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Abstract
In the current study, we examined the role of active experience on sensitivity to multisensory

synchrony in six-month-old infants in a musical context. In the first of two experiments, we

trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the

effects of this training, relative to no training, on their later perception of the synchrony

between audio and visual presentation of the drumming action. In a second experiment, we

then contrasted this active experience with the observation of drumming in order to test

whether observation of the audiovisual effect was as effective for sensitivity to multimodal

synchrony as active experience. Our results indicated that active experience provided a

unique benefit above and beyond observational experience, providing insights on the

embodied roots of (early) music perception and cognition.

Introduction
Sensitivity to the integration of information across multiple senses is crucial to perceiving and
acting in a multimodal environment. In this paper, we focus on a classic question in the field of
development: when and how do infants gain sensitivity to synchrony between visual and audi-
tory modalities? A variety of research suggests that infants are able to recognize synchrony and
violations of synchrony between visual and auditory modalities in some contexts. On a broad
level, infants as young as four months recognize that visual presentations are associated with
particular sounds. For example, they are more likely to look to a person covering her eyes than
a musical instrument when hearing “peek-a-boo” [1]. On a more fine-grained level, infants
also differentiate between synchronous and asynchronous presentation of auditory and visual
stimuli [2–4]. The threshold at which individuals discriminate synchronous and asynchronous
presentation of stimuli, however, changes over development (see [5–6]) such that infants
and children become increasingly sensitive to shorter offsets between visual and auditory sti-
muli over time [5,7]. For example, although six-month-old infants did not behaviourally
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demonstrate sensitivity to a 200 ms offset between auditory and visual presentation of stimuli,
they showed sensitivity to this offset via event-related potential components measured with
electroencephalography during perception of synchronous versus asynchronous stimuli [8]. At
ten months of age, when habituated to a synchronous audiovisual event, infants detected asyn-
chrony when the offset between visual and auditory information was 666 ms, but not when the
offset was 366 or 500 ms [6].

Development of sensitivity to multisensory synchrony has several plausible mechanisms,
including brain maturation, visual experience, and multisensory experience. Most researchers
are in agreement that a combination of maturation and different types of experience contribute
to this development (e.g. [9–10]). Lewkowicz [11] claims that “various findings on the effects
of early experience demonstrate unequivocally that the young nervous system is highly plastic
and that it depends on exposure to temporally and spatially aligned multisensory inputs for the
development of normal multisensory functions” (p. 6). This position is supported by a variety
of studies (in both animal models and special populations, such as children born deaf and later
receiving cochlear implants) suggesting that limited input from one of the senses early in devel-
opment limits sensitivity to multisensory integration even when that sense is later recovered
(e.g. [12]). Although the importance of general experience has been emphasized in this
domain, the relevance and contribution of particular types of experiences still need to be thor-
oughly examined in order to better understand the differential role of different kinds of
experience.

The everyday life of an infant consists of a variety of activities that engage multiple modali-
ties simultaneously. For example, infants’manual explorations [13], affective tuning [14],
action perception [15], motor planning [16], language and memory development [17–18], and
music-related behaviors [19–20], all have cross-modal components that could play a key role
in developing multimodal sensitivities. Sheya and Smith [16] suggested that these various
forms of multimodal experiences are a “core mechanism creating developmental change” in
that they influence the ordering of development and the development of higher-order cogni-
tion (p. 125). The active creation of multimodal experiences by the child (i.e., active experience)
and the development in a variety of domains that ensues thus interact and create a cyclical per-
petuation of change that links multimodal experience and cognitive development bidirection-
ally [21–22]. The study of sensitivity to multisensory synchrony in human development,
therefore, cannot be isolated from the dynamics of the experience the child encounters and cre-
ates in daily life.

In light of these considerations, musical contexts provide rich opportunities to investigate
this development, as they consist of an intrinsic interplay between action, multimodal activities,
and cognition [23–25]. The present study thus helps to forge the link between research on
musical development, sensitivity to multisensory synchrony, and perception-action coupling
in infancy. Given this background, our aim is to investigate the role of active experience (i.e.,
motor experience with an action that results in audiovisual effects) on sensitivity to multisen-
sory synchrony (or violations of synchrony) in infants in a musical context.

Active Experience as a Source of Sensitivity to Multisensory
Synchrony
It is perhaps intuitive that experience perceiving the integration of two senses (e.g., hearing
and seeing for audiovisual stimuli) might help one recognize the synchrony between visual
and auditory events. Less obvious, however, is the unique role active experience may play
in this-i.e. creating the co-occurring visual and auditory stimuli. Links between active produc-
tion of sensory effects and perception of these effects have been found using behavioral and
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neurophysiological measures across development. For example, three-month-old infants
trained to produce object-directed actions using Velcro mittens recognized the causality inher-
ent in the visually perceived consequences of those motor actions, but infants who did not
receive active training did not [26]. In a study assessing the neural effects of multimodal experi-
ence [27], infants were trained to use a tool to hit an object that then created a sound, or they
observed their parent create this sound with the same action. Infants later showed more motor
activation (as assessed via electroencephalography) to the sound associated with the previously
performed action than to the sound associated with the observed action.

Similar effects of motor expertise have been found in adults. Behavioral research with adult
experts reveals that individuals with skilled motor expertise (e.g., professional basketball play-
ers) are more accurate at predicting the timing of others’ actions than individuals with visual,
but not motor, experience (e.g., basketball coaches; [28]). Relatedly, professional dancers show
more motor activity when viewing actions within their motor repertoire than those with which
they have similar amounts of observational experience but cannot perform themselves [29].

These findings suggest that active experience uniquely influences the perception and predic-
tion of others’ actions. The effect of experience on sensitivity to multisensory synchrony relates
closely to these results, particularly within musical contexts. As reviewed by Paraskevopoulos
and Herholz [30], a range of research indicates that experience as a musician is related to
altered perception of audiovisual integration and related changes in brain structure and func-
tion. For example, piano players are more sensitive than novices to audiovisual asynchrony of
piano playing, but not of speech [31] and drummers are more sensitive than novices to audio-
visual asynchrony of drumming actions (e.g. [32–33]). In addition to long-term effects of musi-
cal training on sensitivity to audiovisual integration, experimental manipulations using short-
term musical training have provided more direct evidence that sensorimotor-auditory training
creates behavioral and brain changes (e.g., [34]).

Although passive perception of multisensory events contains the information necessary for
recognizing integration of stimuli across the senses, research directly contrasting active and
passive (i.e., observational) experience with multisensory stimuli indicates that active engage-
ment plays a unique role. For example, Butler and colleagues [35–36] found that adults were
faster and more accurate at recognizing audiovisual associations learned through active manip-
ulation of an object with which these associations were paired than through passive visual
learning of the associations. Developmental research assessing the effects of active versus pas-
sive experience on multisensory integration is relatively rare. An exception to this is a study by
James and Bose [37] in which 5- to 7-year-old children received active or passive training with
objects that were paired with sounds and then heard the sounds associated with the actively or
passively learned object-sound pairing. In this study, there was greater motor cortex activation
for the sounds learned in the active condition than in the passive condition, suggesting a spe-
cific effect of active experience on multisensory integration at the neural level.

Despite the fact that some research has addressed the role of active and passive training of
multisensory actions in infants, this work has largely focused on outcomes within only one sen-
sory system (i.e., auditory domain). For example, Gerry and colleagues [38] found that
12-month-old infants who had received six months of experience in an interactive musical set-
ting were more likely than their peers (who received passive experience with music) to prefer
tonality that was matched to Western norms. Similarly, Phillips-Silver and colleagues [39]
either bounced infants on an experimenter’s knee to certain beats or had the infants observe an
experimenter bounce her knee (without being engaged in the movement with the experi-
menter) and found that the experience of bouncing influenced infants’ perception of the beat,
whereas observation had no such effect. These findings suggest that manipulating infants’
active versus passive experience with music plays an important role in infants’ auditory
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perception. Investigating the effects of training experience on sensitivity to multisensory syn-
chrony in infants will provide insight into the intricate relations between the developmental
origins of multisensory experiences, perception, and learning. Extending previous findings, we
predict that active experience is particularly important to the developing sensitivity to multi-
sensory synchrony of (matched) actions in infants.

In the present research, we altered infants’ experience with multimodal actions and assessed
the effects of this manipulation on their sensitivity to multisensory synchrony. At six months
of age, infants’ perception of synchrony in multimodally presented stimuli is variable depend-
ing on the offset in presentation of different modalities [6, 8]. We hypothesized that training
young infants to produce novel multisensory drumming actions would facilitate their ability to
recognize the synchrony of the multisensory consequences of these same actions. To test this
hypothesis, we gave six-month-old infants active or passive experience with the production of
drumbeats and compared their perception of drumming synchrony versus asynchrony in this
condition relative to a condition in which they received no such experience. In a second experi-
ment, we then contrasted this active experience with observational experience of drumming in
order to assess whether observation of the audiovisual effect was as effective as active experi-
ence. Given the unique effects of active versus observational experience on adults’ perception
of synchronous versus asynchronous audiovisual stimuli and the unique effect of active versus
observational experience on infants’ perception of others’ actions, we expected that active expe-
rience would uniquely influence multisensory perception (i.e., detection of synchronous versus
asynchronous audiovisual stimuli) in infants.

Experiment 1

Methods
Participants. Forty six-month-old infants (range: 5 months, 16 days to 7 months, 0 days)

participated in one of two conditions: active training (n = 20,M age = 6 months, 17 days) or
control (n = 20,M age = 6 months, 13 days). Infants were recruited from a database of families
interested in participating in infant research. Before testing began, all parents signed a written
informed consent that explained the procedure and noted that they could discontinue partici-
pation at any point for any reason. Some parents (including the participants pictured in fig-
ures) also gave written permission for anonymous photos and videos to be shared in academic
publications or lectures. The ethics committee associated with research at our institute (facul-
taire Ethische Commissie Gedrags-wetenschappelijk onderzoek [ECG]) approved this study
(approval number: ECG2012-1301-006).

Procedure. Infants in both conditions had the chance to play with a drumming toy for
approximately five minutes. In the active training condition, infants interacted with the drum
prior to watching the video stimuli. In the control condition, infants interacted with the drum
after watching the video stimuli.

During training, the infant sat on a parent’s lap and a table was placed in front of them with
a small drum and two drumsticks (see Fig 1). One of the drumsticks was placed in the infant’s
hand and the experimenter drew the infants’ attention to the drum by tapping and gazing
toward the drum. If the infant did not make contact with the drum using the drumstick, the
experimenter demonstrated the drumming action with the other drumstick.

Either before (control condition) or after (active training condition) training, infants saw a
series of eight video pair trials. The infants saw two videos presented next to one another (see
Fig 2). The videos started simultaneously and were identical except that the two video displays
were offset from one another by 300 or 600 ms. In all videos, an actor beat a drum to the same
musical beat for thirty seconds. The actor’s face was not visible and the only sound was that of
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the drumstick hitting the drum. The audio of one of the two videos was presented from a neu-
tral location behind the screen. In this way, the drumming sound was synchronous with one of
the two videos and either 300 or 600 ms early or late for the other video. Across eight randomly
presented trials, infants saw all possible combinations of offset: 300 and 600 ms early and late
(audio relative to video). The order of trials and when the synchronous video was on the left or
right side of the screen was pseudorandomized (with the requirement that half of the synchro-
nous videos were presented on each side across trials) and varied between subjects. Between
each video, a short attention getter (a sound and an object, but no action that could be consid-
ered synchronous or asynchronous with the sound) was presented in the center of the screen to
direct the infant’s attention back to the video if he or she had become distracted.

Coding of behavior. All sessions were recorded via a video camera facing the infant,
directly below the center of the presentation screen. These videos were coded offline to assess
infants’ activity during the training sessions and their direction of looking during the video
session.

A trained coder watched all training sessions and counted the number of times infants
made contact with the drum using the drumstick or his or her hands. The coder also counted
the number of times the parent or experimenter made contact with the drum. Additionally, she
noted the number of times the infant was not looking during contact, as watching the event

Fig 1. Training Conditions. Infants in the active condition played with drum and infants in the observational
condition observed drumming for approximately five minutes prior to watching the films.

doi:10.1371/journal.pone.0130960.g001

Fig 2. Video Session. Infants saw two simultaneously presented movies, one of which was synchronous
with the audio and the other was offset by 300 or 600 ms. The visual representations of the sound-waves for
each video are displayed below the videos (with “visual beat” represented by purple lines).

doi:10.1371/journal.pone.0130960.g002
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that produced the sound would be particularly important for learning multisensory associa-
tions. A second coder double-coded 25% of the sessions and the number of hits coded as pro-
duced and observed by the two coders was highly correlated (rs = .94).

A trained coder, blind to the side of the screen on which the synchronous video was playing,
conducted frame-by-frame coding to indicate whether the infant was looking to the left or right
side of the screen throughout each of the eight video segments. Following coding, a logfile was
consulted to extract information about each segment: on which side the synchronous video was
played, the sound offset (300 or 600 ms), and the timing (early or late). Using this information, the
amount of time infants spent looking at the synchronous versus asynchronous video across each
type of test trial could be assessed. A second coder double-coded 25% of the sessions and the two
agreed on whether the infant looked longer to the synchronous or asynchronous video on 93% of
trials. Raw looking times for these sessions were highly correlated between coders, rs> .90.

Results
Training session results. On average, infants in the active training condition saw them-

selves make contact with the drum approximately 85 times (SEM = 9.75). In the control condi-
tion (during the play session following video session), on average, infants saw themselves make
contact with the drum approximately 54 times (SEM = 7.80). A t-test indicated that infants in
the active training condition produced (and observed) more drum hits than infants in the con-
trol condition, t(38) = 2.51, p = .016. This was likely a function of fatigue at the end of the test-
ing session for infants in the control condition. In accordance with fatigue over time, infants in
the active training condition, who played with the drum before watching the videos, spent less
time (overall) watching the videos (M = 69.60 seconds [SEM = 2.66]) than infants in the con-
trol condition, who watched the videos at the beginning of the session (M = 81.87 seconds
[SEM = 2.91]; t(38) = 3.11, p = .003).

Video session results. Initial analyses examined whether early versus late onset of videos
relative to audio (order onset), 300 ms versus 600 ms delays between video and audio (delay
offset), or age played any role in infants’ relative attention to the events displayed. No main
effects or interactions with order onset, delay offset, or age were found (ps> .14, ηp

2 < .06).
We thus collapsed across these different types of trials and did not include age in subsequent
analyses. In order to assess whether infants looked longer to synchronous versus asynchronous
videos across trials, we conducted a Repeated Measures Analysis of Variance (ANOVA)
with total looking time to synchronous and asynchronous videos as the within-subjects,
repeated measures variable and Condition (active training or control) as the between-subjects
variable. This revealed a significant interaction between Synchrony and Condition, F(1,38) = 4.31,
p = .045, ηp

2 = .10. No main effect of Synchrony was found across conditions, F(1,38) = .05,
p = .82, ηp

2 = .001, but a main effect of Condition emerged, F(1,38) = 9.70, p = .003, ηp
2 = .20.

The main effect of Condition was consistent with the above-described pattern of infants in the
control condition attending to the videos for more time than infants in the active condition.
Pairwise comparisons revealed that the interaction between Synchrony and Condition was
driven by differences between looking times to the asynchronous event in the active training
and control conditions, such that infants in the control condition spent more time (estimated
marginal mean = 42.25 seconds [SEM = 1.79]) attending to the asynchronous events than
infants in the active condition (estimated marginal mean = 36.68 seconds [SEM = 1.83]),mean
difference = 9.53, p = .001. The difference between conditions in attention to the synchronous
events was not significant,mean difference = 2.74, p = .20.

In order to both control for differences in raw looking times to events and to assess consis-
tency in preference for synchronous or asynchronous videos across trials, we created a score
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that measured whether infants consistently looked longer to synchronous or asynchronous
events across trials by assigning each infant a binary score of 0 for each trial for which he or she
looked longer to the asynchronous video and 1 for each trial for which he or she looked longer
to the synchronous video. The proportion of the eight trials that each infant looked longer to
synchronous videos was then used as a dependent variable. An independent samples t-test
indicated that infants in the two conditions differed in the proportion of trials that they looked
longer to synchronous videos (see Fig 3), t(38) = 2.27, p = .03 (Cohen’s d = .72). In order to fol-
low up on this effect of condition, one-sample t-tests were conducted for each condition to
determine whether the proportion of trials for which synchronous videos were preferred dif-
fered from chance (50%). In the active training condition, infants looked longer at synchronous
videos on approximately 60% of the trials; this differed significantly from chance level: t(19) =
2.73, p = .01 (Bonferonni corrected; Cohen’s d = 1.25). In the control condition, infants looked
toward synchronous videos on approximately 49% of trials, which did not differ from chance,
t(19) = -.29, p = .78 (Cohen’s d = .13).

Non-parametric binomial tests confirmed these findings. A significantly greater number of
infants in the training condition looked longer to synchronous trials than asynchronous trials
(sign-test: p = .02), but the number of infants who looked longer to these different types of trials
did not differ for infants in the control condition (sign-test: p = .79). All data reported are avail-
able in S1 File.

Discussion
The results of this experiment indicate that experience creating multisensory actions was bene-
ficial for sensitivity to the synchrony of multisensory stimuli. That is, infants who received
active training producing multisensory actions preferred to look toward synchronous, relative
to asynchronous, presentations of the action they had just learned. In contrast, infants who did
not receive training producing the action beforehand showed no such preference. These find-
ings were corroborated by both raw looking times to the events and a measure of consistency
across trials that controlled for overall looking time. Specifically, when examining raw looking
times, infants in the active and control conditions differed in their relative attention to syn-
chronous and asynchronous events such that infants in the control condition looked more to
asynchronous events than did infants in the active condition. Thus, infants in the control con-
dition were attending more to the mismatched event, whereas infants who had received active

Fig 3. Experiment 1 results. Infants in the Active and Control conditions differed in the proportion of trials in
which they looked longer to the synchronous videos. (*p < .05, chance = 50%, error bars represent standard
errors).

doi:10.1371/journal.pone.0130960.g003
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training did not look as long to these events, presumably because they did not match their
expectations. These findings were further supported by analyses that took into account the
consistency with which infants looked to synchronous versus asynchronous events across tri-
als. According to this measure, infants in the two conditions differed in their consistent prefer-
ence for synchronous events, such that infants in the active condition looked to synchronous
events across more trials than would be expected by chance, whereas infants in the control con-
dition did not.

These findings are in accord with animal research that indicates a key role for early experi-
ence in multisensory integration [12]. Impressively, a mere five minutes of training (similar to
active training in other research; e.g., [40–41]) was sufficient to influence six-month-old
infants’ differentiation between synchronous and asynchronous audiovisual presentations.

The above findings are important in highlighting the role of experience in the increasing
sensitivity to multisensory synchrony. They do not, however, shed light on what particular
kinds of experience are most effective in contributing to sensitivity to multisensory synchrony.
It is possible that the mere observation of the synchronized audio and visual stimuli is sufficient
to influence perception of multisensory integration. In contrast to this hypothesis, research dis-
cussed above (e.g. [37, 40]) points to the possibility that active experience producing the action
(i.e., engaging one’s body and motor system during the perception of the sensory conse-
quences) might be particularly effective in altering multisensory perception. Both behavioral
and neural research with adults and children has shown unique effects of active, above and
beyond observational, experience on multisensory integration (e.g. [37]). In infancy, unique
effects of active movement have been found for action understanding (e.g. [42–43]) and for
musical preferences (e.g. [39]). In order to uncover whether observational experience with mul-
tisensory actions is sufficient to induce change in sensitivity to the synchrony of multisensory
stimuli, it is necessary to assess this sensitivity in infants who receive observational training
with the same actions as those produced in Experiment 1. In Experiment 2, we assess the effect
of a matched amount of observational experience of drumming on sensitivity to multisensory
synchronization.

Experiment 2

Methods
Participants. A separate set of twenty six-month-old infants (range: 6 months, 1 day to 6

months, 27 days) participated in Experiment 2 (M age = 6 months, 12 days). The age of infants
in Experiment 2 did not differ from infants in either condition in Experiment 1 (one-way
ANOVA: p = .27; posthoc LSDs comparing to each condition: ps> .12). Infants were recruited
from a database of families interested in participating in infant research. Before testing began,
all parents signed an informed consent that explained the procedure and noted that they could
discontinue participation at any point for any reason (see note about ethical approval in Exper-
iment 1).

Procedure. Infants first underwent a five-minute observational training session and then
observed the same exact video session as infants in Experiment 1. Coding of infants’ behavior
was identical across experiments, with the exception that the training session was only coded
for parent/experimenter actions and not infant actions (as the infant produced no actions).
The observational training session was created to match the types of experience infants in the
control condition from Experiment 1 received, as described below. A second coder double-
coded 25% of looking times in the video sessions and the two agreed on whether infants looked
longer to synchronous or asynchronous videos on 95% of trials. Raw looking times for these
sessions were highly correlated between coders, rs> .98.
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During training, the infant sat on a parent’s lap and a table was placed in front of them with
a small drum and two drumsticks (see Fig 1). The experimenter then proceeded to produce
drumbeats on the drum with the drumstick at a pace comparable to that of infants in the con-
trol condition from Experiment 1. If the infant was inattentive, the experimenter tried drawing
infants’ attention back to the drum. For one participant, the infant was distracted by the experi-
menter and the parent was asked to provide drumming examples for the infant. A second
coder double-coded 25% of the observational training sessions and the number of hits coded as
produced (by the experimenter) and observed (by the infant) by the two coders was highly cor-
related (rs� .99).

Results
Training session results. We first assessed the number of hits produced by the experi-

menter and the subset observed by the infant during the observational training session in order
to confirm that the amount of experience received by infants in this experiment was matched
to that of infants in the active training condition from Experiment 1. The number of hits pro-
duced by the child or experimenter, respectively, was closely matched in the active and obser-
vational training conditions (M = 118.5 [SEM = 12.04] andM = 119.3 [SEM = 6.48],
respectively; t(29.15) = .06, p = .96 [correcting for unequal variances]). The number of hits
observed by the infants in the two conditions differed in that infants in the observational train-
ing condition observed more hits than infants in the active training condition (observation:
M = 108.75 [SEM = 29.04], t(38) = .10, p = .05). Infants in the observational condition thus
received slightly more experience observing the multisensory stimuli prior to the video testing
session than did infants in the active training condition from Experiment 1.

Video session results. As in Experiment 1, we first examined whether there were effects of
onset order, delay offset, or age for raw looking times. No effects of onset order or age were
revealed, ps> .60, ηp

2< .015. A Repeated-Measures ANOVA with raw looking times as depen-
dent variables and Synchrony (synchronous or asynchronous) and Delay Offset (300 ms or
600 ms) as within-subjects factors revealed a significant interaction between Synchrony and
Delay Offset in Experiment 2, F(1,19) = 6.16, p = .023, ηp

2 = .24 and no main effects (ps> .60,
ηp

2s< .015). Follow-up pairwise comparisons, however, revealed no significant differences
between looking toward synchronous and asynchronous events at either 300 ms or 600 ms off-
set (ps> .08) or differences between offsets for either synchronous or asynchronous events
(ps> .14). Binomial tests for each delay offset further indicated that the number of infants who
looked longer to synchronous than asynchronous trials did not differ from chance in either
delay offset (ps> .25). As in Experiment 1, we also assessed consistency in preference for
synchronous or asynchronous videos across trials using the proportion measure (proportion
of trials for which infants preferred looking to synchronous over asynchronous videos). One-
sample t-tests indicated that infants in Experiment 2 did not differentiate between synchronous
and asynchronous trials in either 600 ms offset, t(19) = -.69, p = .50 or 300 ms offset trials,
t(19) = .78, p = .45.

We then conducted a Repeated-Measures ANOVA to directly contrast infants in the active
training condition from Experiment 1 with infants in Experiment 2. Given the interaction
between Synchrony and Delay Offset in Experiment 2, delay offset was included in the analy-
ses. This ANOVA revealed a significant Synchrony by Delay Offset by Condition interaction,
F(1,38) = 5.22, p = .028, ηp

2 = .12, and no other main effects or interactions, ps> .17, ηp
2 < .05.

In order to examine this interaction more closely, separate ANOVAs were conducted for the
300 ms and 600 ms delay offsets. No main effects of or interactions between Synchrony and
Condition were found for the 300 ms offset delay, ps> .35, ηp

2 < .03. Thus, when collapsed
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across conditions, there is no effect of synchronicity at a 300 ms delay offset, suggesting that
infants did not demonstrate sensitivity to synchrony at this offset regardless of training. For the
600 ms delay offset, a significant interaction between Synchrony and Condition was revealed,
F(1,38) = 6.54, p = .015, ηp

2 = .15 (and no main effects were significant, ps> .12, ηp
2 � .06).

Pairwise comparisons revealed that infants in the active and observational training conditions
differed significantly in their attention to synchronous events,md = 5.31 (SEM = 1.83), p =
.006 (estimated marginal means = 19.11 and 13.80, respectively), but not asynchronous events,
md = .40 (SEM = 2.03), p = .85, in the 600 ms offset trials (see Fig 4).

Finally, analyses comparing the proportion of synchrony preferred trials for the active and
observational conditions at each delay offset were conducted. That is, independent samples-
tests were conducted in order to investigate whether the proportion of trials for which infants
preferred looking to the synchronous videos differed between the two conditions. Consistent
with the above-summarized analyses with raw looking times, this revealed a significant differ-
ence between conditions for the 600 ms delay offset, t(38) = 2.42, p = .02, but no significant dif-
ference for the 300 ms delay offset, t(38) = .14, p = .89. The difference between conditions in
the 600 ms offset delay was driven by a difference from chance in relative synchrony preference
in the active condition, t(19) = 3.68, p = .002, but not in the observational condition, t(19) = -.69,
p = .50. Neither condition significantly differed from chance in the 300 ms offset trials, ts� 1.0,
ps> .30.

Discussion
Infants who received similar observational experience to infants’ own observed actions in
Experiment 1 (i.e., a similar number of perceivable drum hits) showed no evidence of sensi-
tivity to multisensory synchrony in this paradigm. The three-way-interaction between Syn-
chrony, Delay Offset, and Condition when comparing the raw looking times from the active
condition from Experiment 1 and the observational condition in Experiment 2 suggests that
observational experience was not as effective as active experience for detecting multisensory
synchrony when the asynchronous visual and auditory information was offset by 600 ms.
The data concerning the consistency of synchrony preference (i.e., the proportion score) indi-
cated that there was a difference between conditions in relative preference for the synchronous
events at the 600 ms, but not 300 ms, offset. During 600 ms offset trials, infants in the active
condition differed from chance in their preference for synchronous events, but infants in the

Fig 4. Active and Observational Results. Infants in the Active (Exp 1) and Observational (Exp 2) conditions
differed in the amount of time they looked to synchronous videos during 600 ms offset trials. (*p < .05, error
bars represent standard errors).

doi:10.1371/journal.pone.0130960.g004
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observational condition did not. The specificity of the effect for this longer offset (and the lack
of overall effect for the 300 ms offset) is in accord with findings suggesting that greater offsets
are recognized as asynchronous earlier in life and that behavioral effects for latencies of less
than 400 ms are rare in the first half year of life [6, 8].

The fact that observational experience was not effective in facilitating multisensory integra-
tion in this experimental context, however, does not imply that it does not play a role in the
development of sensitivity to multisensory integration at all. The experience infants in this
study received, though matched to that of the observational experience infants in the active
training condition from Experiment 1 received, was quite minimal. It is possible that more
extensive observational experience or different kinds of observational experience would be
more effective. The current findings suggest though, that with minimal experience, active expe-
rience is more beneficial than observational experience, for differentiating synchronous and
(600 ms offset) asynchronous stimuli.

General Discussion
Together, these experiments suggest that active experience provides a unique benefit, above
and beyond observational experience, for sensitivity to multisensory synchrony (i.e., differenti-
ation between synchrony and asynchrony) in the first year of life. Importantly, the observa-
tional condition accounted for the average number of times infants saw and heard the actions
being produced, thus diminishing the possibility that sheer familiarity with the multisensory
consequences of the action drove any effects in the active condition. This research was con-
ducted with six-month-old infants, an age at which infants are at the brink of performing two-
step actions such as drum beats and are beginning to differentiate synchronous versus asyn-
chronous multisensory presentations of audiovisually presented events [8]. The results are thus
consistent with previous research demonstrating an effect of active experience on perception of
events in a variety of domains at the cusp of action production (e.g., understanding of means-
end goals [42] and understanding of mental rotation [43]).

An important question concerns the mechanism underlying the benefits of active experi-
ence. That is, why should active experience producing multisensory effects lead to better recog-
nition of the integration of these effects when later perceiving these effects? A low-level
explanation for the difference in the effect might be an effect of general attentional differences
between conditions. In Experiment 1, infants in the active training and control conditions dif-
fered in their overall attention to the video events in this experiment. Although effects of active
training, relative to no training, were consistent when accounting for differential overall atten-
tion, it is possible that different engagement levels could have influenced infants’ differential
attention during test trials. In order to avoid this possibility in future research, one possibility
would be to train infants in the control condition on an alternative action (one unrelated to
that being tested). In the current research, however, the observational training in Experiment 2
controlled for any possible effect of attentional differences. There were no differences in overall
attention to the video events between infants in the active and observational training condi-
tions. Further, data comparing attention to the events during active versus observational train-
ing suggest that no differences in attention to the drumming events during training could drive
the observed effects. That is, infants in the observational condition heard just as many drum
hits as infants in the active training condition and they actually watched as many or more of
these drum hits than infants in the active training condition. Thus, no differences in attention
(as assessed via gaze and/or possibility of hearing) to the event prior to the video session could
have driven infants’ sensitivity to the synchrony of the observed event.
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An alternative possibility is that, having carried out the action oneself, one can better predict
the timing of the consequences of perceived actions. This hypothesis is in accord with research
discussed in the introduction concerning the role of active experience in predictions about per-
ceived actions (e.g. [28]). Lee and Noppeney [31] hypothesized that differences in multisensory
binding between piano players and novices was due to the predictive ability of the musicians:
“Because piano playing generates sensory signals in multiple modalities, the internal forward
model indirectly also furnishes predictions about the relative timings of the auditory and visual
signals leading to a narrower temporal binding window (p. E1441).” They found both behav-
ioral and neural effects of experience in this research, but it was conducted with adults who
had years of experience piano playing (see also [44, 45]) and the experience was not randomly
assigned, thus leaving several confounds uncontrolled. To more clearly test the predictive
hypothesis put forth by these authors, they suggested that future studies should directly con-
trast effects of pure audiovisual vs. audiovisual-motor training on audiovisual synchrony per-
ception. The current study is a clear example of this comparison. Although consistent with this
possibility, the present findings do not, however, directly test the consequences of active versus
passive experience on prediction. Recent research with developmental populations using eye-
tracking to measure infants’ predictive eye movements during perception of goal-directed
movements indicates that active experience influences infants’ predictive encoding of others’
behavior (e.g. [46]). Consistent with the current results, research with eight-month-old infants
that contrasted short-term active versus observational training with particular actions found
unique effects of active experience on prediction during subsequent observation of the action
[47]. These findings are consistent with the current research in indicating that the forward
model is a probable mechanism of both action prediction and, in this case, sensitivity to multi-
sensory synchrony.

The depth and breadth of the effects found in the active training condition are currently
undefined. For example, how long-lasting are the effects of the active training experience? It
seems unlikely that a short, five-minute training session would lead to a permanent change in
sensitivity, but the amount of experience needed over time and the duration of the effect given
different periods of experience could be explored in future studies. Another open question con-
cerns the specificity of the effects observed in this study. Whether training has an effect on sen-
sitivity to audiovisual synchrony across tasks and events or is specific to the particular action
learned was not addressed in the present study. The specificity or generalization of this learning
is an important topic for further investigation

By highlighting the crucial role of active experience for infants’ cognition and perception,
the present study is relevant to the field of early musical development. Indeed, while many con-
tributions in this area suggest that infants display sensitivity for certain musical features (for
example consonance and dissonance) without formal training [48] and that simple exposure is
sufficient to the development of highly specialised brain circuits devoted to process Western
music [49–51], our study shows that sensorimotor activity consolidates the sensitivity to audio-
visual synchrony, promoting a more embodied view of the processes involved in learning [52].
Although we do recognize the importance of environmentally rich information for the devel-
opment of one’s musical abilities [23], we also argue that infants are active creators of experi-
ence from birth [53], and thus cannot be considered passive perceivers of stimuli, and are
rather active and dynamic participants in shaping their environment [54–58]. Our contribu-
tion, in this sense, aligns with the growing number of studies that recently highlighted the role
of active training for music skill acquisition [59–61]. In general, this perspective on musical
learning as grounded in sensorimotor activity is consistent with the influential work by Esther
Thelen, who explored the dynamics of human development without positing any explicit
dichotomy between categories such as action, learning, cognition and development (e.g. [62–
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63]). We believe that integrating this framework within the sphere of infants’musicality will
stimulate further research to improve our understanding of musical development in infancy.

Given the role of musical expertise on sensitivity to audiovisual synchrony, one might
expect that the quality of infants’ training experience might influence infants’ relative sensitiv-
ity. Although we assessed individual differences in the number of drumming actions produced
by infants and in their attention (i.e., gaze) to these actions and their effects, these analyses
were not reported in the manuscript because we found no relation between individual differ-
ences in production or attention to these actions during training and infants’ differentiation
between synchrony and asynchrony in the video session. Thus, quality of training, as measured
via amount of produced actions (both by self and/or with the help of an adult) and relative
attention to the produced actions, was unrelated to sensitivity to multisensory synchronization
in the current experiment. This null effect does not necessarily suggest that quality of training
is uninformative more generally. It is possible that, with increased training periods or more
fine-grained measures of sensitivity to multisensory synchronicity, effects of training quality
could be revealed in subsequent experiments.

Future research should examine the relative benefits of active versus observational experience
on sensitivity to multisensory synchrony over time. For example, the specific difference between
active and observational training at a 600 ms, rather than a 300 ms, delay is likely a function of
the young age of the participants but can be directly assessed in future work by examining this
effect throughout development. Further, future studies can explore whether observational experi-
ence across an extended period of time or later in development is as effective as active experience.
Finally, an important avenue of future research concerns the limitations or conjunctive effects of
general brain maturation on the experience infants receive producing and perceiving multisen-
sory actions. The current findings provide insight into the underlying mechanisms of sensitivity
to audiovisual synchrony. They suggest that playing an active role in creating multisensory effects
is uniquely beneficial for perception of the synchrony of similar audiovisual stimuli. This finding
could have implications for the role of different kinds of experience on infants’ perception of the
world in a variety of domains that require multisensory processing, including speech perception,
action understanding, and musical cognition.

Supporting Information
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