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Abstract. The paper presents first a linear stability analysis for the time-parallel
Parareal method, using an IMEX Euler as coarse and a Runge-Kutta-3 method as
fine propagator, confirming that dominant imaginary eigenvalues negatively affect
Parareal’s convergence. This suggests that when Parareal is applied to the nonlin-
ear Navier-Stokes equations, problems for small viscosities could arise. Numerical
results for a driven cavity benchmark are presented, confirming that Parareal’s
convergence can indeed deteriorate as viscosity decreases and the flow becomes in-
creasingly dominated by convection. The effect is found to strongly depend on the
spatial resolution.

1 Introduction

As core counts in modern supercomputers continue to grow, parallel algo-
rithms are required that can provide concurrency beyond existing approaches
parallelizing in space. In particular, algorithms that parallelize in time ”along
the steps” have attracted noticeable interest. Probably the most widely stud-
ied algorithm of this type is Parareal [13], but other important methods exist
as well, for example PITA [8] or PFASST [7].

The applicability of Parareal to the Navier-Stokes equations has been
studied in [10], where it is shown that Parareal can solve the initial value
problem arising from a Finite Element discretization of the Navier-Stokes
equations for a Reynolds number of 200 as well as from a Spectral Element
discretization for a problem with Reynolds number 7,500. A non-Newtonian
problem is studied in [2]. In [17,18], Parareal is combined with parallelization
in space and setups with Reynolds numbers up to 1,000 are investigated.
While it is confirmed that Parareal can successfully be applied to flow simu-
lations, the attempt to demonstrate its potential to provide speedup beyond
the saturation of the spatial parallelization was inconclusive, as either the
pure time or pure space parallel approach provided minimum runtimes. A
successful demonstration that Parareal can speed up simulations after the
spatial parallelization has saturated can be found in [5], where Parareal is
used to simulate a driven cavity flow in a cube with a Reynolds number of
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1,000. The performance of PFASST for a particle-based discretization of the
Navier-Stokes equations on O(100, 000) cores is studied in [15].

It has been noted in multiple works that Parareal as well as PITA have
stability issues for convection-dominated problems, see [1,8,12,14,16]. This
suggests that Parareal will at some point cease to converge properly for the
Navier-Stokes equations if the Reynolds number increases and the problem
becomes more and more dominated by advection. This paper discusses re-
sults from linear stability analysis and presents a numerical study for two-
dimensional driven cavity flow of how the convergence of Parareal is affected
as viscosity decreases.

2 Parareal

Parareal is a method to introduce concurrency in the solution of initial value
problems

ut = f(u(t), t), u(0) = u0, 0 ≤ t ≤ T. (1)

It relies on the introduction of two classical one-step time integration meth-
ods, one computationally expensive and of high accuracy (denoted by F)
and one computationally cheap method of lower accuracy (denoted by G).
The former is commonly referred to as the ”fine propagator”, the latter as
the ”coarse propagator”. Denote by Un the numerical approximation of the
exact solution u of (1) at some point in time tn. Further, denote as

Un+1 = Fδt(Un) (2)

the result obtained by integrating from an initial value Un given at a time tn
forward in time to a time tn+1 using a time-step δt and the method indicated
by F . For a decomposition of [0, T ] into N so-called time-slices [tn, tn+1],
n = 0, . . . , N−1, solving (2) time-slice after time-slice corresponds to classical
time-marching, running the fine method in serial from t0 = 0 to tN = T .
Instead, Parareal approximately computes the values Un by means of the
iteration

Uk+1
n+1 = G∆t(U

k+1
n ) + Fδt(U

k
n)− G∆t(U

k
n) (3)

were k denotes the iteration counter. For k → N , iteration (3) converges
towards the serial fine solution, that is Uk

n → Un. Once values Uk
n are known,

the evaluation of the computationally expensive terms F(Uk
n) in (3) can be

done in parallel on N processors. Then, a correction is propagated serially by
evaluating the terms G∆t(U

k+1
n ) and computing Uk+1

n+1 . We refer to e.g. [14]
for a more in-depth presentation of the algorithm. The speedup achievable by
Parareal concurrently computing the solution on N time-intervals assigned
to N processors is bounded by

s(N) ≤ min

{

N

Nit

,
CF

CG

}

(4)
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where Nit is the number of iterations performed and CF , CG denote the time
required to evaluate Fδt and G∆t respectively, see again e.g. [14]. Note that
the two bounds are competing in the sense that using a coarser and cheaper
method for G will usually improve the second bound but might cause Parareal
to require more iterations to converge, thereby reducing the first bound. In
contrast, a more accurate and more expensive G will likely reduce the iteration
number but also reduce the coarse-to-fine runtime ratio CF

CG
.

3 Linear stability analysis

In order to illustrate Parareal’s stability properties, we apply it to the test
equation

y′(t) = λRey(t) + iλImy(t), y(0) = 0, 0 ≤ t ≤ T. (5)

A linear stability analysis of this kind was first done in [16], using RadauIIA
methods for both F and G. Here, in line with the numerical examples pre-
sented in Section 4, the stability analysis is done for an implicit-explicit Euler
method for G and an explicit Runge-Kutta-3 method for F with five time
steps of F per two time steps of G. The IMEX scheme treats the real part
(”diffusion”) implicitly and the imaginary term (”convection”) explicitly. Fur-
ther, N = 15 concurrent time slices are used and a time step ∆t = 1.0 for G,
so that T = 15.

Figure 1 shows the resulting stability domains and isolines of accuracy
for the coarse method run serially (a), the fine method run serially (b), and
for Parareal with different numbers of iteration (c)–(f). For Nit = N = 15,
the solution from Parareal is identical to the one provided by F and thus
the stability domains also coincide (not shown). As can be expected because
of the stability constraint arising from the explicitly treated imaginary term,
the IMEX method used for G becomes unstable if the imaginary part of
λ becomes too dominant. Parareal however ceases to be stable even before
reaching the stability limit of the coarse propagator. The analysis confirms
again that for problems with imaginary eigenvalues, Parareal can develop
instabilities although both F and G are stable. Furthermore, the stability
domain of Parareal shrinks from Nit = 1 to Nit = 4 and Nit = 8 before
expanding again for Nit = 12. Note also that for a fixed number of iterations,
Parareal becomes less accurate as λIm increases (in contrast to the serial fine
method), corresponding to reduced rates of convergence. This means that
achieving the accuracy of the underlying fine method will require more itera-
tions for problems with larger imaginary eigenvalues, therefore reducing the
speedup achievable by Parareal, cf. the estimate (4). Eventually, as conver-
gence becomes too slow, Parareal will no longer be able to achieve speedup
at all and will no longer be useful. The mathematical explanation for this
behavior is a growing term in the error estimate for Parareal for imaginary
eigenvalues that is only compensated for as the iteration number approaches
the number of time-slices, see the analysis in [12].
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(a) IMEX Euler
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(b) RK-3
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(c) Parareal(1)
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(d) Parareal(4)
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(e) Parareal(8)
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(f) Parareal(12)
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Fig. 1. Stability and accuracy of Parareal using an implicit-explicit Euler for
G, a RK3 method for F , N = 15 time slices and a ratio of s = 5/2 fine
to coarse steps in each time-slice. The thick gray line indicates where the
amplification factor becomes greater than one. The black lines indicate error
levels. Note that in (a) no black lines are visible because the error never drops
below 10−1. Note also that s = 5/2 means the fine scheme in serial performs
five steps per time-slice and the coarse scheme two, so that (a) and (b) are
not identical to the stability function of the respective method with only a
single time-step. Figures (c) – (f) show the stability domain for Parareal with
Nit = 1, 4, 8, 12 iterations. For comparison, the stability region of G is also
sketched again as a thin dashed gray line.

4 Numerical results for driven cavity flow

In order to investigate if and how the results from the linear stability analysis
carry over to the fully nonlinear case, we solve now the non-dimensional,
nonlinear, incompressible Navier-Stokes equations in two dimensions

ut + u · ∇u+∇p = ν∆u (6)

∇ · u = 0 (7)

on a square [0, 1]2. A method-of-lines approach is used to first discretize in
space. For the spatial discretization a finite volume method based on a vertex
centered scheme is used. On an unstructured or not necessarily structured
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(b) Nx = 16
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(c) Nx = 32
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(d) Nx = 64
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Fig. 2. Convergence of Parareal against the serial fine solution for ∆t =
1/200, different numbers of mesh points Nx and different values for the vis-
cosity ν.

triangle mesh, control volumes are constructed via a dual mesh. This leads
to a non-staggered scheme of velocity and pressure. Therefore, a stabilization
based on upwind differences and an incremental version of the Chorin-Temam
method for the pressure is used [19]. Parareal is then employed to solve the
resulting initial value problem until a final time T = 15 with N = 15 time-
slices. As in the stability analysis above, G is an implicit-explicit Euler method
while F is an explicit Runge-Kutta-3 method. The time-step for the coarse
method is ∆t = 1/200, for the fine method δt = 1/500, reproducing a rate of
s = 5/2 fine per coarse steps. Although the driven cavity setup is probably
not the most ideal here, since, depending on the viscosity, the solution settles
into a steady state rather quickly, its wide use and comparative simplicity
still make for a good first test case. Further tests for a more complex vortex
shedding setups are currently ongoing.

Figure 2 shows the convergence of Parareal against the solution provided
by running F in serial. Shown is the maximum of the relative error at the
end of all time-slices, that is

ek := max
n=1,...,N

∥

∥Uk
n − Un

∥

∥

∞
/ ‖Un‖∞ (8)

where Uk
n is the solution at tn provided by Parareal after k iterations and Un
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(a) Nx = 8
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(b) Nx = 16
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(c) Nx = 32
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(d) Nx = 64
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Fig. 3. Convergence of Parareal against the serial fine solution for ∆t =
1/400, different numbers of mesh points Nx and different values for the vis-
cosity ν.

the solution provided by running F in serial. The spatial discretization uses
values of Nx = 8, 16, 32, 64 and the viscosity parameter is set to ν = 10−1,
10−2, 10−3, 10−4. For Nx = 64 and ν = 10−1 no values are shown, because
here the explicit RK3 method used for F started to show stability problems.
On all meshes, the convergence of Parareal deteriorates as ν becomes smaller
and this effect is much more pronounced for finer spatial resolutions, where
the mesh is able to better resolve the features of the more convection domi-
nated flow. On the finest mesh, there is a clear transition between ν = 10−3,
for which Parareal still converges reasonably well, and ν = 10−4, where the
method first stalls for several iterations before slowly starting to converge.
Requiring a number of iterations close to the number of time-slices means
that only marginal speedup is possible from Parareal, because the first bound
in (4) becomes very small. Note also that the still reasonable convergence of
Parareal for very low viscosity on a very coarse spatial mesh is not of great
practical interest, as the provided solution will be strongly under-resolved.
Figure 3 shows again the convergence of Parareal for a decreased coarse time-
step size ∆t = 1/400. As can be seen, reducing the coarse time-step again
improves convergence and allows Parareal to converge in fewer iterations.
However, it reduces the second speedup bound in (4) and thus will also at
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some point prevent Parareal from achieving speedup. Therefore, the reduced
convergence speed of Parareal for small viscosities either necessitates a small
time-step in the coarse method or a large number of iterations and both
choices significantly reduce the achievable speedup. A possible remedy could
be the application of stabilization techniques as discussed in [4,9] for PITA
or [3,6,11,14] for Parareal, but so far none of these have been tested for the
full Navier-Stokes equations.

5 Conclusions

The paper presents a numerical study of how the Reynolds number (or, in-
versely, the viscosity parameter) affects the convergence of the time-parallel
Parareal method when used to solve the Navier-Stokes equations. From other
works it is known that Parareal can develop a mild instability for problems
with dominant imaginary eigenvalues, so it can be expected that as the vis-
cosity is decreased, Parareal will eventually become unstable at some point.
A linear stability analysis is performed to motivate this assumption, which is
then substantiated by numerical examples, solving a two-dimensional driven
cavity problem for different Reynolds numbers and different spatial resolu-
tions. It is confirmed that the convergence of Parareal deteriorates as the
viscosity parameter becomes smaller and the flow becomes more and more
dominated by convection. This necessitates either the use of a very small
time-step in the coarse method or many iterations of Parareal, but both
these choices significantly reduce the achievable speedup.
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