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Natural and semi-natural habitats in agricultural landscapes are likely to come under increasing pressure
with the global population set to exceed 9 billion by 2050. These non-cropped habitats are primarily
made up of trees, hedgerows and grassy margins and their amount, quality and spatial configuration
can have strong implications for the delivery and sustainability of various ecosystem services. In this
study high spatial resolution (0.5 m) colour infrared aerial photography (CIR) was used in object based
image analysis for the classification of non-cropped habitat in a 10,029 ha area of southeast England.
Three classification scenarios were devised using 4 and 9 class scenarios. The machine learning algorithm
Random Forest (RF) was used to reduce the number of variables used for each classification scenario by
25.5 % ± 2.7%. Proportion of votes from the 4 class hierarchy was made available to the 9 class scenarios
and where the highest ranked variables in all cases. This approach allowed for misclassified parent
objects to be correctly classified at a lower level. A single object hierarchy with 4 class proportion of votes
produced the best result (kappa 0.909). Validation of the optimum training sample size in RF showed no
significant difference between mean internal out-of-bag error and external validation. As an example of
the utility of this data, we assessed habitat suitability for a declining farmland bird, the yellowhammer
(Emberiza citronella), which requires hedgerows associated with grassy margins. We found that �22%
of hedgerows were within 200 m of margins with an area >183.31 m2. The results from this analysis
can form a key information source at the environmental and policy level in landscape optimisation for
food production and ecosystem service sustainability.
� 2015 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and
Remote Sensing, Inc. (ISPRS). This is an open access article under the CC BY-NC-ND license (http://creati-

vecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Agricultural land covers approx 38% of the earth’s terrestrial
surface (FAO, 2014) and therefore plays a key role in biodiversity,
conservation and ecosystem service delivery at a variety of spatial
scales (Billeter et al., 2008; Tscharntke et al., 2005). However
increasing pressures are likely on the fragmented habitats within
these landscapes with the global population set to exceed 9 billion
by 2050 driving demand that may require a doubling of food pro-
duction (Godfray et al., 2010; Tilman et al., 2011). In agricultural
landscapes non-cropped habitats are primarily made of features
such as trees, hedgerows and grassy margins. For the purpose of
this study a margin is a buffer strip P2 m wide and a hedgerow
is defined as a length of small trees and shrubs P20 m long and
65 m wide (Maddock, 2008). Trees are defined as having an indi-
vidual crown >6 m2 and may occur within a hedgerow, in isolation
or as part of a woodland/forest. In the UK the total length of hedge-
rows fell from an estimated 800,000 km in 1956 to under
500,000 km in 1994 (Cornulier et al., 2011) to 477,000 km in
2007 (Carey et al., 2008). Recent reforms to the Common
Agricultural Policy (CAP) have encouraged farmers to manage such
features by means of financial payments through various
agri-environmental schemes overseen by the Department for
Environment, Food and Rural Affairs (DEFRA) in England. Features
such as hedgerows and margins, are protected under UK (DEFRA,
1997, 2004) and EU (EU, 2007) law due to their importance as an
ecological network across mono-cultured landscapes with
distribution and connectivity having significant effects on land-
scape scale biodiversity and regional biota (Benton et al., 2003;
Power, 2010). Many ecosystem services depend on the amount,
quality and configuration of non-cropped land, as well as the
landuse within fields (Benton, 2007; Billeter et al., 2008; Power,
2010). For example, simplification of the landscape through
increased field size and reduced natural vegetation cover,
especially of grassland areas, has been shown to increase pest
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damage due to lower populations of natural enemies (Gardiner
et al., 2009).

Given the importance of the amount, connectivity, heterogene-
ity and quality of non-cropped habitat for biodiversity and other
ecosystem services, spatially extensive knowledge on the location
and state of these habitats has now been recognized as a key
variable in mapping and modeling ecosystem service delivery
and sustainability at local, regional and national scales (Dale and
Polasky, 2007; Kremen et al., 2007; Watson et al., 2011). Many of
the processes involved need to be assessed at landscape level
which makes traditional field based surveys expensive and time
consuming.

Remote sensing has long since been used tomap biodiversity at a
variety of spatial scales (Turner et al., 2003). However non-cropped
features in the UK are often below the spatial resolution of many
satellite sensors (i.e. <5 m), therefore alternative platforms are
required for accurate delineation of their extent (O’Connell et al.,
2013a). Some studies have used image fusion to enhance the spatial
resolution of multispectral bands (Aksoy et al., 2010) while others
have looked at sub-pixel image classification for the detection of
small scale woody elements in the landscape (Foschi and Smith,
1997; Thornton et al., 2007). Many other approaches focus on the
use of edge detection kernels to detect spectral boundaries which
may be indicative of hedgerows or margins in agricultural land-
scapes (Fauvel et al., 2012; Rydberg and Borgefors, 2001). All these
approaches are pixel based and rely on either high spatial resolution
panchromatic data for contrast or multispectral data to classify the
features based on spectral response. Other approaches have classi-
fied trees, hedge and shrub vegetation by combining multispectral
and structural data via stereo imaging (Tansey et al., 2009), Light
Detection And Ranging (LiDAR) (Hellesen and Matikainen, 2013)
and radar (Scholefield et al., 2012). While these approaches offer
robust mapping of tall vegetation, they generally don’t enhance
the classification of surface vegetation such as grassy margins, can
be costly to acquire and generally are not suitable for regional scale
mapping due to low spatial resolution or low spatial coverage.

An alternative approach to the use of pixels is the use of objects
which can add additional information to features of interest which
can then be utilised in an Object Based Image Analysis (OBIA)
protocol (Blaschke, 2010). OBIA uses a variety of spectral, textural,
geometric, thematic and contextual attributes built from the
aggregation of homogeneous pixels into real world objects, there-
fore the size of uncorrelated feature space is significantly increased
when compared to traditional pixel based approached (Benz et al.,
2004; Mallinis et al., 2008; Myint et al., 2011). Non-cropped fea-
tures in structured agricultural landscapes generally have high
geometric and contextual properties; e.g. margins typically have
a high length-to-width ratio, show a high contrast to neighbouring
features such as hedges and are located at the edge of fields. Sev-
eral studies have used OBIA in the classification of non-cropped
features such as trees and hedges with varying levels of success
(Bock et al., 2005; Mueller et al., 2004; Sheeren et al., 2009;
Tansey et al., 2009; Vannier and Hubert-Moy, 2008). Classification
in OBIA has been dominated by algorithms such as maximum like-
lihood, nearest neighbour and Knowledge Based Classifiers (KBC)
(Blaschke, 2010). A KBC incorporates expert knowledge in building
a set of rules that utilise the attributes of each object in the image
and have proved successful in the classification of non-cropped
areas in the UK (O’Connell et al., 2013a; Tansey et al., 2009). How-
ever the creation of a robust KBC is an iterative process which can
be time consuming with respect to the selection of suitable fea-
tures and thresholds (Stumpf and Kerle, 2011). Model transferabil-
ity can be a significant issue where the thresholds and membership
functions within the rule-base break down when the KBC is
applied to data which was taken at a different time or location
(O’Connell et al., 2013a). An alternative approach which is gaining
popularity within the remote sensing community is the use of
machine learning or ensemble algorithms such as Support Vector
Machine (SVM) and Random Forest (RF) in OBIA (Duro et al.,
2012). Such algorithms have advantages over conventional algo-
rithms based on their ability to detect subtle and complex patterns
in high dimensional data using robust statistical techniques with a
high degree automation (Blaschke, 2010; Rodriguez-Galiano et al.,
2012). Previous experience of RF (Breiman, 2001) from some of the
authors of this study in the classification of complex habitats in the
Yorkshire Dales National Park in the UK (Bradter et al., 2011) gave
an indication of its potential when applied to environmental and
remote sensing data.

RF is based on an ensemble of decision trees which are each
grown on random selections of two thirds of the data with replace-
ment. This ‘‘bagging” approach makes the algorithm more insensi-
tive to noise in the data (Rodriguez-Galiano et al., 2012), including
variations in reflectance due to solar zenith or Biodirectional
Reflectance Distribution Function (BRDF) (Chan and Paelinckx,
2008). This concept of machine learning by randomisation over
multiple iterations allows for discernible pattern to emerge from
highly dimensional data. The set of variables used at each decision
node is randomly selected which can reduce the strength of indi-
vidual trees but also reduces correlation between trees and thus
reduces the generalisation error (Liaw and Wiener, 2002). The pro-
portion between misclassifications and the total number of Out Of
Bag (OOB) elements (i.e. the remaining one third of data) con-
tributes to an unbiased estimate of generalisation error. This error
converges as the number of trees increases; therefore adding more
trees does not over fit the data (Cutler et al., 2007). RF uses the
‘‘best” variables at each node based on node purity. Several options
to calculate variable importance exist, including permutation
importance which is calculated by randomly permutating all val-
ues in the selected variable and using the difference in OOB error
as an indication of the importance of that variable to the classifier.
Pruning of trees is not necessary as the final classification is based
on the majority vote of all trees within the forest. The package ran-
domForest 4.6–7 (Liaw andWiener, 2002) was used in the R (3.0.1)
statistical coding environment (R Development Core Team, 2014),
which is based on the original Fortran programs by Breiman and
Cutler (https://www.stat.berkeley.edu/~breiman/RandomForests/
cc_software.htm).

The objective of this study was to create a novel and robust clas-
sification protocol for the mapping of non-cropped features in a
‘‘case study” agricultural landscape. The protocol needed to be
semi-automated to enable wide area mapping of such features
with a minimal number of variables. Based on these criteria and
results from a previous studies (Bradter et al., 2013; O’Connell
et al., 2013a) as well as a review of some comparative studies with
other algorithms (Chan and Paelinckx, 2008; Duro et al., 2012;
Lawrence et al., 2006; Pal, 2005; Rodriguez-Galiano et al., 2012),
it was felt that OBIA with the ensemble classifier RF may yield best
results. The combination of both approaches in remote sensing is a
relatively new area of research and yields some uncertainties in the
areas of optimisation of RF parameters, model transparency, train-
ing and validation size, hierarchical accuracy assessment and fea-
ture selection/importance with respect to class and object
hierarchy. This study addresses some of the aforementioned uncer-
tainties through the mapping of non-cropped areas using OBIA and
the machine learning classifier RF.

2. Materials

2.1. Study area

The study area was located in East Anglia, England (52�1900700 N,
0�4904300 E) in an intensively managed agricultural landscape of

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_software.htm
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_software.htm


J. O’Connell et al. / ISPRS Journal of Photogrammetry and Remote Sensing 109 (2015) 165–177 167
arable crops and temperate grassland over a mosaic of lime rich
loam, clay loam and sandy soils (NSRI, 2011). The topography of
the site was undulating with an elevation range of 22–73 m, mean
of 45 m and total area of 10,029 ha. Annual rainfall for the region
was 810 mm, with an average of 130 days of rain per year (Met,
2012). Despite being intensively managed, the site contained vari-
ous designated areas (Fig. 1) including; 12.4% under the England
Habitat Network (Catchpole, 2007), 5.9% under Countryside Ste-
wardship/Environmental Stewardship and 0.3% under priority
grassland habitat via the UK Biodiversity Action Plan (BAP) (JNCC,
2007).
2.2. Data

An airborne survey of the study area was commissioned for the
summer of 2012 and completed on the 6th of September that year.
The survey used a Vexcel UltraCam-Xp (Vexcel, 2008)
pan-sharpened to 25 cm spatial resolution at an altitude of
4230 m ± 1 m. The data was projected to British National Grid
(EPSG: 27700) with level 3 geometric correction and cubic
convolution resampling. Landcover and boundary information
was acquired from the Ordnance Survey (OS) MasterMap topogra-
phy layer (OS, 2010). The topography layer gave information on
nine themes; land area classifications, buildings, roads, tracks
and paths, rail, water, terrain and height, heritage and antiquities,
structures and administrative boundaries at 1:1250 to 1:10000
scale. Accuracy assessment of the various categories (kappa 0.68)
from a previous study (O’Connell et al., 2013a) was used to identify
themes that gave the most robust representation with respect to
this study. Field data was also collected between late June to late
August 2012 in the cropped and non-cropped areas. The sampled
farms were initially stratified based on soils data (NSRI, 2011), with
some constraints imposed due to land access permission. For each
farm, a representative sample of vegetation communities present
Fig. 1. Location of the study area. Designated areas outlined where; CountrySide Stewar
Fen Bog (MFB) and Lowland meadows/Lowland dry acid grassland (BAP priority habitats).
Digimap OS service. �Crown Copyright/database right 2009. An Ordnance Surve
GeoInformation� Group 2012.
within the non-cropped areas was made. Homogeneous sections
of hedgerow were mapped using a Global Positioning System
(GPS) with waypoints at either end. Individual trees were also
mapped with a GPS, with tree height and species also included.
Crop type in fields was recorded as part of the hedge/tree survey.
Additional visual ground-truthing was aided by a July 2008 GeoEye
1 image and commissioned 25 cm aerial photography from June
2014 (ARSF, 2014). Information on designated areas (Fig. 1) were
accessed from the Natural England GIS database (NE, 2012).
3. Methods

The processing chain for this study was divided up into four key
processes (bold in Fig. 2), each of which is outlined in the following
sections.

3.1. Preprocessing

Fifty-two image tiles (13 � 4 tiles) were produced from the air-
borne survey; 17,310 pixels across track � 11,310 pixels along
track (pan-sharpened), with a 60% overlap along track and 40%
overlap across track. Sub-pixel accuracy image mosaicing and his-
togram based colour matching was undertaken using Erdas Imag-
ine’s MosaicPro software (Intergraph, 2013). To assist in the
classification process the Normalised Difference Vegetation Index
(NDVI) (Sellers, 1985) and Enhanced Vegetation Index 2 (EVI2)
(Jiang et al., 2008) were calculated. NDVI correlates with
vegetation health and vigor (Carlson and Ripley, 1997) and EVI2
has been shown to be more sensitive than traditional indices in
highly vegetated landscapes or where soil reflectance can be
prominent (Jiang et al., 2008; O’Connell et al., 2013b). The Canny
edge-detection algorithm (Canny, 1986) was used on the EVI2
(O’Connell et al., 2013a) image to emphasize boundaries using
eCognition software (Trimble, 2013a).
dship (CSS)/Environmental Stewardship (ES), English Habitat Network (EHN), Mire
Strategi data downloaded from the EDINA (Edinburgh Data and Information Access)
y/EDINA supplied service. Cities Revealed� aerial photography copyright The



Fig. 2. Processing chain identifying the four main processing steps in bold, where RF is Random Forest and signifies the classification process and Masking indicates the rule
based classifier used to mask out certain MasterMap classes.
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3.2. Masking and class structure

The MasterMap topography layer (OS, 2010) was used to create
a mask using landcover categories of known accuracy based on a
previous study (O’Connell et al., 2013a). The topography layer
was first converted to objects in eCognition on a separate map
using the chessboard segmentation algorithm (Trimble, 2013b)
and then synchronised with the airborne data on the main process-
ing level projected to British National Grid (EPSG: 27700). A simple
rule based classifier (Appendix A) using the MasterMap FeatCode,
DescTerm and DesGroup attributes (OS, 2010) and a vegetation
threshold was used to extract all objects for the predefined classes.
The primary classes used, with FeatCode in parentheses, were:
Buildings (10021), Manmade (10056), Trees (10111), Mixed
(10053) and Water (10086). The area coverage of these classes
(6.75% of the study area) was then used as a mask in the segmen-
tation of the airborne data on the main processing level (Fig. 2).

The class structure was based on an initial 30 spectral classes
derived from the Iterative Self-Organizing Data algorithm (ISO-
DATA) (Ball and Hall, 1965) and landcover information from the
field data. A class hierarchy was present for some classification sce-
narios (Fig. 3) depending on the segmentation procedure (Sec-
tion 3.3), however all scenarios where completed using the same
final nine class structure. Many of the arable crops were merged
to two distinct classes; closed canopy (Crop 1) and open canopy
(Crop 2) as the focus was in mapping non-cropped areas. Grass
was defined as intensively managed grassland and Scrub charac-
terised as having a heterogeneous structure and often occurring
in field corners, urban parks or around woodlands. The class Crop
(4 class hierarchy) was based on merger of all vegetation classes
that weren’t non-crop (Fig. 3). Sparse vegetation was based on a
mean spectral threshold (EVI2 < 45, 8 bit scaled) which was
obtained from MasterMap sealed surface classes, field data and
visual examination. The Sparse and Shadow classes were present
as complete objects all segmentation scenarios (Section 3.3),
therefore both classes were included for both the 4 and 9 class sce-
narios (Fig. 3).

3.3. Image segmentation

In this study the multiresolution segmentation algorithm (Baatz
and Schäpe, 2000) was used in the main segmentation process
using eCognition. To segment, we used two approaches; flat
(single) and hierarchical (multi-scale) segmentation. Multi-scale
segmentation creates a hierarchical object structure based on the
premise that real world features are found in an image at different
scales of analysis (Blaschke, 2010). The object hierarchy was based
on the class structure, with top down approach adopted, to classify
cropped objects at larger scale factors (e.g. H1 in Fig. 3), thereby
focusing the analysis on the smaller objects in the non-cropped
areas at lower segmentation scales (e.g. H1H2 in Fig. 3).

Optimisation of the scale parameter for both the flat and hierar-
chical segmentation used the Estimation of Scale Parameter (ESP 2)
tool (Drăgut� et al., 2014), which eliminated the subjectivity of ref-
erence objects (Witharana and Civco, 2014). For the hierarchical
approach the ESP 2 settings were a top down hierarchy with a
starting scale and step size of 1 for level 1, 5 and 25 for level 2
and 100 and 25 for level 3 and number of loops set to 400. For
the flat approach the starting scale and step size for level 1 was
1, 1 and 10 for level 2 and the number of loops set to 300. The tool



Fig. 3. Schematic of 4 and 9 class structure with classification scenarios: H1 and F1 are based on the 4 class structure and H1H2, F1F2 and F2 on the 9 class structure. H1 and
F1 proportion of votes are used as input variables for H1H2 and F1F2. F2 and F1F2 use the same objects.
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outputs a graph with local variance and rate of change of local vari-
ance plotted as a function of scale factor. This was used to cross-
reference the retained scale factors by visually examining break
points in rate of change curve after continuous decay (Drǎgut�
et al., 2010).

3.4. Classification

3.4.1. Training data
Training data were extrapolated from the field data where mul-

tiple points were created from individual non-cropped polygons
delineated from GPS waypoints and crop varieties in fields. This
extrapolation of field data labelled 5.59% (4799) of the total popu-
lation of objects for the hierarchical and 3.22% (5713) for the flat
scenario. Previous studies have shown that classifiers like RF tend
to produce higher accuracies for majority over minority classes
(Chen et al., 2004; Lin and Chen, 2012) and show greater variability
in variable importance values as a result of class imbalance (Janitza
et al., 2013). The 4 class objects in this study were therefore resam-
pled to 615% of the smallest sample size (i.e. Shadow) to maintain
a sufficient level of class balance. With the increased use of
machine learning algorithms in remote sensing there has been lit-
tle reporting of the influence of training data size on classification
accuracy. It has also been reported that RF does not need external
validation due to the prediction accuracy calculated using the OOB
sample (Breiman, 2001). However the robustness of this calcula-
tion is based on several assumptions, one of which is the size of
training sets and subsequent OOB sample sizes. In this study we
compared the error rates between the internal (OOB error) and
external validation. A total sample size of 5713 objects was used
with 30% of the data used for external validation. Training data
were sampled randomly from the remaining 70% for the external
validation and from the full dataset for the internal validation.
Training data size was varied between 10% and 70% in steps of
10% with external and internal (OOB) error rates calculated. Valida-
tion was repeated 10 times for each training data size using a new
random sample (for the 70% size of the external validation all
remaining points were used). Error rates for the internal and exter-
nal validation were compared using a generalised linear squares
(GLS) model. In the GLS model different variances per factor level
were allowed (likelihood ratio test between model with and with-
out allowing for different variances per stratum: L = 37.0, df = 13,
p = 0.0004), with sample size fitted as a fixed factor. Error stabilisa-
tion as a function of sample size was also investigated for the OOB
error to see if an asymptote would be reached with respect to
increasing sample size. Again 10 random samples per size category
were used (10–100% in steps of 10%), with a GLS model allowing
for different variances per sample size (likelihood ratio test
between model with and without allowing for different variances
per stratum: L = 72.4, df = 9, p < 0.0001). Differences between
different levels of the factor sample size were explored using
contrasts.

3.4.2. Variable selection
Once the segmentation process was completed object variables

(i.e. features) were calculated for each level in each scenario. The
eCognition software offers a significant array of object based vari-
ables. However many of these variables are highly correlated and
while RF has been shown to deal well with correlated predictors
(Chan and Paelinckx, 2008; Gislason et al., 2006), the additional
computational effort required to process them is inefficient for a
large scale mapping protocol. Therefore a variable selection pro-
cess was used (Genuer et al., 2010) which selected variables based
on ranked mean importance as a function of OOB error. The func-
tion used (Bradter, 2013) was written in R using the parameters;
ntree: 2000, mtry: square root of the number of variables with
the result averaged over 50 repetitions (Genuer et al., 2010).

The variables used were divided up into 5 main categories
(spectral, geometric, neighbourhood, textural and thematic) with
the total number of variables changing for each classification sce-
nario (Fig. 3b). Spectral referred to variables that were derived
directly from the 6 spectral images and the Canny image. Geomet-
ric variables were based on within object geometric properties (e.g.
length/width) and ratio based properties (e.g. area to super object).
Neighbourhood variables were derived from spectral and textural
ratios, constrained by a distance or object count window. Texture
variables were calculated after Haralick analysis (Haralick et al.,
1973) and based in all directions for directional invariance
(Trimble, 2013b). Thematic variables were based on the FeatCode
attribute from neighbouring and parent objects as well as propor-
tion of votes from the 4 class models (see Section 3.4.3).

3.4.3. Random forest
All RF models were run using the package randomForest (Liaw

and Wiener, 2002) in R 3.0.1 (R Development Core Team, 2014).
Predictions using the selected variables were made using the fol-
lowing parameters: 50 iterations, ntree set to 500, proximity and
importance set to true (importance based on mean decrease in
accuracy) and all remaining parameters as default. The mtry
parameter was varied between 1 and 15 to assess its effect on
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OOB error. The proportion of votes was used instead of the major-
ity prediction as a variable for the 9 class scenarios. This gave a bet-
ter indication of the confidence of the 4 class result rather than a
single categorical value which would have resulted from a majority
vote. This ‘‘soft” class hierarchy methodology is ideally suited to RF
as it allows for discernible patterns to emerge at each level without
error propagation due to local classifiers. Classification accuracy
was assessed using both flat and hierarchical measures. The flat
approach used overall, user, producer and kappa measures
(Congalton and Green, 2008) which were derived from a confusion
matrix generated from the OOB data using the R package Caret
(6.0–37) (Kuhn, 2015). Hierarchical assessment differs from tradi-
tional approaches in that it encompasses the multi-level class
structure in the final estimation of accuracy. The hierarchical
assessment in this study was based on the hierarchical F measure
described by Kiritchenko et al. (2005) and recommended by Silla
and Freitas (2011). In short (see Appendix B for more detail), the
measure extends the regular precision, recall and F measures by
accounting for the location of each observed and predicted class
of each case (object) in the class hierarchy (Fig. 3).

Once completed, randomForest classification results were
exported into the eCognition software where the MasterMap
masked classes (i.e. Buildings, Manmade, Trees, Mixed and Water)
were segmented using the same scale factors as the classification
scenarios. A k-Nearest-Neighbour (kNN = 1) classifier was built
for each MasterMap class using all the objects classified in the RF
model as training data. Post-classification, various morphological
processes (e.g. growing and shrinking) were used to adjust class
boundaries as previous work had shown the MasterMap data to
have poor delineation of many natural and manmade features
(O’Connell et al., 2013a). A simple set of rule base classifiers were
also created to remove individual errors; e.g. ‘‘classify Crop 2 as
Trees if the object is completely enclosed by Trees, <5 � 5 pixels
and are ±0.0125 EVI2 of the mean of the class Trees”. A random
sample of 450 objects was selected from the kNN classification to
assess its accuracy based on the RF training data.
3.4.4. Spatial analysis
To explore the utility of the classification map, we assessed the

spatial distribution of non-cropped features within the study area.
Spatial clustering was assessed in ArcGIS (ESRI, 2012) using nearest
neighbour analysis on margins and hedgerows, based on euclidean
distance across the whole study site for both classes. To examine
the degree of spatial clustering as a function of area, incremental
spatial autocorrelation (Moran’s I) was used on margins and
hedgerows over 15 stages at increments of 30 m starting at
300 m. Habitat fragmentation was assessed for hedgerows and
margins using 6 categories of fragmentation (interior, perforated,
edge, transitional, patch, and undetermined) as outlined by
Riitters et al. (2000). This was done using the geoscientific software
SAGA (SAGA, 2015) and the add-on package Module Fragmentation
(Conrad, 2008) with a maximum and minimum neighbourhood
setting of 10 and 3 respectively. To provide a specific focus, we
used the map to identify potential nesting habitat (see Appendix
D) for the bird species Emberiza citronella (Yellowhammer). The
criteria were to identify large areas of margin that were in close
proximity to long lengths of hedgerow (Douglas et al., 2010;
Morris et al., 2001).
4. Results

4.1. Image segmentation

ESP 2 analysis identified a scale parameter of 295 for H1 giving
19,880 objects and a scale parameter of 110 for H2 giving 858,49
objects (Fig. 3). For the flat approach a single scale parameter of
96 was selected from a possible three (i.e. 422, 256, 96) giving
177,419 objects.

4.2. Training sample size

For training sample size the interquartile range within each
sample size decreased with increasing sample size (Fig. 4).

There was no significant difference found in the OOB error rate
between sample sizes of 90% and 100% (parameter estimate:
�0.0014 ± 0.0007, p = 0.0632) and differences between sample
sizes of 80% and 90% were already very small (parameter estimate:
�0.0024 ± 0.0010, p = 0.025). For training sample size the
mean error rates from the internal OOB validation were not
significantly different to those from the external validation
with Likelihood ratio value (L) of 1.06 (p-value = 0.304) (Zuur
et al., 2009).

4.3. Variable selection

Results from the mtry parameter tests showed little variation in
OOB error (±0.0025) when varying mtry. For this reason mtry was
set to the square root of the total number of variables which is
the default setting for classification in randomForest (Liaw and
Wiener, 2002).

A total of 90 variables for the F2, 94 for the F1F2 and 108 vari-
ables for the H1H2model (Appendix C) were created in eCognition.
Variable selection (Bradter, 2013) reduced the number of variables
by 25.5% ± 2.7% for the three models; 27.8% for the F2 model, 26.6%
for F1F2 and 22.2% for the H1H2 model (see Appendix C for more
detail).

4.4. Classification

Variable importance showed some similarities across the
3 classification models when proportion of votes are excluded
(Table 1). Classification accuracy for the H1 and F1 models was
a kappa value of 0.794 and 0.920 respectively (Table 2). The
model F2 performed poorest for the 9 class scenario with F1F2
performing best indicating the importance of the 4 class propor-
tion of votes as this was the only difference between the two
models. Overall accuracy for F1F2 was also very high (Table 3)
with a precision, recall and f-measure of 0.959 which compares
very favorably with other non-cropped mapping studies (Aksoy
et al., 2010; Rydberg and Borgefors, 2001; Sheeren et al., 2009;
Tansey et al., 2009).

4.5. Spatial statistics

The classification provides a wide-area, fine-scaled map of non-
cropped habitat (Fig. 6). As a proportion of the total area, Trees,
Hedges and Margins covered 12.39%, 1.90% and 3.58% respectively.
The Sparse class had the highest percentage cover (36.25%) and
based on the field data and the image acquisition date it was
assumed that the vast majority of this coverage was associated
with annual cereals such as wheat, oats and barley. Nearest neigh-
bour analysis of margins and hedgerows revealed that both classes
were significantly clustered in space, with margins having a near-
est neighbour ratio of 0.64 (z score = �78.73, P < 0.005) and hedge-
rows 0.65 (z score = �64.53, P < 0.005). Based on area, incremental
spatial clustering analysis of margins showed no significant auto-
correlation; whereas hedgerows showing a single peak (Appendix
D) at 668 m (Moran, I = 0.04, z score 30.72, P < 0.005). Habitat frag-
mentation analysis on the distribution of hedgerows classified
20.9% as transitional, 12.52% as edge and 66.44% as patch. The
results for margins were similar for transitional (19.56%) and patch



Fig. 4. Box plots showing External (a) and Internal (OOB) (b) error as a function of sample size over 10 repetitions; where P10 is 10% sample size, P20 is 20% sample size etc.
Whiskers represent the max and min, top and bottom of the box plot by 3rd and 1st quartile and the median by the centreline. The Y axis applies to both plots.

Table 1
The top 15 variable importance rankings across all 9 classes for the 3 different
classification models (i.e. F2, F1F2 and H1H2). Superscript letters indicate variable
category. See Appendix C for more details.

Rank F2 F1F2 H1H2

1 GLCM_Dissid Crope Crope

2 Mean_Vis1a Noncrope GLCM_Dissid

3 Mean_Vis3a Sparsee Noncrope

4 GLCM_Corred GLCM_Dis_1d GLCM_Corred

5 Mean_Vis2a Mean_Vis3a Ratio_NDVIa

6 Length/Widthb Length/Widthb Asymmetryb

7 Asymmetryb GLCM_Corred Mean_Vis3a

8 GLCM_Mean_d Mean_Vis1a Mean_Vis2a

9 Border lengthb Mean_Vis2a Circular_Mb

10 FeatCodee Asymmetryb Mean_Vis1a

11 Edge_Contrc Shadowe Ratio_EVI2a

12 StD NIRa GLCM_Mean_d Brightnessa

13 Diff to Cannya StD NIRa GLCM_Ang_2d

14 Mean_EVI2a Dist to Sparsec GLCM_Mean_d

15 StD Vis3a HSI_Transfa Dist to borderc

16 Diff to EVI2a Length mb HSI Transfa

17 Mean NDVIa GLCM_Ang_2d Dist to Mixedc

18 Mean NIRa GLCM Entrod Sparsee

19 HSI Transfa Mean_EVI2a StD NIRa

20 Area m2b Diff to Cannya FeatCodee

a Spectral.
b Geometry.
c Neighbourhood.
d Texture.
e Thematic.

Table 2
Kappa, OOB error and standard deviation in OOB (StD OOB) error (based on 50 forests)
for all 4 and 9 class models.

Accuracy

Scenario Kappa OOB StD OOB

4 Class
H1 0.794 0.114 0.002
F1 0.920 0.051 0.001

9 Class
H1H2 0.882 0.102 0.001
F1F2 0.909 0.080 0.001
F2 0.865 0.119 0.001
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(55.47%), with the edge category at 21.43%. The declining farmland
bird, the Yellowhammer, prefers nesting in hedgerows and
foraging for its young in margins within 200 m of the nest site
(Douglas et al., 2010, 2009). Based on these criteria 9.35% of the
total population of hedgerows were within 25 m of areas of margin
that were >183.31 m2 (Table 4). A cumulative total of 21.53%
(40.21 ha) of all hedgerows were within 200 m of large margins
areas (Appendix D).
5. Discussion

The selected scale parameter for image segmentation was cho-
sen as it gave the best delineation of the target features trees,
hedgerows and margins. The increased number of objects for the
flat hierarchy was due to the absence of any connection to larger
scale parent objects (i.e. H1). Results from the analysis of training
sample size showed that the OOB error provided a similar accuracy
measure to the mean overall error from an external validation. This
stabilisation of mean error rate indicates that, with the full training
dataset, the training data was representative for the study area.

By plotting mean class and overall error based on 50 RF models,
there was a clear trend of error stabilisation above 100 trees for all
classification scenarios, validating the ntree parameter, as RF does
not induce an over adjustment in the model above the convergence
point (Breiman, 2001). Variable selection was not performed on the
4 class models (i.e. F1, H1) due to the lower number of variables
produced at this level and considering that only the proportion
of votes from this level were inputted into two of the 9 class mod-
els. Class specific variable importance also showed clear trends
with Sparse, Shadow, Grass, Crop 1 and Crop 2 dominated by spec-
tral and textural features and Scrub, Trees, Hedges and Margins
dominated by spectral and geometric features (Table 1). The dis-
tinction between Grass and Scrub was predominantly driven by
textural and geometric variables with Scrub having higher stan-
dard deviation in GLCM and lower area. For H1H2 and F1F2, the
top ranked variable for 7 of the 9 classes was proportion of votes,
with the 4 class vote correctly attributed to the 9 class category
(i.e. Noncrop for Trees) in all cases. A trend of significant decrease
in permutation importance for the first ten ranked variables was
present for all three models (Fig. 5b). Variables from 20 and above
had little influence on classification accuracy as mean OOB error
was stabilised (Fig. 5a).

Lower user and producer accuracy for Hedges was evident as
there was some commission and omission with Margins and Trees.
All three non-cropped classes were often in a similar spatial and
spectral domain with similarly ranked variables; therefore it was
unsurprising that some confusion did exist. Scrub, while having
high user and producer accuracy, did have some confusion with
Crop 1, Crop 2 and Grass. This was due to the fact that the Scrub
class transcended many spectral textural, geometric and thematic
variables and therefore in some occasions didn’t have a key set of
variables that best defined its class description. Crop 2 had minor
confusion with Scrub and this was attributed to a high mean and
standard deviation in GLCM which was characteristic of both
classes. It’s likely that the confusion in this study between the
cropped classes would have been significantly reduced by the
inclusion of additional images taken throughout the growing
season. In this case the different management practices for the



Table 3
Error matrix and accuracy measure for the F1F2 model showing overall, user, producer, kappa, precision, recall and F-measure values.

Sparse Grass Crop 1 Crop 2 Scrub Trees Hedges Margins Shadow Total User

Sparse 755 0 0 0 0 0 0 0 0 755 100.00
Grass 0 471 2 5 21 0 0 0 0 499 94.39
Crop 1 5 13 697 6 11 0 0 0 0 732 95.22
Crop 2 0 10 2 906 26 0 0 0 0 944 95.97
Scrub 0 21 4 35 724 0 0 0 0 784 92.35
Trees 0 0 0 0 0 459 44 13 0 516 88.95
Hedges 0 0 0 0 0 63 459 73 0 595 77.14
Margins 1 0 0 0 0 12 92 476 0 581 81.93
Shadow 0 0 0 0 0 0 0 0 307 307 100.00
Total 761 515 705 952 782 534 595 562 307 5713
Producer 99.21 91.46 98.87 95.17 92.58 85.96 77.14 84.70 100.00

Overall Kappa Precision Recall F-meas
91.97 0.9087 0.9593 0.9593 0.9593

Table 4
Percentage area relative to total area and area (ha) for hedgerows based on their
intersection with multiple ring buffers (m) around margin hotspot areas.

Distance 25 50 100 200 300 400 500

% area 0.77 0.57 1.41 2.78 3.06 3.68 1.99
Area (ha) 1.45 1.07 2.63 5.20 5.71 6.87 3.72
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different crops and their associated variation in spectral response
would increase the discrimination between classes.

Various studies have demonstrated the benefits of a multi-
level object hierarchy in landcover classification (Benz et al.,
2004; Blaschke, 2010; Lucas et al., 2007; Mallinis et al., 2008),
with parent objects representing general landuse categories and
child objects representing more specialised classes. However in
this study a single object level with a multi class hierarchy gave
the highest overall classification accuracy. This was attributed
to the fact that the smaller objects for the F1F2 model were well
defined for both the 4 and 9 class scenarios through the large
number of spectral, textural, geometric and thematic variables.
Some objects for the H1 model may have had both cropped and
non-cropped features as signified by the low kappa value. These
mixed objects would have had a negative effect on the accuracy
of the proportion of votes for the subsequent H1H2 model,
reducing its variable importance as a result. Because the unit area
for the F1 and F1F2 models were the same, the high kappa value
for F1 was directly transferred to the F1F2 model via the
proportion of votes resulting in higher importance values for
these variables.
Fig. 5. Plot of mean OOB error based on 50 repetitions over the cumulative number of va
descending order (b) for the model F1F2.
Spatial analysis of the non-cropped map showed that
although there was significant spatial clustering for margins, this
clustering has no correlation with margin size. For hedgerows
the autocorrelation with area is at a landscape scale which
may have implications for various bird species that depend on
the proximity of large clusters of hedgerows. The high
percentage of hedgerow in the patch category (fragmentation
analysis) was indicative of the discontinuous nature of their
distribution as indicated by the nearest neighbour analysis,
occurring in small clumps rather than as continuous linear
features across the landscape. The increase in the edge category
for margins was attributed to the location of the margins relative
to other classes in the study area, where the margins typically
delineated a transition between crop and non-cropped areas.
The analysis of Yellowhammer nesting characteristics indicates
the potential predictive utility of this classification approach by
identifying algorithmically suitable nesting areas of a red listed
bird species (Baillie et al., 2014).

The classification protocol outlined in this study is potentially
scalable over large areas of the UK due to the availability of high
resolution CIR aerial photography (Landmap, 2014) and the
semi-automated fashion of the methodology. While previous
studies have demonstrated the potential of mapping hedgerows
using various different techniques (Aksoy et al., 2010; Foschi
and Smith, 1997; Sheeren et al., 2009; Tansey et al., 2009;
Vannier and Hubert-Moy, 2008), the protocol outlined in this
study can also identify field margins and scrub areas that are
separate to hedgerows and are therefore vital to ecosystem
services like pollination. The enhanced spatial resolution of this
approach over traditional mapping protocols in the UK (CEH,
2007) is key in assessing small scale habitat features across large
riables used (a) and plot of variable importance measures based on 50 repetitions in



Fig. 6. Non-cropped map with the 9 class scenario for the F1F2 model (a) for the
whole study area, (b) enlargement based on red square in (a) showing image objects
and (c) enlargement of non-cropped map for the same area. Cities Revealed� aerial
photography copyright The GeoInformation� Group 2012. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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landscapes. While the inclusion of datasets derived from active
sensors like LiDAR or radar would increase classification accuracy,
the coverage of such datasets is still quite limited and this study
has demonstrated a very high level of classification accuracy
without the need for such data.

Wide area mapping and monitoring of non-cropped areas in
the UK could form a key information source at the environmen-
tal and policy level with the development of model-based
decision, or discussion, tools to optimise landscapes for multiple
ecosystem service delivery functions. Knowledge of the
characteristics of the non-cropped areas, which is a habitat for
a considerable proportion of farmland biodiversity, can be an
initial proxy for many difficult-to-assess ecological factors in
the landscape – such as natural pest control and pollination
services, as well as biodiversity. By simulating landscapes based
on marginal changes on the existing non-cropped areas, it would
be possible to find interventions – such as the best sitting
and types of agri-environment schemes that have the biggest
impacts. As there are increasing calls to manage ecosystem
services at the landscape scale (Benton, 2012; Gonthier et al.,
2014; Tscharntke et al., 2012), it is necessary to develop tools
that are evidence-based but feasible to parameterize from a cost
perspective. This study provides some of the methodology which
would allow such models to be developed. Such models would
aid UK and EU policy goals for the creation of sustainable,
multifunctional agricultural landscapes as well as help enable
sustainable intensification: increasing the production farmland
whilst reducing the impact on the environment. Further work
is needed on the spatial and temporal transferability of RF
models in the mapping of non-cropped features before a robust
tool can be validated for wide area mapping. The inclusion of a
temporal stack of imagery will also be investigated as it is likely
to significantly aid in the dissemination between the various
cropped and margin areas.
6. Conclusions

In this study the integration of the machine learning algo-
rithm RF in an object orientated environment was investigated
under three classification scenarios. A flat approach signified
by a single object hierarchy and 4–9 class structure gave the
highest overall accuracy. Parameterisation of RF models was
straightforward with mtry values greater than 1 producing opti-
mal results. Variable importance analysis showed that propor-
tion of votes followed by spectral and textural variables were
deemed most important for classification accuracy. The inclu-
sion of the proportion of votes was a novel approach to trans-
ferring class hierarchical information from one level to another
and had a significant influence on overall classification accuracy.
Analysis of training sample size showed no significant differ-
ence between mean internal OOB error and external validation.
The classification protocol outlined in this study offers a robust
methodology for mapping of cropped and
non-cropped areas where high resolution imagery is available.
The protocol also allows for the integration of existing land-
cover and auxiliary datasets where available, however the inclu-
sion of such data is not deemed critical to overall accuracy. The
study has shown the potential of machine-learning to correctly
classify fine scale ecological features to a high accuracy (on par
with field surveys) at a wide spatial extent. The use of such a
protocol for mapping and monitoring of cropped and non-
cropped areas at local and regional scales could provide a key
information source at the environmental and policy level in
landscape optimisation for food production and ecosystem ser-
vice sustainability.
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Appendix A

Rule set documentation created in eCognition for the construc-
tion of the MasterMap mask. Class definitions are provided in both
the Classes and Process Main sections below. Class names are in
italics

Classes:
Buildings
Manmade
Mixed
Non Veg
and (min)
[0–60]: Mean EVI2

Scrub
and (min)
Threshold: FeatCode: MasterMap = 10111
Threshold: Mean EVI2 > 100
or (max)
Threshold: DescTerm: MasterMap = ‘‘Rough
Grassland”
Threshold: DescTerm: MasterMap = ‘‘Rough
Grassland,Scrub”
Threshold: DescTerm: MasterMap = ‘‘Scrub”
Threshold: DescTerm: MasterMap = ‘‘Scrub,Rough

Grassland”
Small Objects
and (min)
Threshold: Area <= 35 m2

or (max)
Threshold: Border to Water >= 1 Pxl
Threshold: Border to Trees >= 1 Pxl
Threshold: Border to Scrub >= 1 Pxl
Threshold: Border to Non Veg >= 1 Pxl
Threshold: Border to Mixed >= 1 Pxl
Threshold: Border to Buildings >= 1 Pxl
Threshold: Border to Manmade >= 1 Pxl

Trees
and (min)
or (max)
Threshold: DescTerm: MasterMap = ‘‘Heath”
Threshold: DescTerm: MasterMap <> ‘‘Scrub,Rough
Grassland”
Threshold: DescTerm: MasterMap <> ‘‘Scrub”
Threshold: DescTerm: MasterMap <> ‘‘Rough
Grassland,Scrub”
Threshold: DescTerm: MasterMap <> ‘‘Rough
Grassland”
Threshold: DescTerm: MasterMap = ‘‘Scrub,
Nonconiferous Trees”
Threshold: FeatCode: MasterMap = 10111

Water
and (min)
Threshold: Mean EVI2 <= 100
Threshold: Theme: MasterMap = ‘‘Water”
Threshold: FeatCode: MasterMap = 10089

Process: Main:
1. MasterMap extraction
copy map: on main : copy map to ‘MasterMap’. Extraction
chessboard
segmentation: on MasterMap : chess board: 99999999
creating ‘Level 1’

2. classification: on MasterMap unclassified at Level 1:
Trees assign class: on MasterMap unclassified with
Theme: MasterMap = ‘‘Buildings” at Level 1: Buildings

3. assign class: on MasterMap unclassified with Make:
MasterMap = ‘‘Manmade” and DescGroup: MasterMap =
‘‘General Surface” at Level 1: Manmade

4. assign class: on MasterMap unclassified with FeatCode:
MasterMap = 10053 and DescTerm: MasterMap =
‘‘Multi Surface” at Level 1: Mixed

5. classification: on MasterMap unclassified at Level 1:
Water

6. classification: on MasterMap unclassified at Level 1:
Scrub

7. edge extraction canny: on main : edge extraction canny
(Canny’s Algorithm) ‘EVI2’ => ‘Canny’

Segmentation
Level 1
multiresolution segmentation: 108 [shape:0.1
compct.:0.5] creating ‘Level 1’
synchronize map: on MasterMap Buildings, Manmade,
Mixed, Scrub, Trees, Water
at Level 1: synchronize map ‘main’
classification: on main unclassified at Level 1: Non Veg
classification: unclassified at Level 1: Small Objects
remove objects: Small Objects at Level 1: remove objects
into Buildings,
Manmade, Mixed, Non Veg, Scrub, Trees, Water (merge by
color)
Appendix B

For the hierarchical accuracy assessment each case contributes
to the accuracy measure by the number of nodes found common to
the two paths from the observed and predicted classes to the root
of the class hierarchy. In this study we re-structured the formula
presented by Kiritchenko et al. (2005) such that the hierarchical
precision, recall and F measures (hP, hR and hF respectively) can
be estimated directly from the confusion matrix:

hP ¼
X
j

X
k

ðSj;k � Fj;kÞ
,X

k

ðSk;k � Fþ;kÞ ð1Þ

hR ¼
X
j

X
k

ðSj;k � Fj;kÞ
,X

j

ðSj;j � Fj;þÞ ð2Þ

hF ¼ ½ðb2 þ 1Þ � hP � hR�=ðb2 � hP þ hRÞ ð3Þ
where j, and k are the observed and predicted classes (rows and col-
umns of the confusion matrix), Sj,k the length of the path from the
first common ancestor of the observed and predicted classes j and
k to the root of the class hierarchy, Fj,k the number of cases observed
as class j that were classified as class k, F+,k the total number of cases
observed as class j and Fj,+ the number of cases classified as class k.
We further developed terms for the hP, hR and hF for each class
where b is a weighting parameters (bP 0) that controls the relative
weight of hP and hR in the estimation of hF, with values close to 0
giving more weight to hP and values above 1 giving higher weight
to hR. For b = 1, the harmonic mean of hP and hF is returned.

Appendix C

Feature selection for the three 9 class scenarios showed mean
spectral variables (i.e. 4 spectral bands, EVI2 and NDVI) retained



Table C1
Object variables used for F2, F1F2 and H1H2 classifiers before and after variable
selection. Note the variables under the Thematic category consist of MasterMap
categories (i.e. FeatCode) and 4 class proportion of votes from level 1 (e.g. Crop). All
variables in the flat classifier are also included in the hierarchical classifier before
variable selection with additional variables for the hierarchical classifier due to
parent/child features. Other variable names are abbreviated in accordance with
eCognition; see the eCognition reference manual for more details (Trimble, 2013b).

F2 F1F2 H1H2

Category Variable Before After Before After Before After

Spectral Mean 7 6 7 6 7 6
Standard
deviation

7 6 7 6 7 7

Pixel based 7 6 7 6 7 6
To super
object

0 0 0 0 5 5

To scene 5 3 5 3 5 4
HSI 3 1 3 1 3 1

Geometry Extent 6 4 6 4 6 5
Shape 5 5 5 5 5 5
To super
object

0 0 0 0 4 3

Based on
polygons

5 3 5 3 5 3

Based on
skeletons

5 3 5 3 5 4

Thematic Border to 9 5 9 5 9 7
Distance to 9 7 9 7 9 7
Difference to 9 6 9 6 9 7
To super
object

0 0 0 0 5 0

MasterMap 1 1 1 1 1 1
4 class votes 0 0 4 4 4 4

Texture GLCM 9 9 9 9 9 9
GLDV 3 0 3 0 3 0

Total 90 65 94 69 108 84
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for both flat and hierarchical models with the Canny edge image
eliminated in all cases. GLCM (Gray-Level Co-Occurrence Matrix)
texture variables were retained for all models with all GLDV
variables removed. Spearman rho values were high (>0.92)
between GLDV (Grey Level Difference Vector) variables and
since GLDV is the sum of the diagonals of GLCM it is not
surprising that all features were not retained. Just over half
the fourteen parent/child (To super object, Table C1) variables
were retained for the H1H2 model. All MasterMap landcover
Fig. D1. Potential Yellowhammer nesting sites (in yellow) for the whole study area (a) as
box in (a). Cities Revealed� aerial photography copyright The GeoInformation� Group 20
referred to the web version of this article.)
information (Thematic: To super object, Table C1) at level 1
for H1H2 were eliminated for level 2 indicating that there was
little correlation between these landuse categories at a level 1
mapping unit. However at level 2 the FeatCode attribute
of MasterMap (Thematic: MasterMap, Table C1) was retained
for all models with an importance ranking of 10 for F2, 24 for
F1F2 and 21 for H1H2 (Table 1). The higher ranking in the F2
model was attributed to the absence of 4 class proportion of
votes. The difference in importance of the FeatCode variable
between level 1 and 2 was explained by the difference in scale
as the level 1 objects often encompassed more than one
FeatCode value. The top 20 ranked variables were dominated
by textural, spectral and geometric features for all three models;
with proportion of votes ranked highest for both the F1F2 and
H1H2 models (Table 1). There was little overlap in variables
but some overlap in variable categories, especially between
F1F2 and H1H2 (Table 1).
Appendix D

The assessment of potential habitat for the Emberiza citronella
(Yellowhammer) was outlined as large margin areas that
were within 400 m of areas of significant hedgerow length. The
assessment began with hot spot analysis (Getis-Ord Gi) which
was performed on hedgerow and margin classes in ArcMap
(ESRI, 2012). The assessment for margins was based on area
(m2) and for hedgerows it was based on length (m). The analysis
used an inverse distance spatial relationship based on euclidean
distance and a threshold distance for analysis which was set to
zero to ensure that every feature had a nearest neighbour. After
the hotspot analysis margin and hedgerow areas were extracted
if they were > mean + 1.5 standard deviations. For margins this
meant areas > 183.31 m2 (mean = 2875.82 m2) and for hedgerows
this mean lengths > 25.35 m (mean = 787.56 m). This ensured that
on the largest margins and longest hedgerows were selected for
the final habitat assessment. The resulting margin areas had a
multiple ring buffer (25, 50, 100, 200, 300 and 400 m) applied
which was used to clip hedgerow areas that satisfied the hotspot
analysis threshold (i.e. >25.35 m). The final dataset (Fig. D1)
therefore had clusters of margins with large areas and clusters
of hedgerows that were between 25 and 400 m from such
margins.
well as for a magnified region (b). The magnified area in (b) is represented by the red
12. (For interpretation of the references to colour in this figure legend, the reader is
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Appendix E. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.isprsjprs.2015.09.
007. These data include Google maps of the most important areas
described in this article.
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