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Terahertz plasmons in coupled two-dimensional semiconductor resonators
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Advances in theory are needed to match recent progress in measurements of coupled semiconductor resonators
supporting terahertz plasmons. Here, we present a field-based model of plasmonic resonators that comprise
gated and ungated two-dimensional electron systems. The model is compared to experimental measurements
of a representative system, in which the interaction between the gated and ungated modes leads to a rich
spectrum of hybridized resonances. A theoretical framework is thus established for the analysis and design
of gated low-dimensional systems used as plasmonic resonators, underlining their potential application in the
manipulation of terahertz frequency range signals.
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I. INTRODUCTION

The traditional test beds of terahertz plasmonics are two-
dimensional electron systems (2DESs). Early experiments
studied plasmon excitation [1,2], thermal emission [3], effects
of magnetic fields [2], and dc currents [4]. On the other
hand, advances in fabrication and measurement constantly
enable discovery of new effects [5]. Theoretical work has
traditionally concentrated on the dispersion of gated and
ungated plasmons [2,6], magnetoplasmons [2], and edge
plasmons [7] in unbounded 2DESs. Analytical studies of
plasmonic resonators, however, have been limited mainly
to the description of single resonators, either with simple
boundaries (in which the resonances occur at multiple half-
wavelengths [5]), or with manipulated boundary conditions
leading to plasmon instabilities [8]. More complex resonators
(realized, for example, by a long periodic grating coupler) have
mainly been studied by numerical simulations [9–11].

Several recent experiments, however, have been devoted to
systems containing a relatively small number of strongly cou-
pled plasmonic resonators. Using an antenna to couple an inci-
dent electromagnetic wave, Dyer et al. [12,13] studied the col-
lective response of plasmonic crystals comprising up to eleven
resonators, with a detector integrated into the crystals. Wu
et al. [14] characterized a system of three coupled resonators by
time-domain spectroscopy. They used on-chip LT-GaAs photo-
conductive switches monolithically integrated with the 2DESs.
The latter experiments are the first to promise a terahertz spec-
troscopic characterization where signals transit between the
ends of a 2DES (as opposed to the traditional excitation of the
whole structure by a grating coupler). The theoretical modeling
of the measured spectra then requires new approaches that take
into account the coupling between resonators.

A general theoretical method to describe plasmonic struc-
tures has been developed by Popov and co-workers. An
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electromagnetic wave is assumed to be incident upon a
structure, and the fields are presented in the form of Fourier
integrals (for finite structures) [15–18] or series (for in-
finitely long periodic plasmonic crystals) [19]. Application
of the electromagnetic boundary conditions leads to integral
equations for the amplitudes of the harmonics, which can
then be found numerically. The structures analyzed include
a partially gated infinitely long 2DES [15], a fully gated
2DES with ohmic contacts [16], and a partially gated 2DES
with ohmic contacts [17]. The resulting terahertz spectra
depend on the spectrum of the plasmonic modes as well as
the coupling between a plasmonic mode and the incident
electromagnetic wave, and the method is particularly suited
to model experiments with a free-space excitation.

The model of Aizin and Dyer [20] presents gated and
ungated 2DESs as sections of transmission lines with different
impedances. Each section is characterized by a transmission
matrix, the product of which can describe the response of
a compound resonator. Developed initially for passive struc-
tures, the model has recently been extended to terahertz gen-
eration in 2DESs carrying a dc current [21]. While the method
of Popov et al. takes into account the full fields everywhere in
space, much of the attractive simplification of the transmission
line model of Aizin and Dyer comes from considering only
plasmonic signals at the 2DESs and disregarding retardation.
The transmission line could be expected therefore to be
particularly suitable for strongly subwavelength plasmons.

An alternative approach to junctions between gated and un-
gated 2DESs uses expansions of the electromagnetic fields into
eigenmodes [22], which are rigorous solutions of Maxwells
equations across the whole junction. It has been conceived
for closed metallic waveguides [23–25] and then expanded to
include open dielectric waveguides as well [26–28]. It has also
been applied to waveguides at optical frequencies [29–33],
where metals exhibit a plasmonic response, and to plasmonic
waveguides in the terahertz range [34–38]. The technique
can be used to characterize a single junction between two
waveguides and then analyze more complex geometries (com-
prising multiple junctions) relying, for example, on wave [25]
or transfer matrices [39].

Relying on the strengths of the eigenmode expansions, we
present here a complete electromagnetics-based description
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FIG. 1. Two ungated and one gated 2DESs terminated by ohmic
constants constitute a system of three coupled resonators, with the
contacts and the junctions between the gated and ungated 2DESs
acting as plasmonic reflectors.

of systems comprising coupled plasmonic resonators (Sec. II)
and compare it directly to the experiments of Wu et al. [14]
(Sec. III).

II. THEORETICAL MODEL

The configuration, shown in Fig. 1, contains all the basic
components of the experimental plasmonic systems: gated and
ungated resonators of different lengths and ohmic contacts
terminating the system at both ends. The theoretical model
includes three steps. First, we find the eigenmode spectra of the
gated and ungated 2DESs. We then use these to calculate the
plasmon reflection and transmission coefficients at a junction
between two 2DESs. From the coefficients, we can derive the
resonator modes and simulate the experimentally measured
signals.

To calculate the eigenmode spectrum, we assume TM waves
with the magnetic field Hy and the electric fields Ex and Ez.
The angular frequency is ω and the longitudinal wave number
is kz. The 2DESs are embedded in a homogeneous dielectric
with the permittivity εd.

The electromagnetic waves induce a time-varying modula-
tion of the electron density n and the velocity v. We describe
the electron dynamics in 2DESs by the equation of motion of
the form

∂v

∂t
+ v

τ
= e

m
Ez|x=0, (1)

where τ is the collision time, e is the electron charge, and
m is the effective electron mass. The time-varying current
density is J = en0v, where n0 is the dc electron density.
Maxwell’s boundary conditions then couple the current and
electron density to the fields Hy and Ex .

To find the eigenmode spectra, one has to prescribe the fields
is the regions below the 2DES (x < 0), between the 2DES
and the gate or between the 2DES and the air (0 < x < d),
and in the air for the ungated 2DES (x > d), where d is the
thickness of the dielectric above the 2DES. Denoting these
regions correspondingly by 3, 2, and 1, we write the magnetic
fields of an eigenmode in the form hyq = Aq exp(ikxa,dx) +
Bq exp(−ikxa,dx). Here, q = 1,2,3; Aq and Bq are constants;
and the transverse wave numbers in the dielectric kxd and air
kxa can be found from the standard dispersion relations for
waves in homogeneous dielectrics. We omit everywhere the
common factor exp[i(kzz − ωt)].

Because the field amplitudes cannot grow at infinity, the
permissible values of the transverse wave numbers kxa,d are
either purely imaginary or real. When they are imaginary,

FIG. 2. Gated (dashed and dash-dotted) and ungated (solid and
dotted) plasmon dispersion curves. The gated dispersion curves
were calculated for two different electron densities. The solid line
is calculated from the ungated dispersion equation (2) that takes
into account the different permittivities of GaAs and air. The dotted
line is calculated from a dispersion equation assuming homogeneous
GaAs around the 2DES. The plasmon wave numbers for ungated and
gated plasmons differ from each other, which contributes to plasmon
reflection and transmission at junctions between gated and ungated
2DESs.

the fields decay away from the channel. These wave numbers
correspond to plasmons. In the ungated 2DES, they obey a
dispersion relation of the form

(1 − �u)(1 + ζ )e ikxdd − �u(1 − ζ )e−ikxdd = 0, (2)

where �u = ien0ukxd/(2mε0εdω(ω + i/τ )) with n0u denoting
the dc electron density in the ungated 2DES, and ζ =
kxd/(kxaεd). In the gated 2DES, the plasmons obey a dispersion
relation of the form

�ge−ikxdd + (1 − �g)e ikxdd = 0, (3)

where �g = ien0gkxd/(2mε0εdω(ω + i/τ )) with n0g denoting
the dc electron density in the gated 2DES. Figure 2 shows
examples of plasmon dispersion curves. The parameters
correspond to the experiments discussed below; the material is
GaAs with εd = 12.4 and m = 0.067m0 (m0 is the free electron
mass). Electron collisions are neglected. The ungated electron
concentration is n0u = 6.5 × 1011 cm−2 (solid line). The gated
plasmon dispersions are shown for n0g = 6.5 × 1011 cm−2

(dashed line) and n0g = 4.9 × 1011 cm−2 (dash-dotted line).
The ungated dispersion curve has a parabolic form; the
gated ones are linear at low frequencies (indicating fully
gated 2DESs). The thickness of the dielectric above the
ungated 2DES and the contrast between the permittivities of
air and GaAs affect the ungated dispersion curve. The dotted
line in Fig. 2 shows the ungated dispersion curve assuming a
semi-infinite homogenous GaAs layer above the 2DES. The
difference between the exact (solid) and approximate (dotted)
curves is significant, with the approximate curve giving lower
values of frequency for the same wave number.

At 0.1 THz, the ungated plasmon wave number (0.18 ×
104 rad/cm) is only 2.5 times larger than the wave number
of the free electromagnetic wave in GaAs. This suggests that
the behavior of the plasmonic fields in the dielectric and the
coupling between plasmons and nonplasmonic modes will
play a role at the junctions between gated and ungated 2DESs.

Whereas the imaginary plasmon wave numbers are re-
stricted by the dispersion relations, real transverse wave
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numbers can have any value between zero and infinity. These
modes form a continuous spectrum, and the corresponding
longitudinal wave numbers are, neglecting losses, either real
(radiation modes) or imaginary (evanescent modes).

Any two modes from the same 2DES are orthogonal to each
other and obey the orthogonality condition

∑
q

1

εq

∫
hyq(kx)hyq(k̃x)dx = I (kx,k̃x)δ(kx − k̃x). (4)

The index q denotes the geometrical region (see Fig. 1); the
summation goes from 1 to 3 for the ungated and from 1 to 2
for the gated 2DES; the integration limits are determined by
the region boundaries; εq equals either 1 or εd; I (kx,k̃x) is a
constant; δ(kx) is the Kronecker delta.

Next, we consider junctions between gated and ungated
2DESs. When a plasmon is incident upon a junction, it
will both partially transmit through and partially reflect
back from the junction. To find the plasmon transmission
and reflection coefficients, we expand the fields at both
sides of a junction into the eigenmodes of the gated and
ungated 2DESs [22]. One of the expansions contains the
incident and reflected plasmon together with the reflected
continuous modes; the other contains the transmitted plasmons
and the transmitted continuous modes. Maxwell’s boundary
conditions require that the transverse fields Ex and Hy match
at the junction. Because of the continuous spectrum of the
nonplasmonic modes, the boundary conditions result in two
integral equations. Several methods of solving such equations
exist, and we adopt here the one based on limiting the size
of the regions 1 and 3. We assume that two perfect magnetic
conductors are placed in regions 1 and 3 at the same distance w

from the 2DES. Since the plasmonic fields decay away from
the channel, sufficiently large values of w do not affect the
plasmon dispersions. On the other hand, the presence of the
two conductors leads to discrete spectra of the nonplasmonic
modes. An advantage of this discretization method is that
the effects of radiation can be controlled by the conductor
placement. Applying the boundary conditions in each region
separately leads for the reflection and transmission coefficients
to two algebraic equations of the general form

hyup + Ruhyup +
∑

j

rjhyju

= Tuhygp +
∑

j

tjhyg,

kzuphyup − Rukzuphyup −
∑

j

kzjurjhyju

= Tukzgphygp +
∑

j

kzjgtj hyg, (5)

where the summations are over the nonplasmonic modes,
and the incidence is from the ungated 2DES. Truncating
the summations at a sufficiently large number and using
the orthogonality conditions (4) leads to an algebraic matrix
equation for the coefficients Ru, Tu, tj and rj . Alternatively,
Eq. (5) can be solved by the variational method [25], and we
found that both approaches gave the same result.

Once the plasmon transmission and reflection coefficients
are known for incidence from the ungated (Tu and Ru) and the
gated (Tg and Rg) 2DESs, the junction between them can be
characterized by a wave matrix [25] of the form

1

Tg

(
TuTg − RuRg Rg

−Ru 1

)
. (6)

A section of a 2DES of the length L, on the other hand, is
characterized by a 2 × 2 diagonal matrix with the diagonal
elements exp(±ikzup,gpL).

Finally, we describe compound plasmonic resonators by
multiplying the wave matrices. The structure shown in
Fig. 1 consists of three coupled resonators. To simulate the
experiments, we assume that the (perfectly conducting) ohmic
contacts, terminating the structure on both ends, leak some
signal, in a frequency-independent manner, into and out of the
2DES.

Moderate electron collisions do not affect the mode shapes
and, hence, the transmission and reflection coefficients. They
do, however, lead to a propagation loss, which can be taken into
account by complex-valued plasmon wave numbers kzup,gp.
The resonances of the whole structure can be determined from
the frequency variation of the wave matrices.

The modal analysis presented here shares several strengths
with the theoretical approach of Popov et al. [15–17,19],
based on a Fourier representation of the fields. They both
are rigorous solutions of Maxwell’s equations, consider the
fields everywhere in space, and take effects of retardation into
account. However, the modal analysis is able to characterize
single junctions, so that complex geometries and be easily
analyzed and designed. The price is some loss of generality.
We assume, for example, that the ungated resonators of
Fig. 1 couple only via the plasmons propagating in the
gated resonator (justified for wide gates). On the other hand,
the modal analysis may offer advantages compared with
the transmission-line approach of Aizin and Dyer [20], in
particular when the plasmons are confined loosely to the
2DESs and retardation is important. Finally, by relying in
part on analytical calculations, all three approaches would
need less computational resources than full-wave numerical
simulations. In addition, commercial numerical solvers have
currently a limited ability to self-consistently solve problems
involving complex electron dynamics (for example, effects
of diffusion and dc currents). Analysis of such problems by
purpose-built solvers has so far been limited to rather simple
geometries [40].

III. COMPARISON WITH EXPERIMENTS

Having presented the theoretical model, we will now
compare it to our experimental measurements. The experi-
mental setup is described in detail elsewhere [14]. Briefly, a
gate (of width L2 = 4.4 μm) overlaying a 2DES in a high-
mobility GaAs/AlGaAs heterostructure formed two ungated
resonators on either side with lengths L1 = 19.7 and L3 =
48.9 μm (Fig. 1). The (ungated) electron density, found from
magnetotransport experiments, was n0u = 6.5 × 1011 cm−2.
A negative dc bias applied to the gate was used to control
the electron density in the region of 2DES underneath (the
2DES depth was 75 nm). We take the (empirically determined)
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FIG. 3. (Color online) (a) Experimental and (b) theoretical gate-
modulated signals (color plots) agree, within the noise floor of the
experiments. The signals are determined by the resonances of the
whole structure (black lines).

relationship between the applied voltage Vg and the electron
density as n0g = a1(Vg + a2)γ , where a1 = 5.38 × 1011 cm−2,
a2 = 2.6, γ = 0.23, and Vg is in volts.

In our experiments, two LT-GaAs photoconductive switches
were connected to the 2DES by ohmic contacts attached to
coplanar transmission lines on either side. Terahertz signals
generated in one switch traveled through the first coplanar
line, the 2DES, and the second coplanar line, before exciting a
photocurrent in the far switch. This arrangement enabled on-
chip time-domain transmission spectroscopy of the compound
plasmonic resonator formed from the 2DESs between 0.05 and
0.5 THz. The structure was kept at a temperature of ∼2 K. To
increase the signal-to-noise ratio, a gate-modulation technique
was used, whereby a small (25 mV rms) gate modulation
was superimposed on the static gate voltage, allowing lock-in
detection [14]. The measured signal was proportional to the
derivative of the photo-excited current with the gate voltage.
The (static) gate voltage was varied between −2.5 V (close
to pinch-off) and −0.4 V (above which the gate-modulated
signals became weak). The measured time variations of the
signals were first filtered to eliminate high frequency noise,
and then Fourier-transformed to reveal the frequency spectrum
of the transmitted pulses.

Figures 3(a) and 3(b) show contour plots of, respec-
tively, the experimental and the simulated signals against
the frequency and the gate voltage. Both have three distinct
features: a strong and narrow feature starting at 0.1 THz for
−2.5 V, with another starting at 0.2 THz, and a weaker broad
one around 0.3 THz. Both the theoretically predicted and
the experimentally determined signals are stronger at lower
frequencies and at larger gate voltages. Overall, they agree best
around −2.5 V for all frequencies. The agreement is excellent
between the positions of the lowest-frequency feature for the
whole voltage range. The experimental and theoretical features
that start at 0.2 THz differ somewhat at lower gate voltages.
Nevertheless, their shapes are similar; we note in particular
that both the theory and the experiments show a frequency
broadening between −2.5 and −2 V. The shapes of the third
feature around 0.3 THz also agree: both the theory and the
experiments start as a broad resonance at −2.5 V and fork into
two branches as the gate voltage decreases.

In the simulations, we calculated the derivative of the trans-
mitted power with the gated electron density. The plasmons
were lossy, first due to collisions (τ = 5 ps) and second, due
to plasmon leakage into radiation modes at the junctions. Both
mechanisms affect the shape of the curves. To simulate the
incident terahertz pulse, we assumed that its power decays
exponentially with the frequency [14].

Even though a common assumption [5,12,13,36,38], the
perfectly reflecting contacts in the simulations is an approxi-
mation, since strictly they would not allow coupling between
the transmission lines and the 2DESs. The coupling also
depends on the fields on both sides of the contact, and
it is absent for one of the two modes supported by the
transmission line [14]. However, due to the high doping of the
contacts and the mismatch of the modal fields, the coupling
between the transmission line and the 2DESs is expected to
be weak across the whole frequency range. Correspondingly,
the real contacts should be good reflectors, and should
not strongly shift the phase of the reflected plasmons, or
degrade the quality of the resonances considerably. The gate-
modulation technique provides acceptable signal-to-noise
ratio despite weak plasmon excitation by the transmission
lines.

To elucidate further the origin of the measured and
simulated signals, Figs. 3(a) and 3(b) also show (dashed
black lines) the positions of the resonances calculated for
the whole structure. The measured and simulated signals
(the contour plots) correspond to some of the calculated
resonances. However, not all resonances affect the signals
equally. For example, only two of the three lowest resonances
(dashed lines) excite a strong signal. Similarly, while three
resonances exist around 0.3 THz, only two of them appear to
be responsible for two branches originating from the broad
third feature in Figs. 3(a) and 3(b). The reason is that both the
experimental and simulated signals are effectively derivatives
with respect to the gate voltage and the gated electron density.
Consequently, the signals were weak when the derivatives
were small (for example, for the resonances of the ungated
2DESs). We calculated the resonant curves ignoring collisions
and radiation losses (by taking τ = ∞ and by putting magnetic
conductors close to the 2DESs).

Although the gate-modulated signals are inherently weak
for some resonances, they characterize plasmons directly,
unaffected, for example, by a direct cross-talk between the
transmission lines on either sides of the 2DESs. The gate-
modulation technique is, however, sensitive to frequency
variations of the input signals and the coupling strength
between the transmission lines and the 2DESs. We were able
to take the former effect into account, while assuming that the
latter effect is weak. The good qualitative agreement between
the experiments and simulations of Fig. 3 appears to justify
this assumption.

Figure 4 shows the same resonances as in Figs. 3(a)
and 3(b), now as solid black lines, together with the uncoupled
resonances of the individual gated and ungated 2DESs as
gray lines. The uncoupled resonances are for perfect plasmon
reflections from the 2DESs boundaries: the solid gray lines are
for the gated 2DES (five resonances), the dashed gray lines are
for shorter (six resonances) and the dotted gray lines are for
the longer (two resonances) ungated 2DES.
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FIG. 4. Resonances of the whole system (black lines) and of
the uncoupled gated (solid gray) and the two ungated (dashed and
dotted gray lines). Interaction between modes co-existing in the same
frequency leads to hybridized resonances (e.g., 3 and 4).

The lowest coupled resonance (black line 1 in Fig. 4) hardly
differs from the lowest uncoupled resonance of the gated
2DES. The next coupled resonance (line 2) is also close to
the lowest uncoupled resonance of the longer ungated 2DES.
However, the second-order uncoupled resonances of the gated
and longer ungated 2DES exist in the same frequency range
between 0.2 and 0.3 THz. In the coupled system, they become
hybridized (lines 3 and 4). Line 3 starts at −2.5 V as a
resonance of the gated 2DES and finishes at −0.4 V as the
ungated one; line 4 behaves in the opposite way. Around
−1.5 V, the resonances are coupled, with strong plasmon

amplitudes excited in both 2DESs. A change in the gate voltage
will therefore affect not only the plasmons below the gate but
also the plasmons in the ungated 2DESs, an effect previously
reported in Ref. [17].

The resonances become more entangled as the frequency
increases. For example, the next three resonances (lines 5,
6, and 7) stem, at higher gate voltages, from the interaction
between three uncoupled resonances (the third-order gated, the
third-order longer ungated and the first-order shorter ungated).
The interaction creates the broad measured and simulated
signals seen in Fig. 3 around 0.3 THz.

Our model could be used to design further configurations
that support hybridized resonances generating strong gate-
modulated signals. A candidate structure could comprise two
gated 2DESs separated by an ungated 2DES, where uncoupled
gated plasmons exist in the same frequency range.

IV. CONCLUSIONS

We have presented an electromagnetics-based approach
to characterize coupled plasmonic resonators and compared
its predictions with experiments. An analysis of the coupled
system showed that while some of the resonances may be
independent from each other, most of them hybridize as a result
of an interaction between gated and ungated 2DESs. We note
that our theoretical approach could be extended for the design
of more advanced plasmonic devices, in particular resonant
oscillators, amplifiers, and detectors carrying dc currents.
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