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Abstract. A four-noded curved shell finite element for the geometrically non-linear analysis of beams 
curved in plan is introduced. The structure is conceived as a sequence of macro-elements (ME) having 
the form of transversal segments of identical topology where each slice is formed using a number of the 
curved shell elements which have 7 degrees of freedom (DOF) per node. A curved box-girder beam 
example is modelled using various meshes and linear analysis results are compared to the solutions of a 
well-known computer program SAP2000. Linear and non-linear analyses of the beam under increasing 
uniformly distributed loads are also carried out. In addition to box-girder beams, the proposed element 
can also be used in modelling open-section beams with curved or straight axes and circular plates under 
radial compression. Buckling loads of a circular plate example are obtained for coarse and successively 
refined meshes and results are compared with each other. The advantage of this element is that curved 
systems can be realistically modelled and satisfactory results can be obtained even by using coarse 
meshes.  
 
Keywords: curved shell finite element; second-order effect; buckling   

1. Introduction  

     Bridges with box-girder sections have been widely preferred especially due to their relatively 
high torsional stiffness. Torsional stiffness is important for straight bridges in distribution of 
eccentric loads more effectively in cross-sectional direction and also for curved bridges which can 
be subjected to significant torsional effects.   
     Cross-section types for box-girder bridges constructed to date are single-cell, multicell, and 
multispine box sections with rectangular or trapezoidal shapes. Analyses of single-cell and multi-
cell box girders have been made using folded plate or shell elements (Meyer and Scordelis 1971; 
Fam and Turkstra 1975; Moffat and Lim  1977) and using box beam elements considering 
flexural, torsional and distortional behaviours of box girders as given in Razaqpur and Li (1991). 
In Park et al. (2005), a thin-walled box beam element for straight box girder bridges has been 
developed and an eccentric loading was decomposed into flexural, torsional and distortional forces 
by using the force equilibrium in order to consider the distortional behaviour of the multicell box 
girders independently. In Zhang and Lyons (1984), the thin-walled beam theory has been directly 
combined with the finite element technique to provide a new thin-walled box beam element which 
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includes three extra degrees-of-freedom over the normal six degrees-of-freedom beam 
formulation, to take into account the warping and distortional effects.  
     It is normally impossible to construct bridges entirely with straight axes. Therefore, designing 
some parts or all of the system with a curved axis becomes inevitable (Zhang and Lyons 1984; 
Hiroshi and Chai 1988; Hall 1996; Zureick et al. 2000; Razaqpur and Li 1994, 1997). An efficient 
finite segment method for the analysis of curved box girders with corner stiffeners was presented 
in Wang et al. (2005). A more exact horizontally curved beam finite element in which the true 
warping degree of freedom conforms to the bimoment was developed in Hsu et al. (1990) where 
the beam element can be used for both open and closed sections. Experimental studies of curved 
beams were also carried out by some researchers as in Zureick et al. (2000) and Shanmugam et al. 
(1995).  
     Second order effects gain importance for systems with thin walls like steel bridges and they 
need to be taken into consideration in order to make more realistic analysis. These effects are taken 
into account in Erkmen and Bradford (2009) where a total Lagrangian finite element formulation 
for the elastic analysis of steel-concrete composite beams that are curved in plan is developed. A 
displacement-based one-dimensional finite element model with geometric nonlinearity is 
introduced for thin-walled composite box beams and also for general thin-walled open-section 
composite beams in (Vo and Lee 2009, 2010) and a finite element model of spatial thin-walled 
beams with general open cross section is presented in Wang and Yang (2009). 
     Triangular or quadrilateral finite elements are generally used in the modelling of curved bridges 
in the literature, see for instance Moffat and Lim (1977). However, significant errors may occur 
from the usage of coarse meshes due to the straight edges of the elements. Thus, very fine meshes 
need to be used to be able to model the curved parts of the system realistically which increase the 
computational cost. Using a curved element instead, enables the usage of coarse meshes in design 
which is more convenient. 
     Developing such a curved finite element is the objective of the present paper. The proposed 
curved shell finite element has 7 degrees of freedom at each node and the shape functions and their 
derivatives are of a high polynomial degree. Thus, the element meets the expectations as 
satisfactory results can be obtained by using coarse meshes and geometrically non-linear analyses 
of thin walled open and closed section systems can be carried out by the inclusion of the second 
order effects, as will be illustrated with numerical examples. 

2. Curved shell finite element 

     A segment of a curved box girder bridge modelled with a typical curved shell finite element 
discretization is shown in Fig. 1. 

 

Fig. 1  Box girder bridge segment with curved axis and its finite element mesh 

http://tureng.com/search/meet%20the%20expectations
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     Geometrical properties of the curved shell finite element with circular cross-section and the 
directions of the displacement parameters u, v and w are shown in Fig. 2. u and v indicate the 
displacements in s and  directions and w shows the displacement perpendicular to the element 
surface. 
     The elevation coordinate r is related to the coordinate s, the elevation coordinate Ro of the 
origin and the slope angle  by which the elevation coordinates R1 and R2 of the element edges 
can also be determined, that is 

cossRr o   

cos
21
a

RR o                                                               (1) 

cos
22
a

RR o   

 

Fig. 2  3D(left) view and vertical section (right) of the curved shell finite element 

     The curved shell element can also be transformed into a ring sector element and a cylindrical 
element by setting the slope angle  to 0o and 90o, respectively.  

     2.1.  Displacement functions and deformation field 

     Defining any rigid displacement of the curved shell element in space depending on the 
translation and rotation components of point S, the displacements at any point can be expressed as 
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which have trigonometric functions in terms of the variable  . 
     Membrane internal force variations in longitudinal direction gain importance in curved box 
girder beams. Thus, equivalent 3rd order auxiliary shape functions )sinacosaaa( 4321  
are used as u and v displacement functions in direction to be able to represent the actual 
displacement and internal force distributions sufficiently. Although curvatures and bending 
moments are negligible in  direction, equivalent 3rd order auxiliary shape functions are also used 
for w in order to provide the displacement continuity along the common edges of elements 
connected with different angles. Linear auxiliary shape functions are used in s direction for u and v 
while 3rd order functions are used for w since s is the derivative of w with respect to s. Equivalent 

linear auxiliary shape functions )sincos( 21  cc   are used in   direction for the freedom s . 
     Auxiliary shape functions and corresponding boundary conditions of the curved shell finite 
element are given in Table 1 where )(sli  and )(i indicate linear and )(sfi , )(sgi , )(i and 

)( i  indicate 3rd order variations.  

Table 1  Auxiliary shape functions and boundary conditions of curved shell finite element 
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     The element nodes and their freedoms are given in Fig. 3. The directions of the degrees of 
freedom are different from the local element axes and they only coincide for the special condition 

o0 .  
     The defined axis system is common for all elements connected with different slope angles. 
Thus, axis transformations will not be necessary in the assembly process of system stiffness 
matrices from element stiffness matrices.  

 

Fig. 3  28 DOF curved shell finite element 

     The relation between the displacement parameters of any node of the element and the 
displacement and rotation components at curvilinear coordinates of that node is 
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     The expression which relates the distribution of the displacement components to the element 
freedoms is 

    dA

w

v

u

v de .
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 TdA matrix is given below as 
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     Element displacement functions entirely satisfy the rigid displacement criterion for all 6 rigid 
movement components. In order to check this, nodal displacement functions are expressed in 
terms of these components as 
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     Here, the nodal values of i  and ir should be taken at every node and Eq.(2) is obtained by 

multiplying these values by  dA  matrix.  

     2.2. Internal force-displacement relations 

     Bending moments M  and torsional moments sM  are negligible for curved box girder 
bridges in longitudinal direction. Therefore, the curvatures corresponding to these effects are not 
taken into account. 
     The continuum strain-displacement relations in matrix form are 
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     The relation between the strains and the nodal DOF is given by 

    dB                                                                   (8) 

where 

    dAB                                                                   (9) 

and 
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Element internal forces can be collected in vector form as 
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so that the internal force-strain relation can be written as  

    DN                                                                 (12) 

with the assumption of linear elastic material.  

     2.3. Stiffness matrix of shell finite element 

     The terms of the element stiffness matrix  ek  for the elements with constant section can be 
obtained by using the virtual work theorem as 
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     However, due to the complicated and long terms, Gauss integration is used to obtain the 
stiffness matrices of the elements with constant and variable sections.   
     Thus, the numerical evaluation of the stiffness matrix terms is written as 
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     Here, F and G are the number of integration points used in s and  directions, respectively, and 

fH  and gH are the weight coefficients corresponding to these points. 

     2.4. Second order stiffness matrix  

The stiffness matrix terms of the second order effects can be expressed as  
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using virtual work theorem. Here, sN and N  are the membrane internal force components in s 

and  directions, respectively.   
     Using again Gauss integration, this formulation turns to 
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The element stiffness matrix including the second order effects is obtained by taking the sum of 
the first order terms and the additional second order terms as 
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3. Numerical Tests 

     3.1. Box-girder beam with curved axis 

     A simply supported steel box-girder beam with curved axis is studied. The geometry and 
material properties of the system are given in Figs. 4-5. The beam which is subjected to an 
eccentric vertical point load of P=1000 kN at the midspan is modelled by the proposed shell finite 
element and SAP2000 using various number and 4 different types of macro-elements as shown in 
Fig. 6.  

 

Fig. 4 Curved box-girder beam 
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Fig. 5 Curved box-girder beam cross-section 
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  4 elements                     6 elements                     8 elements                  12 elements 

Fig. 6 Macro-element models 

     First, the beam is modelled using 4 ME with 4 and 6 elements at each ME. The obtained 
vertical displacements of the top left corner along the beam are comparatively plotted in Fig. 7. 
Displacements increase as the number of elements increase from 4 to 6 and it is obvious that there 
is a relatively significant difference between the results of the present study and those of SAP2000. 

 

Fig. 7 Vertical displacements along the beam using 4 ME 

     The same system is then modelled using 10 ME by SAP2000 and the results are compared to 
the results of the present study with 4 ME as given in Fig. 8. The displacements of SAP2000 are 
closer but still not satisfactory.  
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Fig. 8 Vertical displacements along the beam using 4 and 10 ME 

     Finally, the system is analysed by SAP2000 refining the meshes from 4 to 30 ME having 
different number of elements at each ME. It is seen from Fig. 9 that the most convergent results 
upon mesh refinement are obtained by using the proposed shell finite element only with 4 ME 
having 6 elements at each ME. Close results by SAP2000 are obtained when 30 ME with 12 
elements at each are used. 

 

Fig. 9 Vertical displacements along the beam using various number of ME 

     Radial displacements of the curved box-girder beam are also examined. It is observed from Fig. 
10 that the results of the present study using a very coarse mesh (4 elements x 4 ME) and 

SAP2000 using a fine mesh (12 elements x 30 ME) show good agreement. Coarse mesh results of 
SAP2000 are very far from the others and the displacement curve obtained by using the present 
shell element modelled with 6 elements x 4 ME is the most satisfactory of all.   
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Fig. 10 Radial displacements along the beam 

     In addition to the displacements, internal forces of the curved beam are examined. Bending 
moment values of section B in radial direction obtained using the proposed shell element and 
SAP2000 are comparatively given in Fig. 11 and it is seen that the moment values of the present 
study decrease as the number of elements per ME increase and satisfactory results cannot be 
achieved even by the usage of a fine mesh in SAP2000.  

 

Fig. 11 Bending moments in the radial direction 

     Normal forces at section B in the radial direction which are expected to be zero along the beam 
can be achieved using 8 elements x 10 ME of the present shell element while 12 elements x 30 ME 
are used in SAP2000 analysis in order to obtain zero values. 6 elements x 4 ME results using the 
proposed shell element are also satisfactory, Fig. 12.  
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Fig. 12 Normal forces in the radial direction 

     The curved box-girder beam is then subjected to increasing uniformly distributed loads in 
vertical direction and linear and geometrically non-linear analyses are carried out. 10 ME and 8 
elements per ME are used in the analyses. A straight line is obtained via the first order solutions as 
expected and it is seen that the rate of vertical displacements increase with the load increment 
when nonlinearities are taken into account. The vertical displacements at the midspan increase by 
3.5 times with the maximum applied load of 256.25 kN/m2, cf. Fig. 13. 

 

Fig. 13 Vertical displacements at the midspan obtained in the first and the second order theories 
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     3.2. Circular Plate 

     Secondly, a circular plate example subjected to a uniform radial compression is studied. The 
geometry and material properties of the system are given in Fig. 14 where h is the thickness and a 
is the radius. The system is analysed for two different support conditions which are simple and 
clamped supports. In modelling, a ring sector finite element is used which is obtained by setting 
the slope angle of the curved shell finite element to 0o, and a very small hole is assumed to be at 
the centre of the plate in order to avoid singularities. The in-plane pressure is idealized with 
equivalent P1 and P2 point forces acting on the boundary nodes of different meshes as shown in 
Fig. 15. Buckling loads are obtained for all mesh refinements and also analytically as given in 
Timoshenko and Gere (1961), and all results are given comparatively in Table 2 and Fig. 16.   
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Fig. 14 Circular plate under uniform in-plane pressure 
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Fig. 15 Circular plates with various meshes 

     The critical pressure of the clamped circular plate can be obtained analytically as in 
Timoshenko and Gere (1961) using  
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     The critical pressure of the simply supported circular plate is obtained analytically as in 
Timoshenko and Gere (1961) via  
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Table 2  Comparison of buckling loads of circular plate 

 
 

Buckling load (kN/m) 

 
4 elements 8 elements 16 elements 32 elements  Analytical 

Simply supported 404 336 304 298 287 

Clamped 1022 1172 1069 1031 1004 

 

 

Fig. 16 Comparison of buckling loads of a circular plate 

     As seen from the results, the buckling loads of the circular plate rapidly converge to the 
analytical solution upon mesh refinement. Satisfactory results are obtained for the simply 
supported circular plate even by using a very coarse mesh (4 elements). However, the usage of 4 
elements for the plate with clamped support does not give satisfactory results due to the buckling 
mode of the plate. It is seen that the buckling load of a clamped circular plate increases about 3.5 
times compared to the simply supported circular plate. It is also observed that refining the meshes 
in angular direction causes only a minor change in the results.  

4. Conclusions 

     In this paper, a four-noded curved shell finite element with second order effects is introduced. It 
is demonstrated that curved box-girder beams can be realistically modelled and satisfactory results 
can be obtained even by using coarse meshes of the proposed shell finite element.  
     Firstly, a steel curved box-girder beam example is analysed. The vertical and radial 
displacements and the internal forces of the system due to an eccentric load of 1000 kN are 
obtained both by SAP2000 and by using the proposed shell element. It is observed from the results 
that satisfactory results can be obtained even by using very coarse meshes of the present shell 
element while fine meshes need to be used by SAP2000 for that purpose.    
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     Geometrically non-linear analyses of the beams with curved shape can also be made by the 
inclusion of the second order effects to the curved shell finite element formulation. The curved 
beam is then analysed under increasing distributed loads both according to the first and second 
order theories. It is observed that the effects of the geometrical nonlinearities gain importance with 
the load increment, e.g., the vertical displacements at the midspan increase by 3.5 times with the 
maximum applied load of 256.25 kN/m2. 
     Finally, a circular plate example subjected to a uniform radial pressure is studied. The buckling 
loads of the circular plate converge to the analytical solutions even by using very coarse meshes.      
The buckling load increases about 3.5 times by changing the support conditions from clamped to 
simple and it can be said that refining the meshes in angular direction does not change the results. 
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