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Abstract

Limited memory capacity, retrieval constraints and anchoring are central to expectation for-
mation processes. We develop a model of adaptive expectations where individuals are able
to store only a finite number of past experiences of a stochastic state variable. Retrieval of
these experiences is probabilistic and subject to error. We apply the model to scheduling
choices of commuters and demonstrate that memory constraints lead to sub-optimal choices.
We analytically and numerically show how memory-based adaptive expectations may sub-
stantially increase commuters’ willingness-to-pay for reductions in travel time variability,
relative to the rational expectations outcome.
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1. Introduction

Imperfect knowledge regarding the true distribution of stochastic state variables, like prod-
uct quality or travel times, induces individuals to form expectations based on personal
experiences and external sources of information. Memory processes are known to influence
expectation formation processes (e.g. Hirshleifer and Welch, 2002; Mullainathan, 2002; Wil-
son, 2003; Sarafidis, 2007) and anchoring constitutes a persistent phenomenon in human
behaviour (Wilson et al., 1996; Strack and Mussweiler, 1997; Furnham and Boo, 2011).1

This paper develops an adaptive expectations model which explicitly accounts for limited
cognitive abilities of decision makers. Expectation formation in our model has the following
properties. First, decision makers are assumed to have limited memory, such that only a fixed
number of past experiences can be stored. Second, retrieving experiences from memory is
probabilistic and decision makers experience difficulty in retrieving more distant experiences;
a phenomenon often referred to as transience (Horowitz, 1984; Barucci, 1999, 2000; Schacter,
2002). Third, retrieval may be inaccurate, meaning that retrieved experiences may not
correspond to the original experiences. Transience and retrieval inaccuracy are both forms
of memory decay. Fourth, decision makers prime their expectations using exogenous anchors.
The inclusion of past experiences, limited cognitive abilities and anchoring in the expectation
formation model provides a significant deviation of the rational expectations model.

We apply the model to scheduling decisions of commuters facing stochastic daily travel
times. Commuters experience dis-utility from travel time variability, as it induces them
to depart and/or arrive earlier or later than preferred (e.g. Vickrey, 1969; Small, 1982,
1992; Noland and Small, 1995). The developed model provides a better understanding of
empirical findings that hint at the presence of adaptive expectations and anchors in the
context of travel related scheduling decisions. For example, Bogers et al. (2007) and Ben-
Elia and Shiftan (2010) provide evidence that recently experienced travel times have an over-
proportionally large influence on travel decisions. Peer et al. (2015) find that commuters
take into account the long-run travel time average as well as day-specific traffic information
in their scheduling decisions.

The value commuters attach to a marginal reduction in travel time variability is referred
to as the value of (travel time) reliability and can be inferred from observed scheduling
choices (Fosgerau and Karlström, 2010; Fosgerau and Engelson, 2011). Typically, the value
of reliability is derived using the presumption that commuters have rational expectations
and an infinite memory. We find that with adaptive travel time expectations this value
of reliability is higher, because sub-optimal scheduling decisions are made. Therefore, im-
provements in reliability are associated with larger benefits, because they make commuters
depart and arrive closer to the times they prefer and decrease the variability in departure
times. Empirical revealed preference studies using reduced-form utility functions are likely
to already capture these behavioural biases in the coefficient that is estimated for travel

1Often anchors corresponds to the information that is obtained first, which is then used as a reference
point in subsequent decisions (Tversky and Kahneman, 1974). Ariely et al. (2003), for instance, demon-
strated that individuals can be primed to anchors that are as random as the last two digits of their social
security number.
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time variation. Our results are therefore mainly important for current stated preference
practice that ignores the process of expectation formation: our numerical illustration shows
that these values of reliability can underestimate our bounded rationality value of reliability
by up to 45%, suggesting that the welfare effects of memory biases may be substantial.

Underestimation of the value of reliability may have significant implications for cost-
benefit assessments of transport policies. Namely, the benefits from improvements in travel
time reliability in road-related transport projects amount to ca. 25% of the benefits related
to travel time gains (Peer et al., 2012). Benefits from travel time gains, in turn, are estimated
to constitute on average 60% of total user benefits in transport appraisals (Hensher, 2001).

While we apply our model to scheduling choices of commuters, it may very well be
relevant to other fields of economics, such as for the study of the effects of heterogeneous ex-
pectation formation on (dis)equilibrium in dynamic economic systems (see Hommes (2013))
or for the analysis of repetitive consumer choices with uncertain product quality. Note that
bounded rationality in our model is exclusively caused by limited cognitive abilities rather
than judgement errors due to selective memory (Gennaioli and Shleifer, 2010) or probability
weighting. Therefore this paper stands apart from works modelling bounded rationality as
a result of satisficing (Simon, 1955; Caplin et al., 2011), self-deception (Bénabou and Ti-
role, 2002), or optimal belief formation when the decision utility is affected by anticipatory
emotions (Brunnermeier and Parker, 2005; Bernheim and Thomadsen, 2005) as well as by
(ex-post) disappointment (Gollier and Muermann, 2010).

The remainder of the paper is structured as follows. Section 2 describes the general
setup of the model, Section 3 applies that model to the specific case of scheduling decisions.
Section 4 provides numerical estimates of the biases that may result from memory limitations
and anchoring. Finally, Section 5 discusses the modelling assumptions and concludes.

2. General description of the model

Consider a decision-maker who decides on x0, where the subscript 0 indicates that the
decision is made for the time period to come. Outcome utility U(x0, s0) is assumed to be
continuous and strictly concave in x0, and depends on the stochastic state s0. Let f(s0|ω0) be
the probability density function of s0, where ω0 is a vector of parameters that characterizes
f(.). Expected outcome utility is then defined as:

E(U(x0, s0)) =

∫

U(x0, s0)f(s0|ω0)ds0 (1)

With rational expectations, the decision maker knows the distribution f(s0|ω0) and maxi-
mizes Equation 1 to decide on x0. In what follows, we denote xre

0 as the optimal choice under
rational expectations, and E(Ure) ≡ E(U(xre

0 , s0)) as the corresponding maximal expected
utility. Deviations from rational expectations are introduced by assuming that the decision
maker has imperfect knowledge regarding f(s0|ω0). In our model, she forms adaptive ex-
pectations regarding s0, using past experiences in combination with primed expectations.
Past experiences are denoted by past stochastic realisations of sk, which are draws from
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f(sk|ωk). A higher value of the index k refers to a more distant experience. Primed expec-
tations enter the model in the form of an anchor state sA. In contrast to the states stored
in the decision maker’s memory and the corresponding retrievals, the anchor is assumed to
be non-stochastic and is a stable element in the expectation formation process.

The decision maker is assumed to have limited cognitive abilities. First, it is assumed
that she has a limited memory, meaning that only K past experiences s1...sK are stored
in memory. Second, it is assumed that the realisation of sk is correctly stored in memory,
but a stored state can only be retrieved with a probability ρk > 0. Following Schacter
(2002), this allows us to assume that more recent experiences can be retrieved more easily,
i.e. ρ1 > ρ2 > ... > ρK . We refer to this phenomena as transience. Third, retrieval of
the stored states s1...sK may be inaccurate. Instead of s1...sK , the decision maker retrieves
s̄1...s̄K from her memory. Let gk (s̄k|sk, φk) be the retrieval density function, with φk and
sk as its characterizing parameters. Fourth, anchoring is present. The anchor reflects an
exogenous, stable belief concerning travel time that is independent of new experiences and
the current traffic situation. While we do not model the origin of the anchor explicitly in
order to keep the model generic, the anchor could for example be driven by stable publicly
available information.

Equation 2 defines the expected decision utility as the weighted average of utilities across
the anchor and the set of retrieved states:

Ud(.) = τU(x0, sA) + (1− τ)
K
∑

k=1

ρkU(x0, s̄k), (2)

where
∑K

k=1 ρk = 1. In this equation, τ is the weight assigned to the anchor. When τ = 0,
expectations are fully adaptive and when τ = 1, the decision maker ignores her earlier
experiences and expected decision utility is solely based on the anchor sA and the choice of
x0. Equation 2 mimics Equation 1 when τ → 0, ρk = 1/K, s̄k = sk and K → ∞. Rational
expectations are therefore a special case of our model. The decision maker maximizes
Equation 2 with respect to x0. Denote this optimal x0 by xae

0 , where the ae superscript
refers to the fact that the decision maker uses adaptive expectations.2 Decisions on x0 are
sub-optimal whenever xae

0 6= xre
0 . Nevertheless, the situation could arise where xae

0 = xre
0 ,

i.e. the decision maker ’coincidentally’ makes the optimal choice.
Suppose that we need to make a prediction of the expected outcome utility of the decision

maker. This prediction has to account for the fact that the state in time period 0, the states
in memory and the corresponding retrievals of these states are stochastic. To obtain the
predicted expected outcome utility, we take the expected value over all possible combinations
of experienced and retrieved states. Mathematically this is tedious, since it involves a 2K+1
dimensional integral over all possible values of the K + 1 realised states s0...sK , and the K

2A unique solution for xae
0 exists since Equation 2 is a weighted average of strictly concave functions.
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possible values of retrieved states s̄1...s̄K :

E(Uae) ≡ E (U(xae
0 , s0))

=

∫

...

∫

(

∫

...

∫

U(xae
0 , s0)

K
∏

k=1

gk (s̄k|sk, φk) ds̄1...s̄K)

)

K
∏

k=0

f(sk, ωk)ds0...dsK .
(3)

This equation obviously has the disadvantage that it is less parsimonious than its rational
expectations counterpart, i.e. Equation 1 with xre

0 . Nevertheless, this generic set-up helps to
structure our thoughts about how earlier experiences and retrieval inaccuracy affect predic-
tions of the expected outcome utility. The next section makes analytical progress by putting
more structure on the utility function U(.) and derives an analytical representation of the
predicted expected outcome utility E(Uae) for the case of commuters choosing departure
times when travel times are stochastic.

3. Memory and the value of travel time reliability

We apply our memory-based adaptive expectation formation model to commuters’ schedul-
ing behaviour with stochastic travel times. Commuters face scheduling costs of travel time
variability due to departing and/or arriving earlier or later than desired. Noland and Small
(1995) were the first to extend the scheduling model of Vickrey (1969) and Small (1982) to
expected utility maximization. Their model was recently extended by Fosgerau and Karl-
ström (2010) and Fosgerau and Engelson (2011) who proved that the optimal expected
outcome utility depends linearly on some measure of travel time reliability. Here, we ex-
tend the results of Fosgerau and Engelson (2011) by showing that this result carries over to
the case when memory biases and anchoring are present and the travel time distribution is
stable over time. Existing literature on travel time expectation formation typically focuses
on learning and perception updating mechanisms in route choice but often ignores the psy-
chological foundation of the adaptation of expectations (e.g. Jha et al., 1998; Arentze and
Timmermans, 2003; Chen and Mahmassani, 2004; Avineri and Prashker, 2005; Arentze and
Timmermans, 2005; Bogers et al., 2007; Ben-Elia and Shiftan, 2010). Moreover, most exist-
ing studies do not quantify behavioural and valuation biases, even when they find that travel
time expectations are adaptive. Therefore it is unclear if choice models assuming rational
expectations can be viewed as a good approximation of individual choice behaviour. This
paper explicitly focuses on the origins of adaptive travel time expectations and characterizes
the resulting behavioural and valuation biases.

3.1. Rational expectations

We assume commuters derive utility from being at home, for instance by spending more
time with the family, sleeping or having a longer breakfast. Departing earlier or later than
preferred therefore reduces utility. Similarly, utility at work is derived from productive work
time, which is reduced by arriving later than preferred. An increase in travel time therefore
reduces utility on either end. This specification of utility was first introduced by Vickrey
(1973) and later used by Fosgerau and Engelson (2011) to derive the value of reductions in
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travel time variance. Tseng and Verhoef (2008) were the first to find empirical evidence for
such scheduling preferences.
Equation 4 describes outcome utility for a given departure time d0 and a realisation of travel
time T0, where H ′(v) is the marginal utility for being at home and W ′(v) is the marginal
utility for being at work as functions of clock time v. The first part of Equation 4 shows
the utility from time spent at home where being at home starts at vh and ends when the
travellers departs at d0. The second integral gives the utility for being at work, where being
at work starts at arrival time d0 + T0 and ends at vw. This implies that vh and vm span the
range of possible departure and arrival times (Börjesson et al. (2012)).3

V (d0|T0) =

∫ d0

vh

H ′(v)dv +

∫ vw

d0+T0

W ′(v)dv = H(d0)−H(vh) +W (vw)−W (d0 + T0). (4)

For the remainder of the paper we assume simple linear functional forms for the marginal
utilities. Using the normalisation of Börjesson et al. (2012) we have:4

U(d0|T0) = −

∫ 0

d0

(β0 + β1v)dv −

∫ d0+T0

0

(β0 + γ1v)dv. (5)

For a trip to occur it must hold that γ1 > β1. Usually the marginal utility of being at
home is decreasing in v, implying β1 < 0, whereas the marginal utility of being at work is
increasing (γ1 > 0). With rational expectations, commuters know the distribution of travel
times which is defined by f(T0|µ, σ

2), where µ is the mean travel time and σ2 the travel time
variance. Accordingly, the expected outcome utility is defined by:

E(U(d0|T0)) =

∫

U(d0|T0)f(T0|µ, σ
2)dT0. (6)

Fosgerau and Engelson (2011) show that when the departure time is optimally chosen, the
commuter departs at:

dre0 = −
γ1

γ1 − β1

µ, (7)

resulting in optimal expected outcome utility:

E(Ure) ≡ E(U(dre0 |T0)) = −β0µ+
1

2

β1γ1
γ1 − β1

µ2 −
1

2
γ1σ

2. (8)

3For a graphical representation we refer to Tseng and Verhoef (2008), Fosgerau and Engelson (2011)
and Börjesson et al. (2012).

4Following Börjesson et al. (2012), we normalise utility relative to V (0|0), by defining U(d0|T0) =
V (d0|T0)− V (0|0). This allows us to evaluate U(d0|T0) in terms of bounds at 0 rather than at vh and vm:

U(d0|T0) = −

∫ 0

d0

H ′(v)dv −

∫ d0+T0

0

W ′(v)dv = H(d0)−H(0) +W (0)−W (d0 + T0)

Furthermore, we normalise W (0)−H(0) to 0, because this part of utility is independent of departure time
d0 and travel time T0. We do so by assuming that H ′(v) and W ′(v) have the same intercept.
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This optimal expected outcome utility is a simple function of the mean delay and the travel
time variance. Equation 8 does not require any distributional assumptions on the travel
time distribution (except that µ and σ2 are finite). We define the value of reliability (VOR)
as the value attached to a marginal decrease in the travel time variance:5

VORre = −
∂E(Ure)

∂σ2
=

1

2
γ1. (9)

3.2. Adaptive expectations

Adaptive expectations on the distribution of travel times are based on past travel times
stored in memory T1...TK and the retrievals of these past states T̄1...T̄K . Every retrieval
is assumed to be an additive function of the retrieval error and the realised travel time:
T̄k = Tk + ǫk, with E(ǫk) = 0, meaning that retrieval is on average correct. The travel times
in memory are realizations from f(Tk|µ, σ

2). The accuracy of retrieval ǫk is governed by
the probability density function g(T̄k|Tk, ν

2
k) where T̄k has mean E(T̄k) = Tk and conditional

variance VAR(T̄k|Tk) = ν2
k . Using the law of total variance, the unconditional variance

of T̄k is given by: VAR(T̄k) = σ2 + ν2
k .

6 For every day t the commuter has to decide
on the departure time and creates a new set of recalled memories from the stored set of
past experiences. For large K, the set of past travel time experiences stored in memory
for days t and t + 1 is nearly identical as the experienced travel time at t only replaces
a single experience previously stored in memory. The similarity in available memories in
combination with transience introduces correlation in the recalled sets, but the process of
the recollection and accuracy of these recollections are completely independent between t
and t+ 1.

The commuter has an anchor TA which is defined as: TA = µ + a, where a is a pa-
rameter that indicates how far the anchor is from the mean travel time µ. With adaptive
expectations, commuters choose their optimal departure using decision utility

Ud(.) = τU(d0, TA) + (1− τ)
K
∑

k=1

ρkU(d0, T̄k), (10)

where
∑K

k=1 ρk = 1. Solving the first-order condition ∂Ud(.)
∂d0

= 0 gives:

dae0 = −τ
γ1

γ1 − β1

TA − (1− τ)
γ1

γ1 − β1

K
∑

k=1

ρkT̄k. (11)

5For plausibility of the model, additional restrictions may be imposed because for some combinations
of preference parameters the marginal utility for changes in the mean delay −β0 +

β1γ1

γ1−β1

µ may be positive,
implying that increases in mean travel time would lead to a higher expected utility.

6 We assume COV(Tk, Tl) = 0, COV(Tk, ǫl) = 0, and COV(ǫk, ǫl) = 0, ∀k 6= l. Together with the
assumption that E(ǫk) = 0, ∀k, this results in COV(T̄k, T̄l) = E(T̄kT̄l)− E(T̄k)E(T̄l) = E(TkTl) + E(Tkǫl) +
E(Tlǫk) + E(ǫkǫl)− E(Tk)E(Tl) = 0, ∀k 6= l. Relaxing these assumptions is an interesting avenue for future
research.
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The effect of the anchor on departure time choice is captured by the first term, and the
effect of limited memory by the second term. A higher K indicates that the commuter is
able to store more past travel times. Stored travel times are retrieved with probability ρk.
Retrieval accuracy enters the departure time choice via the retrieved travel times T̄k. The
mean departure time is given by:

E (dae0 ) = −τ
γ1

γ1 − β1

TA − (1− τ)
γ1

γ1 − β1

µ, (12)

which reduces to dre0 for TA = µ (a = 0) (see Equation 7). The variability in departure
time choices over time periods is influenced by the variance of travel times and the variance
of retrieval inaccuracy. A higher variance in travel times and a higher retrieval inaccuracy
result in more variable departure times:7

VAR(dae0 ) = (1− τ)2
(

γ1
γ1 − β1

)2
(

σ2

K
∑

k=1

ρ2k +
K
∑

k=1

ρ2kν
2
k

)

. (13)

Our model therefore predicts that the variability in departure times increases for increasing
variances of travel time and retrieval. This effect is multiplied with the quadratic retrieval
probabilities. When transience is stronger, retrieval probabilities will be more unequal,
resulting in more volatile behaviour. A higher anchor parameter τ results in less variable
departure times because memory biases count less heavily in the decision utility function.
The prediction of the expected outcome utility can be found by integrating over all possible
combinations of T0, T1...TK and the corresponding stochastic retrievals T̄1...T̄K (i.e. in a
similar way as Equation 3). In Appendix A we show that the predicted expected outcome
utility E(Uae) can be written as:8

E(Uae) = E(Ure)−
1

2

γ2
1

γ1 − β1

τ 2a2 −
1

2
(γ1 − β1)VAR(d

ae
0 )

= E(Ure)−
1

2

γ2
1

γ1 − β1

τ 2a2 −
1

2
(1− τ)2

γ2
1

γ1 − β1

(

σ2

K
∑

k=1

ρ2k +
K
∑

k=1

ρ2kν
2
k

)

.

(14)

The first term in Equation 14 is the optimal expected utility with rational expectations
(Equation 8). The second term reflects a penalty for relying on an anchor when deciding on
the optimal departure time. This penalty only arises when a 6= 0, and increases quadrati-
cally in the value of a and the anchor parameter τ . When τ → 1 and TA = µ, the optimal
departure time Equation 11 is equal to the departure time with rational expectations and
Equation 14 reduces to Equation 8.

7Here we use the assumptions on covariances in footnote 6. When relaxing these assumption additional
covariance terms would enter this equation.

8The model developed in Appendix A is more general because it assumes a k-specific travel time distri-
bution. We leave this out in the discussion because it gives rise to another type of memory bias related to
variations of travel time distributions over subsequent days.
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Adaptive expectations are associated with an additional term that is proportionally decreas-
ing in the variance of departure time VAR(dae0 ). More volatile behaviour therefore decreases
the predicted expected outcome utility. First, an increase in the travel time variance results
in additional dis-utility because of limited memory. Second, K enters the summation over
all retrieval variances νk. Accordingly, the retrieval variances of the last K time periods
decrease expected outcome utility. The negative effect of transience and inaccurate retrieval
becomes stronger when commuters’ expectations become more adaptive (i.e. when τ de-
creases).
Equation 14 is derived for general values of retrieval probabilities, travel time variance and
retrieval variances. When imposing transience, we have ρ1 > ρ2 > ... > ρK , such that more
recent travel time and retrieval variances play a larger role than more distant travel time
and retrieval variances in Equation 14. Because retrieval probabilities enter quadratically,
transience always reduces utility when retrieval is accurate. However, when retrieval vari-
ances are high for more distant memories (i.e. higher values of k), transience may reduce
the bias of inaccurate retrieval.
The anchor parameter τ has two roles in Equation 14. Given TA 6= µ, an increase in τ is
associated with a decrease in expected utility due to the sub-optimal choice of TA. On the
other hand, an increase in τ may lead to a decrease in the bias related to transience and
retrieval inaccuracy, since past experiences have a lower effect on travel time expectations.

3.3. The value of travel time reliability

The VOR with adaptive expectation is given by:

VORae = −
∂E(Uae)

∂σ2
=

1

2
γ1 +

1

2

γ2
1

γ1 − β1

(1− τ)2
K
∑

k=1

ρ2k, (15)

where it is assumed that τ is exogenous. As with rational expectations (see 9), the expected
outcome utility is linearly decreasing in the travel time variance. The convenient result of
Fosgerau and Engelson (2011) thus carries over to the case of adaptive expectations. While
the VOR is not affected by retrieval inaccuracy, it is affected by transience and the anchor
weight τ . Regarding τ , it is easy to see that the VOR increases as the weight attached to the
anchor decreases and expectations thus become more adaptive. Clearly, if τ → 1 (and hence
only the anchor counts), the VOR is not any longer affected by the transience parameter ρk.

It is useful to parametrize the retrieval probabilities. These probabilities need to sum up
to 1 for any chosen value of K = 1...∞, and for transience to apply, the probabilities need
to be decreasing in k, because more recent travel times will then have a higher likelihood of
being remembered. A functional form that satisfies these conditions is given by:

ρk =
r − 1

r(rK − 1)
rk, (16)

where 0 < r < 1. In this equation, the parameter r is the transience parameter. A lower
value of r indicates more transience, meaning that more recent travel times receive a higher
retrieval probability. An increase in r results in more equal weights where equal weights

9



1
K

are a limiting case, because limr→1 ρk = 1
K
. If we assume that retrieval probabilities are

defined by Equation 16, the VORae is given by:

VORae,r =
1

2
γ1 +

1

2

γ2
1

γ1 − β1

(1− τ)2
(1− r)(1 + rK)

(1 + r)(1− rK)
, (17)

which is decreasing in the transience parameter r, meaning that more unequal retrieval
probabilities increase the value attached to reliable travel times. The limiting case r → 1
gives retrieval probabilities equal to 1/K. The value of travel time variance is then given by

lim
r→1

VORae,r =
1

2
γ1 +

1

2

γ2
1

γ1 − β1

(1− τ)2
1

K
, (18)

and therefore in the absence of transience the additional effect of limited memory on the
VORae is proportional to

1
K
. As expected, the behavioural bias due to limited memory then

vanishes when K → ∞, and VORae,r reduces to 9.

3.4. The value of retrieval accuracy

The expected outcome utility (see Equation 14) shows that it is valuable for commuters to
have a higher accuracy of retrieval. The value of retrieval accuracy (VORA) for retrieval m
is defined as the first derivative of Equation 14 with respect to ν2

m, multiplied by (−1):

VORAm = −
∂E(Uae)

∂ν2
m

=
1

2

γ2
1

γ1 − β1

(1− τ)2ρ2m, ∀m = 1...K. (19)

The VORA increases when expectations become more adaptive (τ → 0), and when that
particular experience has a larger impact on the expected outcome utility. A more explicit
expression can be derived by replacing ρm in Equation 19 by Equation 16:

VORAm,r =
1

2

γ2
1

γ1 − β1

(1− τ)2
(

r − 1

r(rK − 1)
rm
)2

, ∀m = 1...K. (20)

In line with intuition, when transience is present, the VORA is lower for more distant
memories (higher m). This illustrates the interesting interplay between transience and the
effects of retrieval inaccuracy.

3.5. The limiting case of K → ∞ and ν2
k → ν̄k

This subsection develops a limiting case that may be useful for practical applications. It is
assumed that memory is unlimited and that an infinite number of experiences are stored.
Furthermore, it is assumed that the retrieval variance is linearly increasing in k with slope
ν̄:

ν2
k = ν̄k. (21)
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If we substitute Equations 16 and 21 in Equation 14 we obtain a parsimonious expression for
the expected outcome utility under infinite memory as a function of the transience parameter
r and retrieval variance parameter ν̄9:

E(Uae) = E(Ure)−
1

2

γ2
1

γ1 − β1

τ 2a2 −
1

2

γ2
1

γ1 − β1

(1− τ)2
1− r

1 + r
σ2

−
1

2

γ2
1

γ1 − β1

(1− τ)2
ν̄

(1 + r)2
.

(22)

The biases due to transience and inaccurate recall do not vanish when memory capacity
is unlimited. Equation 22 does show that when the retrieval probabilities are all equal
(r → 1), the third term drops out, and the transience bias vanishes, but the bias due to
retrieval inaccuracy does not. Accordingly, infinite memory is not a sufficient assumption
for rational expectations.

3.6. Endogenous choice of τ

This section generalizes the model to allow for the choice of the anchor parameter, which
corresponds to the situation where the decision-maker is aware of her memory limitations.
For a 6= 0, the decision-maker will trade-off the bias related to the anchor with the memory
biases. The change in expected utility for a marginal change in τ is given by:

∂E(Uae)

∂τ
= −

γ2
1

γ1 − β1

τa2 +
γ2
1

γ1 − β1

(1− τ)

(

σ2

K
∑

k=1

ρ2k +
K
∑

k=1

ρ2kν
2
k

)

. (23)

Solving the first-order condition ∂E(Uae)
∂τ

= 0 results in:

τ ∗ =

∑K

k=1 ρ
2
kσ

2 +
∑K

k=1 ρ
2
kν

2
k

∑K

k=1 ρ
2
kσ

2 +
∑K

k=1 ρ
2
kν

2
k + a2

(24)

which is equal to 1 if a = 0, and independent of scheduling preferences. The optimal anchor
parameter weighs the dis-utility related to imprecision due to anchoring with the dis-utility
related to memory biases. Incorporating an anchor (i.e. τ ∗ 6= 0) is therefore a rational
response to cope with imprecision in knowledge about the true distribution. An increase in
σ2 will result in an increase in τ ∗, because – as a consequence of the severity of the memory
biases – the decision-maker will rely more on her anchor:

∂τ ∗

∂σ2
=

a2
∑K

k=1 ρ
2
k

(

∑K

k=1 ρ
2
kσ

2 +
∑K

k=1 ρ
2
kν

2
k + a2

)2 > 0. (25)

9For the limiting case of K → ∞ we have:
∑

∞

k=1 ρ
2
k = 1−r

1+r and
∑

∞

k=1 ρ
2
kν̄k = ν̄

(1+r)2 , resulting in a

retrieval inaccuracy bias that is increasing in r. When retrieval inaccuracy increases more rapidly in k, the
utilitarian bias resulting from retrieval inaccuracy might be decreasing in r.
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A marginal upward change in τ ∗ results in a higher bias due to anchoring and a lower bias
due to transience and retrieval inaccuracy. In Appendix B we show that these marginal
changes cancel each other out, resulting in a value of reliability of:

VORae,τ∗ =
1

2
γ1 +

1

2

γ2
1

γ1 − β1

(1− τ ∗)2
K
∑

k=1

ρ2k

=
1

2
γ1 +

1

2

γ2
1

γ1 − β1

a4
∑K

k=1 ρ
2
k

(

σ2
∑K

k=1 ρ
2
k +

∑K

k=1 ρ
2
kν

2
k + a2

)2 .

(26)

The last step uses Equation 24. The second positive term captures the combined dis-utility
for anchoring and memory biases (i.e. transience and retrieval inaccuracy). For a = 0, the
VOR reduces to the rational expectations case of Equation 9 because the decision-maker
then fully relies on the anchor (see Equation 24). This results in a departure time choice
that coincides with the rational expectations case (see Equations 7 and 11). The VOR is
now decreasing in the travel time variance, because the second term is lower for higher values
of σ2. The convenient result that expected utility is linear in travel time variance therefore
does not hold any longer when the anchor parameter is endogenous.

4. Numerical illustration

This section provides a numerical illustration to investigate the quantitative impact of mem-
ory biases. We present results for four parameters, namely r, τ, TA, and ν̄, and trace their
impacts on optimal departure times, expected utility and the value of travel time reliability.
The rational expectation levels of these measures (as defined in Section 4.1) are used as the
point of reference. Section 4.2 analyses the effect of transience by reducing the value of r
such that expectations are increasingly based on recent experiences. At this stage, retrieval
is assumed to be accurate. Section 4.3 maintains this assumption but introduces anchoring
by increasing the value of τ and varying the value TA = µ + a. Section 4.4 completes the
numerical analysis by introducing inaccurate retrieval. Finally, Section 4.5 summarizes the
results of the numerical analysis.

4.1. Parameter assumptions and the rational expectations outcome

The values for the coefficients defining the rational expectations outcomes of the model are
based on Tseng and Verhoef (2008) and Fosgerau and Lindsey (2013). Accordingly, β0, β1

and γ1 take the following values: β0 = AC40 (p/hour), β1 = AC8.86 (p/hour) and γ1 = AC25.42
(p/hour). We use the empirical estimates of Peer et al. (2012) to parametrize the distribution
of travel times. We assume that f(Tk|µ, σ

2) is log-normally distributed with an expected
travel time of E(T0) = µ = 1

3
, i.e. 20 minutes and VAR(T0) = σ2 = 1

16
, i.e. a standard

deviation of 15 minutes.10 For this particular set of coefficients, the optimal departure time

10The shape parameter of the log-normal distribution is then defined by δ1 =

√

ln
(

1 + (1/16)
(1/3)2

)

, whereas

the scale parameter is defined as δ2 = ln
(

1
3

)

− δ1
2 .
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with rational expectations is given by dre0 = −0.51 (see Equation 7). Using Equation 8, it
can be shown that the expected utility under rational expectations equals AC−13.37 and the
VOR equals AC12.71 per hour of variance.

4.2. Accurate retrieval and transience

The first deviation introduced from the rational expectations outcome is transience. Indi-
viduals are assumed to store only K past travel time experiences, where K is set to either
K = 5 or K = 100. We systematically change the importance of each of these past expe-
riences in forming expectations by changing the transience parameter r (see Equation 16).
Increasing values of r result in a more equal distribution of weights attached across all mem-
ories, whereas smaller values assign more weight to more recent periods. We vary r between
its upper bound of r = 1 (equal weights for all K experienced travel times) and r = 0.5
at which the most recent period receives a weight of approximately 50% (i.e. ρ1 ≈ 0.5) for
both levels of K. Moreover, we assume that the past realisations of Tk are all accurately
retrieved, such that T̄k = Tk and ν2

k = 0 , ∀k. And for the moment, we ignore anchoring by
setting τ = 0. We generate 1,000 different sets of K travel time realisations and depict the
optimal departure times in Figure 1. A comparison between Figures 1a and 1b highlights
that limited storage capacity (K = 5 instead of K = 100) increases the variance of the
optimal departure time considerably. This is a direct consequence of adaptive expectations
being formed by a smaller number of travel time realisations. Figures 1c and 1d illustrate
that for smaller values of r, the size of K becomes less relevant for the variance of optimal
departure times. By definition, reducing r shifts attention towards more recent periods such
that more distant travel time realisations have a negligible impact on the optimal departure
time.
Transience has direct implications on the level of expected outcome utility as illustrated by
Figure 2a. Even when r → 1, expected outcome utility falls below EUre forK < ∞, because
commuters have limited memory capacity to form rational expectations. A decrease in r
results in a further deviation of EUae from EUre because more weight is given to more recent
periods. A similar insight is found for the VOR in Figure 2b. Limited memory increases the
value of reliability and the penalty is amplified for higher degrees of transience. Equations 9
and 18 indeed confirm that the distance between V ORre and V ORae decreases for increasing
K. The maximum distance between these two lines is in our case 1

2
γ12

(γ1−β1)
= AC19.51 per hour

for K = 1. The latter results in a maximum VOR of AC32.22 per hour, which is about 2.5
times higher than the rational expectations outcome. Cantarella (2013) suggests values of
40-80% for the weight of the most recent experience in the expectation of the current traffic
situations. When we assume r = 0.5 and K = 5, the most recent travel time experience
determines about 50% of the travel time expectation and the value of travel time reliability
is AC19.63, which is 45% higher than with rational expectations.

4.3. Accurate retrieval and anchored expectations

So far we have neglected the presence of an anchor. Equation 11 shows that commuters
depart earlier when they have a higher anchor value TA. Moreover, an increase in τ reduces
the influence of past travel time realizations on the optimal departure time and therefore by
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(a) K=5, r=1
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(b) K=100, r=1
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(c) K=5, r=0.5
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(d) K=100, r=0.5

Figure 1: Variations in optimal departure time given K and r
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definition reduces the variance in the latter measure. Naturally, the deviation between the
anchor point and mean travel time defines whether optimal departure time coincides with
rational expectations at τ = 1. The effects of the anchor point on expected utility and the
value of travel time reliability are of more interest here. For this exercise we assume K = 5
and r = 1, resulting in ρk =

1
K
.

Figure 3a illustrates that a quadratic penalty applies for deviations TA 6= µ when τ = 1.
For τ = 1 memory limitations do not play a role (since only the anchor counts), meaning
that for a = 0 (i.e. when TA = µ) the expected utility is equal to the rational expectations
outcome. For values of τ between 0 and 1, however, an additional deviation from rational
expectations due to the limited memory becomes present (even when a = 0). For this reason,
the dotted horizontal line in Figure 3a falls below the rational expectations utility level even
when the anchor has no impact (τ = 0).11 Moreover the penalty for using a sub-optimal
anchor point decreases for lower values of τ . The latter is illustrated by the curve at τ = 0.5.

Figure 3b plots the VOR as a function of τ . It follows directly from Equation 15 that
the VOR reduces to the rational expectations outcome for τ = 1, since there is no penalty
for forming adaptive expectations. Reducing the value of τ result in a larger effect of
recent experiences on the formation of expectations, which increases the value of travel time
reliability (see Figure 2). In other words, τ controls the distance between the two horizontal
lines in Figure 2b. As expected, the effect is strongest for small values of τ . The presence of
an anchor point reduces the maximum deviation between the value of travel time reliability
with rational expectations and adaptive expectations for any degree of transience.12

4.4. Inaccurate retrieval and transience

Finally, we illustrate the implications of inaccurate retrieval on expected utility, where we
allow ν̄ to vary between zero and σ2 (see Equation 21). For plausibility, we set this upper
bound on ν̄ such that deviations from actual realizations do not fall too much outside of the
scale of f(·). In accordance with Equation 22, Figure 4 shows that the penalty for inaccurate
retrieval is linear in ν̄, where more inaccuracy reduces expected utility (but does not affect
the VOR). This effect is further amplified for smaller values of r.

4.5. Summary of numerical results

We find that r and τ are the most important determinants of differences between adaptive
and rational expectations in terms of optimal departure times and the value of travel time
reliability. Based on Figure 2b we can conclude that the VOR may be underestimated by
up to 45% if the VOR is computed under the assumption that the scheduling decisions are
guided by rational expectations, whereas in reality they are guided by adaptive expectations
and anchoring. We hereby interpret K = 5 and r = 0.5 as realistic lower boundaries for the
memory storage capacity and the transience parameter, respectively (see Cantarella (2013)).
Inaccuracy of retrievals leaves the VOR unaffected, but may induce additional dis-utility,
although this effect seems to be relatively small (see Figure 4). The presence of an anchor

11For smaller values of r the distance between the two horizontal lines increases.
12When τ is endogenously chosen, the VOR will depend on a and ν1...νK as well (see Equation 26).
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(τ 6= 0) may under certain conditions increase the expected utility. When τ is exogenous,
an increase in τ always decreases the bias in the VOR, which is in turn independent of the
anchor itself.

5. Conclusions

We developed a model in which adaptive expectations are formed on the basis of past experi-
ences and anchoring. Limited memory storage capacity, transience, inaccurate retrieval and
anchoring result in sub-optimal decisions, and thereby translate into reductions in utility
relative to the rational expectations outcome. We apply our model to scheduling choices of
commuters during the morning commute, where travel times are stochastic. We show that
the value of travel time reliability may be underestimated by up to 45% if rational expec-
tations are assumed, while the true expectation formation process is adaptive. The benefits
from reliability improvements thus tend to be significantly larger if travel time expectation
formation is guided by limited memory, adaptive expectations and anchoring. Revealed pref-
erence studies that use a reduced-form utility function probably already capture the biases
formulated in this paper. Our results are therefore mainly important for stated preference
analyses that ignore the process of expectation formation.

Our functional form assumptions on the utility function allowed us to derive a simple
closed-form expression for the memory adjusted value of reliability. The analytical result has
the potential to be incorporated in existing static transport network models. Equations 8
and 14 show that trip travel cost functions of the structure C = b1 + b2µ + b3µ

2 + b4σ
2 are

able to capture memory biases in an adequate way. Here, the parameters b1, b2, b3 and b4 are
functions of the underlying behavioural parameters related to scheduling (β0, β1 and γ1),
anchoring (τ and a), transience (ρ1, ..., ρK) and retrieval inaccuracy (ν1, ..., νK), and µ and
σ2 are functions of the number of travellers on the links that constitute the trip. For more
general forms of the utility function this structure unfortunately breaks down and numerical
analysis is needed.

Our dynamic memory model stands apart from static behavioural models where individ-
uals treat probabilities in a non-rational way, since it predicts that commuters are sometimes
optimistic and sometimes pessimistic, depending on their most recent experiences and cor-
responding retrieval probabilities. This is in contrast to rank-dependent utility models that
assume that optimism and pessimism are exogenously given and therefore unrelated to ear-
lier experiences (see Koster and Verhoef (2012) and Xiao and Fukuda (2015) for transport
applications).

Our approach may serve as an input for the modelling of dynamic systems, both in
transport as well as in other fields of economics. In such models adaptive expectations often
play a central role but are usually based on simple decision rules (see for example Watling
and Cantarella (2013) for an overview of day-to-day dynamic transport systems and Hommes
(2013) for an overview of adaptive expectations in financial markets). Incorporating dynamic
learning mechanisms in the model is a fruitful area for further investigation.

Although our model is fairly general, we made several restrictive assumptions in order to
keep it analytically tractable. Some of the assumptions can be adjusted in order to arrive at
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more general results. In the next paragraphs, several possible generalizations are discussed.
First, we assume for simplicity that travel time distributions are independent of departure

time, whereas in reality travel time distributions usually vary by time of day. In Appendix
A we show how to generalize the resulting expressions for travel time distributions that are
changing over subsequent days. This results in additional biases related to variations in
travel time distributions over subsequent time periods.

Second, we assume that the decision-maker has a fixed anchor TA = µ + a, whereas
in reality this may well be a noisy belief, implying that a is random. The implications
of randomness in the anchor can be discussed by looking at the impact on the variance
and the mean departure time with adaptive expectations. Equation 12 then will include
the mean anchor, whereas Equation 13 would have an additional variance term relating to
the variation in the anchor. Because the variance of departure time will increase with a
higher variance in the anchor, this will result in additional losses in expected utility (see
Equation A.3).

Third, for the main analysis (except for Section 3.6, where we discuss the endogenous
choice of the relative weight attached to the anchor, τ), we made the assumption that
decision makers are not aware of their memory limitations (Piccione and Rubinstein, 1997).
For decisions where the stakes are not so high, this may be a reasonable assumption. When
the utilitarian effects of sub-optimal choice are high, the decision maker may take a more
reflective attitude and may optimise her anchor or collect additional information in order to
reduce behavioural biases.

Fourth, we assumed that retrieval probabilities are independent of the values of the
experienced states, meaning that negative experiences do not impact expectations more
than positive ones, or vice versa. Furthermore, we assumed that the experience of a new
state does not affect the memory of the already stored states. Future research should aim
at relaxing these assumptions.

Further useful generalizations could be implemented with respect to the specification
of the scheduling preferences as well as by including information. One might for instance
employ more general scheduling preferences and then use Taylor approximations to arrive
at more general results (see Engelson (2011)). It also seems a fruitful direction for future
research to extend the model by the possibility to obtain information about future travel
times. The quality of the information could then in turn depend on when the information
is collected, or on how much one is willing to pay for it.

Finally, we consider the empirical testing of our decision model using laboratory and
revealed preference data as a fruitful direction for further research. However, the data
requirements will be demanding: high-quality panel data with a substantial sample size will
be necessary to estimate the parameters of our model in such a way that the four main
components of the model (limited memory capacity, transience, retrieval accuracy and the
anchor) can be unambiguously disentangled. For initial applications, it may therefore be
useful to disregard one of the components, or to make functional form assumptions that
reduce the number of parameters to be estimated.
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Appendix A. Proof section 3.3.

In this Appendix we derive the predicted expected outcome utility (Equation 14). The proof
is for general travel distributions with k-dependent means and variances and k-dependent
anchoring. Assume that travel time distributions have mean µk and variance σ2

k and prob-
ability density f(Tk|µk, σ

2
k). The predicted expected outcome utility is given by:

E(Uae) ≡ E (U(dae0 , T0))

=

∫

...

∫

(

∫

...

∫

U(dae0 , T0)
K
∏

k=1

g
(

T̄k|Tk, ν
2
k

)

dT̄1...T̄K)

)

K
∏

k=0

f(Tk|µk, σ
2
k)dT0...dTK ,

(A.1)

The expectation over all values of T0 is given by:

ET0
(U(dae0 , T0)) =

∫

(

−

∫ 0

dae
0

(β0 + β1v)dv −

∫ dae
0

+T0

0

(β0 + γ1v)dv

)

f(T0|µ0, σ
2
0)dT0

= −β0µ0 −
1

2
(γ1 − β1)(d

ae
0 )2 − γ1µ0d

ae
0 −

1

2
γ1(µ

2
0 + σ2

0),

(A.2)

where we use ET0
to emphasize that the expectation is only over values of T0. The predicted

expected outcome utility with adaptive expectation can be found by taking the expected
value over all possible values of the departure time dae0 :

E(Uae) = E

(

−β0µ0 −
1

2
(γ1 − β1)(d

ae
0 )2 − γ1µ0d

ae
0 −

1

2
γ1(µ

2
0 + σ2

0)

)

= −β0µ0 −
1

2
(γ1 − β1)E

(

(dae0 )2
)

− γ1µ0E(d
ae
0 )−

1

2
γ1(µ

2
0 + σ2

0)

= −β0µ0 −
1

2
(γ1 − β1)

(

(E(dae0 ))2 + VAR(dae0 )
)

− γ1µ0E(d
ae
0 )−

1

2
γ1(µ

2
0 + σ2

0).

(A.3)

This shows that E(Uae) can be written as a function of the mean departure time and the
variance of departure time. When travel time distributions depend on k, the departure time
with adaptive expectations is given by 11. The mean departure time is given by:

E (dae0 ) = −τ
γ1

γ1 − β1

TA − (1− τ)
γ1

γ1 − β1

K
∑

k=1

ρkµk, (A.4)

which reduces to 12 for µk = µ. The variance of the departure time is given by (here we use
the assumptions of footnote 6):

VAR(dae0 ) = (1− τ)2
(

γ1
γ1 − β1

)2 K
∑

k=1

ρ2k
(

σ2
k + ν2

k

)

, (A.5)

which reduces to 13, for σ2
k = σ2. Substituting Equation A.4 and A.5 in Equation A.3 gives

the result for k-dependent travel time distributions. For the remainder of this Appendix we
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assume µk = µ0 = µ and σ2
k = σ2

0 = σ2 in order to arrive at the results that are discussed in
the main body of the paper. Substituting 12 in A.3 gives:

E(Uae) = −β0µ−
1

2
(γ1 − β1)

(

(

γ1
γ1 − β1

)2
(

µ2 + 2µτa+ τ 2a2
)

+ VAR(dae0 )

)

+
γ2
1

γ1 − β1

(

µ2 + µτa
)

−
1

2
γ1(µ

2 + σ2)

= −β0µ+
1

2

γ2
1

γ1 − β1

−
1

2
γ1µ

2 −
1

2
γ1σ

2 −
1

2

γ2
1

γ1 − β1

τ 2a2 −
1

2
(γ1 − β1)VAR(d

ae
0 )

= −β0µ+
1

2

β1γ1
γ1 − β1

µ2 −
1

2
γ1σ

2 −
1

2

γ2
1

γ1 − β1

τ 2a2 −
1

2
(γ1 − β1)VAR(d

ae
0 )

= E(Ure)−
1

2

γ2
1

γ1 − β1

τ 2a2 −
1

2
(γ1 − β1)VAR(d

ae
0 ).

(A.6)

Substituting Equation 13 gives the desired result. This concludes the proof.

Appendix B. Proof section 3.6.

We start with 14 where we include the optimal anchor parameter τ ∗ which depends on the
variance of travel time (see 24). Then differentiate expected utility with respect to σ2 to
obtain:

VORτ∗ =
1

2
γ1 +

1

2

γ2
1
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(1− τ ∗)2
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(B.1)
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Substituting 24 gives:

VORτ∗ =
1
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1

2
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1
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(B.2)
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