine approximation, Geom. Funct. Anal. 20 (2010),

no. 3, 726–740.
11. M. A. P. Newman, Integral matrices, Pure and Applied Mathematics, Vol. 45, Academic Press, New York-London, 1972.

340 Rowland Hall (Bldg.# 400), University of California, Irvine, Irvine, CA 92697-3875, USA
E-mail address: broderir@uci.edu

University of North Texas, Department of Mathematics, 1155 Union Circle #311430, Denton, TX 76203-5017,
USA

E-mail address: lior.fishman@unt.edu

University of York, Department of Mathematics, Heslington, York YO10 5DD, UK
E-mail address: David.Simmons@york.ac.uk

URL: https://sites.google.com/site/davidsimmonsmath/


	1. Introduction
	1.1. Main results

	2. Games
	3. Proof of Theorem ??
	4. Proof of Theorem ??
	References

