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a b s t r a c t

Numerical modelling of wide ranges of different physical scales, which are involved in Shallow Water (SW)

problems, has been a key challenge in computational hydraulics. Adaptive meshing techniques have been

commonly coupled with numerical methods in an attempt to address this challenge. The combination of

MultiWavelets (MW) with the Runge–Kutta Discontinuous Galerkin (RKDG) method offers a new philoso-

phy to readily achieve mesh adaptivity driven by the local variability of the numerical solution, and without

requiring more than one threshold value set by the user. However, the practical merits and implications of

the MWRKDG, in terms of how far it contributes to address the key challenge above, are yet to be explored.

This work systematically explores this, through the verification and validation of the MWRKDG for selected

steady and transient benchmark tests, which involves the features of real SW problems. Our findings reveal

a practical promise of the SW-MWRKDG solver, in terms of efficient and accurate mesh-adaptivity, but also

suggest further improvement in the SW-RKDG reference scheme to better intertwine with, and harness the

prowess of, the MW-based adaptivity.

© 2015 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Godunov-type [21] Shallow Water (SW) models are well-

recognised for incorporating the widest range of flow transitions

within the numerical discretization. They have undergone significant

developments over the past few decades and lie at the heart of the

latest hydraulic modelling packages [15,23,47,60].

Most commonly, Godunov-type Finite Volume (FV) SW models

are built on the assumption that each discrete control volume is lo-

cal piecewise-constant information to the conservative form of the

Shallow Water Equations (SWE). Connecting local information across

inter-elemental faces, via the spatial fluxes obtained from the solu-

tion of Riemann Problems, is achieved to evolve the information in

time [66]. In this sense, a FV formulation is first-order accurate, or

may be said to allow single-scale of local accuracy and resolution.

High order variants have been proposed (e.g. MUSCL [27,50,63], PPM

[12] and WENO [41,54,69]) using non-local reconstruction of polyno-

mial estimates from the local piecewise-constant information. How-

ever, they dictate widening of the calculation stencil, which thereby

requires information from non-local neighbour cells; thus remov-

ing the essence of the locality featuring in the first-order FV formu-
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ation. Practically, such non-locality complicates the handling key

eatures (e.g. treatment of terrain datasets, moving wet-dry zones

nd boundary conditions [26] and the exploitation of parallel com-

uting efficiency; this may be a key reason why usable and paral-

elized Godunov-type SW models are most often first-order accurate

4,7,13,29,40,47].

The Runge–Kutta (RK) Discontinuous Galerkin (DG) method has

isen as a viable alternative to enable high-order accuracy within

he spirit of the local FV Godunov-type foundation. The RKDG for-

ulation locally shapes and evolves (from conservation principles)

iecewise-polynomial solutions, or local data-sets of information

11]. It has become increasingly adopted and improved for SW mod-

lling [16,37,64,68,73], and has been demonstrated to offer numer-

us benefits (e.g. higher-quality solution behaviour on very coarse

eshes, improved velocity predictions and increased local accuracy

or wet-dry front tracking [30,35,37]. Nonetheless, the amount of lo-

al information needed (i.e. for storage and evolution of polynomial

oefficients) depends on the accuracy-order, the spatial dimension-

lity and spatial resolution. Proportional to these factors, the com-

lexity of the RKDG formulation drastically increases as well as its

omputational and runtime costs. Consequently, RKDG SW models

re most commonly second-order (RKDG2) and at most third-order

RKDG3).

In line with the development of robust and stable SW Godunov-

ype models, research efforts have also been active in attempting
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l∫
o accommodate the variability, multiplicity and inter-connectivity

f the local spatial-resolutions that are involved in SW problems.

daptive meshing techniques have become well-recognised as an op-

imal solution for the trade-off between spatial-resolution and com-

utational cost [9,14,34,36,38,52,62]. However, conventional meshing

echniques – coupled with either the FV or the DG formulation – are

till hampered by many issues. The most relevant of them is gener-

tion of excessive error dissipation, nonphysical oscillation and loss

f conservation [14,34,43,56,71]. Even for 1D SW modelling, explicit

odification within a conventional adaptive mesh technique is re-

uired to ensure well-balanced numerical predictions at the same

evel of reliability of those predicted on the uniform mesh counter-

art [14]. Similar problems have been reported when an adaptive SW

odel is faced with wetting and drying, and for the 2D case con-

idering both (structured) quadrilateral and (unstructured) triangular

eshes [43,71]. Generally, conventional adaptive mesh methods: (a)

o not offer the option to control how much perturbation, in accuracy,

s allowed relating to a reference scheme on a fine-uniform-mesh, (b)

eed separate parameters and criteria for treating mesh-coarsening

nd mesh-refinement processes, and (c) impose relatively fine base-

ine coarse resolution [34,51]. Therefore, this work is motivated by

he further need to explore a more rigorous and integrated notion of

esh adaptivity in addressing the aforediscussed challenges.

Multiresolution analysis, spawning from applications in signal

rocessing and image compression has been proposed for controlling

esh adaptivity in the context of solving PDEs and ODEs [2,24,46,61].

o achieve this in the framework of a local RKDG polynomial approx-

mation, multiwavelets (MW) [1] offer a sound mechanism for trans-

orming the single-resolution polynomial information into multi-

esolution information. The MW information comes into play as

key component of the encoded difference across two successive

esolution levels. Hovhannisyan et al. [28] explored in detail how

he combination of MW and the RKDG method (MWRKDG) is con-

eptually achieved in solving 1D scalar (hyperbolic) conservation

aws. Their numerical analysis shows that the MW’s scalability al-

ows (i) a solution-driven mesh adaptation process controlled by

ne threshold-value parameter set in by the user, (ii) to quantita-

ively control the perturbation-error of the adaptive solution from

ts underlying uniform mesh solution (so-called reference scheme),

nd (iii) a choice for the threshold-value parameter so that the per-

urbation error does not exceed the discretization-error of the refer-

nce scheme on the finest grid accessible. Gerhard and Müller [20],

erhard et al. [19] extended further the MWRKDG theory for more

eneral inviscid hyperbolic conservation laws, including the 2D case.

hese works mainly studied strategies for the choice of the threshold-

alue in relation to the MW-based adaptivity, while remaining within

he scope of solving homogeneous conservation laws.

In the context of SW modelling, the MWRKDG theory is little ex-

lored, to date, and requires further consideration to integrate the

opography and friction source terms. Kesserwani et al. [31] pre-

ented a 1D SW-MWRKDG3 model based on a well-balanced 1D

KDG3 reference scheme [33]. Their results demonstrate that the

eatures of the 1D RKDG3 scheme (i.e. well-balanced property and

ocal slope limiting) are genuinely transferable to the adaptive set-

ing of MWRKDG. A 2D SW-MWRKDG3 has been studied by [18]

ased on the reference 2D RKDG3 scheme of [70]. Their work the-

retically proved that the SW-MWRKDG3 model delivers adaptive

esh simulations at the same level of confidence offered by the 2D

KDG3 reference scheme, in particular for the mass-conservation

uantity. In both papers [18,31], a convergence analysis was car-

ied out indicating that the adaptivity of the SW-MWRKDG model

an simultaneously address challenges (a)–(c). Practically speaking,

owever, the SW-MWRKDG3 model [18] could not be assessed for

ealistic hydraulic tests, due to new conflicts identified between

he choice of the reference RKDG3 reference scheme and adap-

ivity. One of these is stability conflicts when the wet-dry front
s not (exactly) located at a cell interface, which is not ideal for

daptivity, notwithstanding that RKDG3 models are harder to sta-

ilise. Consequently, the deployment of more appropriate refer-

nce RKDG2 schemes remains a key issue in order to be able to

xplore and exploit the adaptivity of MWRKDG for practical SW mod-

lling.

This paper aims to offer new insights into the response of the

WRKDG adaptivity for practical SW simulations. Two adaptive SW-

WRKDG2 models are used for solving the SWE with friction and

opography source terms, and with presence of wetting and drying.

he adaptive models are tailored and studied based on two refer-

nce RKDG2 schemes: the scheme in [36] and the one in [70]. The

W-MWRKDG2 models are exhaustively tested for three hydraulic

enchmarks, and then assessed in replicating dam-break flow experi-

ents. The performances of the SW-MWRKDG2 models are analysed

n detail, and compared (when possible) along with a SW-MWRKDG3

odel results considering subjects of: stability for SW modelling,

daptivity response to the features of the reference scheme, and op-

rational and runtime saving.

. Shallow water model

The 1D shallow water equations, per unit width, can be written as

∂U(x, t)

∂t
+ ∂F(U)

∂x
= S(U, x) (1)

here U(x, t) is the vector of conserved variables

= [h, q]
�

(2)

ith h the water depth [L], q = hu the unit discharge [L2/T] and u the

elocity [L/T].

The flux F(U) in Eq. (1) is

(U) =
[

q,
q2

h
+ gh2

2

]�

(3)

The source term can include a number of different physical phe-

omena, but here it is restricted to bed and friction terms

(U, x) = B(U, x) + H(U, x) (4)

here B(U, x) is the bed source term

(U, x) =
[

0,−gh
∂z

∂x

]�

(5)

ith z the bed elevation [L] and g the acceleration of gravity [L/T2].

inally, H(U, x) is the friction source term

(U, x) = [0,−ghσ ]
�

(6)

in terms of the friction slope σ for which Manning’s model is used

= n2
σ u|u|
h4/3

(7)

ith nσ the Glaucker–Manning coefficient [TL−1/3].

In order for the problem to be well-posed, it is of course necessary

o supplement the equations with initial data U(x, t =0) and appro-

riate boundary conditions.

. Discontinuous Galerkin framework

Consider Eq. (1), which is a system of non-homogeneous conser-

ation laws. By multiplying the equation with a test function v˜, inte-

rating by parts and making use of Gauss’ theorem, the weak formu-

ation for a 1D control volume is obtained

∂U˜
∂t

v˜dx −
∫

F(U˜)
∂v˜
∂x

dx +
∑
ω

F̃(U˜+
ω, U˜−

ω)nωv˜ω =
∫

S(U˜, x)v˜dx
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where U˜ is an approximate solution to U, F̃ is the numerical flux ob-

tained from the discontinuous solution at both sides (+ and −) of the

edges ω of the control volume, nω is the outer-pointing normal vector

to the edges, i.e., nω = {−1, 1} and v˜ω is the test function evaluated

at cell edge ω.

The discontinuous Galerkin approximation assumes that the ap-

proximate solution is a modal decomposition which satisfies

Ui =
p∑

k=0

Ui,kϕi,k (9)

where ϕi, k are polynomial basis functions locally supported on cell

i, with polynomial degree 0 ≤ k ≤ p, and Ui, k are time-dependent

coefficients associated to each polynomial degree in cell i and are ini-

tialised in time level n = 0 as

U0
i,k =

∫
U0ϕi,k dx (10)

These coefficients are to be evolved in time, therefore they may

be termed as degrees-of-freedom of the solution. The approximation

in Eq. (9) has an order of accuracy P = p + 1. Therefore, if linear basis

functions (p = 1) are used, second-order (P = 2) accuracy is achieved,

and in consequence the scheme is referred to as DG2.

Let the test functions v˜be the set of basis functions {ϕi, k}, and the

basis functions to be taken as Legendre polynomials

ϕk(χ) = 1

2kk!

dk

dχ k
(χ2 − 1)k (11)

which are scaled and shifted from their reference domain χ ∈ [−1, 1]

into the local cell i defined by x ∈ [xi−1/2, xi+1/2] = [xi − δxi/2, xi +
δxi/2]. They are also normalised, so that they are not only orthogo-

nal but orthonormal in L2, which is convenient for the adaptive strat-

egy presented later on (but not a requirement of the reference DG

scheme). Then, the scaled, shifted and normalised Legendre polyno-

mials are

ϕi,k(x) =
√

2

2k + 1
ϕk

(
2

x − xi

δxi

)
(12)

where δxi is the cell size. Then, using the orthogonality property of the

Legendre polynomials it is possible to obtain the evolution equation

for each of the degrees-of-freedom Ui, k

∂Ui,k

∂t
=

∫
F(U˜)

∂ϕi,k

∂x
dx︸ ︷︷ ︸

Ki,k

−
∑
ω

F̃(U˜+
ω, U˜−

ω)nωϕi,k,ω︸ ︷︷ ︸
F̃ i,k

+
∫

S(U˜, x)ϕi,k dx︸ ︷︷ ︸
S i,k

(13)

Ki,k are (volume) integrals of internal fluxes, F̃ i,k the (surface) in-

tegrals of the numerical fluxes and S i,k the (volume) integrals of the

source term.

Numerical fluxes F̃ in Eq. (13) are obtained by approximately solv-

ing Riemann problems at the cell edges using Roe’s linearization [57],

i.e., Roe numerical flux. The source term is approximated by S(U˜, x),
which requires the existence of a bed z˜ projected onto the same or-

thonormal basis that define the DG discretization space, that is

z =
∫

zϕi,k dx (14)

However, to properly treat the source terms, the construction of this

bed projection is further discussed in the next section.

The integrals in Eq. (13) are then computed numerically by appro-

priate Gauss quadrature rules that suit the polynomial degree of the

integrand [10]. For p = 1, 2-point quadrature rules suffice for volume

integrals. For p = 2, 4-point quadrature rules are used.

Integration in time is done by a strong stability preserving Runge–

Kutta procedure [22], with two stages for RKDG2, and three stages for

RKDG3.
.1. Selected reference schemes

To complete the numerical scheme, several issues must be

ddressed. From the shallow water modelling perspective well-

alancing strategy and depth-positivity must be ensured, as widely

ecognised in the FV [3,47,53,72] and DG [36,67] literature. Further-

ore, from the high-order RKDG perspective, a slope limiter is re-

uired to maintain stable numerical solutions [11,33,39]. In this work,

wo reference RKDG-schemes for shallow water modelling are used,

ach with its selection of strategies for the aforementioned issues.

Scheme 1 is a scheme based on the well-balancing strategy

roposed by [36], relying on a continuous projection of the bed z˜
nto the discrete DG space (specifically, continuous at cell edges),

hus eliminating the ill-posed Riemann problem issue that gives rise

o non-well-balanced schemes. The bed projection in this work is

ept at p = 1, regardless of the accuracy of the method, for practical

easons. Therefore its limitation is that, even when computing with P

2, the bed projection remains linear [31,36]. The strategy presented

y [36] also guarantees depth-positivity for RKDG2 by enforcing that

he solution remains positive at cell edges. Therefore, if the value of

epth at the edge is smaller than a prescribed dry-threshold value

d, the projected depth function h˜ is modified to guarantee positivity.

ollowing this modification, momentum is modified accordingly,

omputing it with the depth-positive values, as well as a temporary

edefinition of the projected bed, to ensure well-balancing in a

artially-wet cell. A relevant observation is that the strategy is not

irectly extensible to RKDG3, but for the test cases shown in this

ork, it is not needed. Finally, as for the slope limiter, the strategy

uggested in [33] is used, which requires the choice of a shock-

etector parameter ε
δ̂

[39]. When in presence of friction, the friction

erm is discretized following [36,42].

Scheme 2 uses the well-balancing strategy proposed by [67], which

ntroduces a correction for the numerical fluxes based on a hydro-

tatic reconstruction [3]. This strategy has the advantage that it is

eneral as it can handle higher-order beds and solutions, and allows

or mathematical discontinuities in the bed projection z˜. However,

t introduces errors when the flow is not hydrostatic because of the

ature of the reconstruction [3]. Positivity is ensured by applying a

ositivity-preserving limiter [70] at partially-wet cells. This limiter,

n an RKDG2 context effectively rotates the solution over its mean

alue to ensure positivity in the entire cell, thus potentially perturb-

ng the well-balanced property. On fully wet cells, a TVD limiter on

he characteristic variables is applied [10] for stability.

Finally, for the steady problems presented herein, imposed

epth/discharge boundary conditions are treated as first-order accu-

ate (and thus limited to such accuracy), i.e., the solution is assumed

o have only Ui,k0 = Ubnd and all other Ui,k = 0 , ∀ 0 < k ≤ p. This

voids defining slopes at boundaries, which are normally not sup-

lied as physical information at the boundary, since such information

s rarely available in real applications. This is a compromise on global

ccuracy, but favours steady flows to remain steady. Other types of

oundaries, e.g., reflective and outflow boundaries, are kept consis-

ent with the order of the RKDG scheme throughout the presented

ases.

. Adaptivity and multiresolution analysis

This work relies on the strategy for solution-based mesh adapta-

ion within the MWRKDG context as proposed by [20]. Its extension

o cope with the aforementioned issues relating to the shallow water

quations has been formally studied from a mathematical point of

iew [18]. The presentation of the adaptive strategy in this paper

ntends to be less formal, but more practical, in the sense that it

ims to provide the relevant information to execute the adaptive

rocess, without presenting the underlying formal mathematics.

n compliance with the scope of this paper, it is also restricted to
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Fig. 1. Nested mesh hierarchy.
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ne-dimension. The reader is referred to [18,20] for details, proofs

nd the 2D framework. For further technical description on the 1D

W-MWRKDG adaptive scheme, the reader is referred to [31].

Adaptivity is a process through which an adaptive mesh MA is

ound, a mesh which entails different resolution levels. This mesh

hould be an optimal non-uniform mesh on which to numeri-

ally solve the shallow water equations. Therefore, the whole SW-

WRKDG scheme is actually a process requiring three distinct steps,

wo of which are for adaptivity itself. They are prediction and hard

hresholding. The prediction phase is concerned with refinement,

hile the hard thresholding phase is concerned with coarsening. In

etween them is the third step, in which the actual RKDG evolution

f the degrees-of-freedom, i.e., Eq. (13), is performed. The adaptive

trategy is based on two key concepts: a hierarchy of nested meshes

nd multiresolution analysis, by means of multiresolution transfor-

ations supported on multiwavelets.

.1. Mesh hierarchy

The mesh hierarchy M = {M0,M1, . . . ,ML} is a set of L + 1

ested meshes built by selecting an initial baseline mesh M0 with N0

ells, i.e., the coarsest mesh in the mesh hierarchy and L the number

f additional resolution levels over the baseline mesh. The successive

evels l ≤ L are built by dyadically, and recursively, dividing the cells,

s shown in Fig. 1. This clearly leads, in one-dimension, to Nl = 2lN0

ells at each level. Fig. 1 also shows an example of an adaptive mesh,

ombining cells from different levels.

To define the nestedness of cells, and to define the notation used

enceforth, consider a cell i in any particular level l < L. Then, the

efinement set Ri is the set of finer cells i on level l + 1 which are
ig. 2. Piecewise polynomial solution projection (top) and its decomposition into modal (bott

inking information across cells i and i.
ontained within cell i, defined as

i = {2i, 2i + 1} (15)

The refinement set clearly establishes the two-level relationship

etween two fine cells i and their coarser cell i. This two-level relation

s of course generalizable by recurrence.

.2. Multiresolution analysis

Multiresolution analysis [45] is the process through which the in-

ormation contained in the single-resolution (or single-level) solu-

ion is decomposed by the multiresolution transformation into mul-

iple resolution levels. The information across levels is then evaluated

o identify if there are different significant magnitudes of informa-

ion embedded within the RKDG solution. In this context, the RKDG

ocal polynomial solution can be represented by a coarse resolution

ataset, which can be decomposed into higher resolution informa-

ion, encoded into (detail) coefficients.

To describe the concept, consider Fig. 2 where the solutions at two

uccessive resolution levels are shown, i.e., U˜i and U˜i in subfigure 1©
nd 2©, respectively. Clearly, from the RKDG approximation, Eq. (9),

he approximate solution in 1© can be described by fine resolution

oefficients Ui, k and basis functions ϕi, k as in 4©. This is also true

or the coarse solution U˜i in subfigure 2© which can be described by

oarse resolution coefficients U
i,k and basis functions ϕ

i,k as in 5©.

he difference between the fine solution U˜i and the coarse solution

i is encoded as in 3©.

Alternatively, another representation can be established via the

wo-resolution transformation. This allows to express the finer solu-

ion U˜i in terms of the coarse solution U˜i and some details Di, k re-

ated to multiwavelet functions ψ i, k. Di, k represents a vector of details

ssociated to each of the conserved variables, i.e., Di,k = [dh, dq]T
i,k

.

he multiwavelets span a set of spaces Wl = span{ψi,k}. Importantly,

s shown in Fig. 2, ψ i, k ∈ Wl (and not ψi,k ∈ Wl+1, which could

asily be mistaken for). The solution subspaces Vl = span{ϕ
i,k} and

he wavelet subspaces Wl are orthogonal complements and satisfy

l+1 = Vl ⊕ Wl . The wavelets are orthonormal in L2, have compact

upport (have non-zero values within the cell only) and have a num-

er of vanishing moments M ≤ p [20].

The two-resolution transformation can be used to decode (follow-

ng the traditional signal-processing terminology) or promote (term

referred herein) a local solution from a lower level into a higher

evel, that is, conceptually 2© + 3© → 1© or equivalently 5© + 6© →
4 . Alternatively, the transformation may be used to encode (signal-

rocessing term) or demote (term preferred herein) a local solution
om) representation. Multiresolution decomposition is shown as an encoded difference
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from a higher level into a lower level, that is

1© →
{

5© → 2©
6© → stored

(16)

Note that, when demoting, the coarser details shown in 6© are

not really necessary to rebuild the coarse solution in 2©. It suffices

to know the coefficients shown in 5©.

Formally, and mathematically, the two-resolution transformation

is

U˜i︸︷︷︸
1©

=
p∑

k=0

Ui,k ϕi,k︸ ︷︷ ︸
4©

=
p∑

k=0

U
i,k ϕ

i,k︸ ︷︷ ︸
U˜i, 5©

+
2i+1∑
i=2i

p∑
k=0

Di,k ψi,k︸ ︷︷ ︸
6©

(17)

Because the multiwavelets are an orthonormal set of basis func-

tions, the detail coefficients Di, k are found to be

Di,k =
∫

U˜iψi,k dx (18)

However, for practical reasons and for efficiency, the multiresolu-

tion transformation is not applied directly, since what is of interest

is to demote (encode) or promote (decode) the coefficients, and not

the solution itself. The demotion (encoding) transformations can be

expressed as

U
i,k =

2i+1∑
i=2i

p∑
j=0

Ui, j

∫
ϕi, jϕi,k dx (19)

D
i,k =

2i+1∑
i=2i

2i+1∑
s=2i

p∑
j=0

Ui, j

∫
ϕi, jψs,k dx (20)

The promotion (decoding) transformation is

Ui,k =
p∑

j=0

U
i,k

∫
ϕi, jϕi,k dx +

p∑
j=0

Di, j

∫
ψi, jϕi,k dx (21)

These transformations have the very appealing and convenient

property that they allow to promote or demote the solution across

resolution levels using decomposed information of the solution itself,

without the need for any artefacts to reconstruct the solution. This al-

lows to conserve the accuracy of the solution when cycling over the

transformations.

4.3. Adaptivity

4.3.1. Filtering criteria: significant details

One of the most relevant issues when performing adaptivity, is

to establish a robust criterion that identifies which regions have a

solution that require higher spatial resolution because of its spatial

variability. In the SW-MWRKDG strategy this criterion is based on the

concept of significant details



di,k,c, where c is an index which spans the

components of the conserved variables vector U. Significant details

are identified by




di,k,c =

⎧⎪⎪⎨
⎪⎪⎩

di,k,c, if max
c∈[h,hu]

⎛
⎝ |di,k,c|

max

[
max

i
(Ui,0,c),

√
δxi

]
⎞
⎠ > εl

0, otherwise

(22)

where ε l is a level-dependent threshold value defined as

εl = εa2l−L (23)

where εa is the user-prescribed threshold value for adaptivity. This

is the only value that must be specified by the user to control the

adaptive process. The choice of this threshold value follows the guide-

lines recommended in [19,20]. For realistic problems, the choice of
he threshold value responds to the accuracy at which the smallest

ow feature of interest needs to be modelled. These features might

e, for example, travelling waves or wet-dry fronts.

Eq. (22) allows to assess if any component of the details vector

associated to a conserved variable, for every polynomial coefficient)

s significant relative to all others in the same level. Therefore, details

re normalised within the context of the entire problem, including

ifferent physical quantities and levels of accuracy. Note that the nor-

alisation process is performed component-wise, spanning the con-

erved variables. That is, when the fraction is evaluated, a dimension-

ess quantity is obtained relative to each conserved variable, and then

he maximum value among such dimensionless quantities is chosen.

Very importantly, the conserved variables vector during the adap-

ive process must be recasted as U = [h + z, q]
�
, so that it is not

epth, but water surface elevation, that is analysed by the multireso-

ution transformations. This acknowledges that, in presence of a non-

onstant bed, depth is a poor indicator of regularity/complexity of

he solution, e.g., constant depth does not necessarily mean a qui-

scent flow, which would erroneously lead to non-significant details

nder uniform flow conditions. Furthermore, such recasting ensures

hat the well-balancing property of the scheme is transparently car-

ied into the adaptive scheme [18].

In an analogous way to the details di, k, c of the solution, it is nec-

ssary to define details bi, k associated to the topography. Note that

he bed details are a set of scalars only, not a set of vectors as the

onserved variables, therefore the c subindex is superfluous. All the

reviously defined transformations are analogous, but instead of de-

oting or promoting the solution coefficients Ui, k, bed details allow

o transform the bed (DG-projected) coefficients zi, k. Alternatively,

t would be possible to include zi, k within an extended version of

he details di, k, c, but such approach is inconvenient, since the bed

oes not evolve in time and therefore there is no need to adapt the

esh to the bed at every time step. In particular, since the optimal

esh to represent topography can be determined at the beginning,

ny additional refinement should only respond to the flow (evolu-

ion of conserved variables). On the other hand, no coarsening should

appen, since it would reduce the accuracy of the bed representation.

y keeping bi, k separate from the details di, k, c, it is possible to ensure

hat the aforementioned coarsening effect is avoided, thus preserving

ed accuracy. The practical effect of this is that the adaptive mesh is

ot allowed to generate cells which are coarser than those required

y the topography at a particular position, even if the flow conditions

details of the conserved variables) allow for coarser cells there. The

ignificant bed details



bi,k are determined analogously to the signifi-

ant flow details



di,k,c, following




i,k =

⎧⎪⎨
⎪⎩

bi,k, if
|bi,k|

max

[
max

i
(zi,k),

√
δxi

] > εl

0, otherwise

(24)

.3.2. Prediction

Prediction is the process through which, based on the available in-

ormation at the current time, the mesh is adapted to accommodate

or a more accurate update into the next time. To perform prediction,

q. (22) is used to find which details are relevant at a level, progres-

ively from low to high. As details in finer levels are analysed they

ay stop being significant. Those levels at which details are signifi-

ant need to be kept in the adaptive mesh, and therefore cells are pro-

oted (refined) up the highest level which contains significant de-

ails. Higher levels with non-significant levels are therefore not nec-

ssary. Refinement, in this context specifically means to promote a

oarse cell i (in level l one level up, into two cells i = 2i and i = 2i + 1

in level l + 1), if | 


di,k,c| > 0, notably, with details referring to level l.

his constitutes the cornerstone of the prediction process. Additional

riteria is enforced during prediction for several purposes:
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Algorithm 1 SW-MWRKDG

1: Initial projection of the solution and the bed, following Eq. (10)

with ϕi[L],k, at the highest resolution level.

2: Initial thresholding of bed and solution to obtain initialadaptive

mesh Mn
A.

3: for all Time steps in simulation do

4: procedure Prediction

5: Determine coefficients from the solution in Mn
A through

the demotion multiresolution transformation, Eqs. (19) and (20)

6: Find and flag significant details, Eq. (22)

7: Determine the predicted adaptive mesh M�
A by assessing

significant details, and reconstruct the solution in M�
A through

the promotion transformation, Eq. (21).

8: Perform positivity correction of higher-order coefficients

9: end procedure

10: procedure Update

11: for all Runge-Kutta stages do

12: Impose boundary conditions

13: RKDG update on the M�
A mesh, Eq. (13)

14: At the highest level cells only, perform limiting and

ensure depth-positivity

15: end for

16: end procedure

17: procedure Hard thresholding

18: Determine coefficients from the solution in M�
A through

the demotion multiresolution transformation, Eqs. (19) and (20)

19: Find and flag significant details, Eq. (22)

20: Determine the thresholded adaptive mesh Mn+1
A by assess-

ing significant details

21: Perform positivity correction of higher-order coefficients

22: end procedure

23: Set Mn+1
A = Mn

A, and Un
i,k

= Un+1
i,k

.

24: end for
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1. To keep topography discretization at its required level, refine-

ment is enforced at a cell i if |
bi,k| > 0, regardless of



di,k,c.

2. To ensure that significant details can accurately move into

neighbouring cells, refinement is triggered at cells which are

neighbour of a cell with significant details | 


di,k,c| > 0.

3. To ensure that steep gradients, which may evolve into shocks

are accurately captured during update, refinement is triggered

at cells i with | 


di,k,c| > 2M+1εl .

This process results in a predicted mesh denoted by M�
A.

.3.3. Multiresolution update

After the prediction step, the RKDG evolution is performed for a

ingle time step following Eq. (13), over each cell of the adaptive mesh

which of course may include different resolution levels). This only

equires performing the same process as a non-adaptive RKDG com-

utation, because of its inherent locality. In order to do so, the solu-

ion is reconstructed within the cells of the predicted adaptive mesh

∈ MA, numerical fluxes are computed on the edges of the adapted

ells and quadrature rules are performed, finally obtaining the up-

ated polynomial coefficients of the RKDG solution.

.3.4. Hard thresholding

The hard thresholding process is performed after updating in or-

er to coarsen regions which are no longer necessary to keep at high

esolution. It can be simply expressed as filtering negligible detail

oefficients by strictly zeroing (thus, hard thresholding) coefficients

valuated as non-significant. That is, a cell i can be coarsened one

evel if all of its



di,k,c = 0 and



bi,k = 0, following Eqs. (22) and (24).

.3.5. Full adaptive solution algorithm

Algorithm 1 summarises the entire adaptive solution process.

. Numerical tests

This section presents four well-known benchmark test cases for

D shallow water problems with source terms. The first test ad-

resses quiescent flow over non-differentiable topography. The sec-

nd is concerned with steady flow with transcritical shock over a

rictional, complex topography. The third addresses moving wet-dry

ronts in a parabolic basin, and the fourth is an experimental dam

reak problem over a frictional bed with an obstacle.

The numerical tests reported herein seek to (i) study how do two

ifferent numerical schemes perform in an adaptive context and the

mpact of adaptivity on the features of such schemes, (ii) show how

he adopted strategy preserves the quality of the solution, when com-

ared to the uniform-mesh solution, (iii) show the advantages of the

daptive scheme in particular with features of real shallow flows,

uch as complex beds, shocks, wet-dry fronts and friction (iii) estab-

ish the potential advantages and shortcomings of the SW-MWRKDG

trategy with regards to real shallow flows and flood modelling.

Results in this section were computed using the two RKDG2

chemes described in Section 3.1, i.e., P = 2, unless mentioned other-

ise. The baseline mesh M0 for all cases has N0 = 2 cells, and adap-

ive computations were preformed with L = 8 levels, which results

n NL = 512 cells. Some non-adaptive computations were performed

ith different number of cells, and are presented when necessary.

he dry threshold was fixed to εd = 0.001 which has been deemed

nough for RKDG2, and for comparison purposes the adaptive thresh-

ld was set to εa = 0.1 unless stated otherwise.

.1. Flow over non-differentiable topography

This case features a non-differentiable topography, defined by a

et of piecewise constant elevations. It has been previously used to

est for well-balancing of shallow water schemes [14,36]. In this work,
he case is used to study how the two chosen reference schemes in-

eract with the adaptive strategy in terms of well-balancing. Two sub-

ases are presented. The first subcase features a fully wet domain

ith quiescent conditions. The second subcase also features a qui-

scent state, but with two wet-dry fronts.

Results are presented for both reference schemes, for both non-

daptive (uniform) and adaptive simulations. Non-adaptive results

ere computed with a fine mesh named L8 (NL = 512) and a coarse

esh named L4 (NL = 32). Adaptive results were computed for an

daptive hierarchy with L = 8. Results are shown for t = 100 s. If a

onger time were selected, numerical perturbations of the initially

uiescent state would be dampened by the end of the simulation.

or this reason, the simulation time is kept at t = 100 s to properly

valuate the schemes’ ability to keep the C-property.

For both quiescent cases, boundary conditions were set to be re-

ective, and initial conditions were q = 0 and h + z = 12 m for the

ully wet case, and h + z = 6.5 m for the partially wet case.

.1.1. Fully wet quiescent flow

Fig. 3 shows the results for the fully wet quiescent case. As

igs. 3(a) and (b) show, both reference schemes when performing

niform-mesh simulations, are able to keep the quiescent state per-

ectly, with zero discharge (up to machine precision), for both the fine

L8) and coarse (L4) meshes. Note how the bed is projected differ-

ntly by both reference schemes, which is particularly clear for the

oarse L4 mesh. Figs. 3(c) and (d) show that adaptive simulations also

eep the quiescent state accurately, although with some introduction

f numerical error (with an order of magnitude of up to 5 × 10−9).

igs. 3(c) and (d) also show the refinement pattern, which is clearly
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Fig. 3. Uniform and adaptive results with two reference schemes for fully wet quiescent flow over a non-differentiable topography.

Table 1

CPU time for quiescent cases.

Case Scheme CPU time (s) Speed-up

Uniform L4 Uniform L8 Adaptive L8

Wet-Wet 1 0.02 4.81 1.48 3.25

2 0.01 1.63 0.64 2.54

Wet-Dry 1 0.01 1.10 0.69 1.59

2 0.01 1.16 0.44 2.63
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driven only by topography. Because the exact bed features disconti-

nuities, the adaptive scheme refines to the highest level at such loca-

tions. The adaptive pattern obtained with the two different reference

schemes are very similar, and the resulting number of cells are 108

(Scheme 1) and 106 (Scheme 2) cells.

It is not surprising that both schemes achieve a good quiescent

solution. Scheme 1, because it enforces bed continuity simply elimi-

nates the ill-posedness of the Riemann problem at cell interfaces. The

trade-off can be, as shown by the L4 non-adaptive result, that discon-

tinuous topography can be smeared. On the other hand, scheme 2 is

designed from a hydrostatic state assumption, and corrects the flux

term to ensure that hydrostatic equilibrium is guaranteed. It is there-

fore designed to do specifically this, to keep a quiescent state.

5.1.2. Quiescent flow with wet-dry regions

Fig. 4 shows the results for the partially wet quiescent case.

Fig. 4(a) shows that reference scheme 1 is able to perfectly keep the

quiescent state for both the coarse and fine meshes. The coarse (L4)

solution clearly shows that the scheme can handle partially wet cells

(as shown by the partially wet cell at x ≈ 350 m). Scheme 1 involves

a correction of RKDG coefficients so that, in the event of a partially

wet cell, no momentum is generated when reshaping the (cell) local

water surface function to ensure positivity. Notably, mesh resolution

does not affect the preservation of the quiescent state with Scheme 1.

Fig. 4(b) shows that reference scheme 2 is unable to keep the quies-

cent state. The wet-dry strategy in Scheme 2 reshapes the water sur-

face to enforce depth-positivity, and by doing so creates momentum

when the cell is (initially) partially wet. The perturbed state is clear

both in terms of water surface and discharge for L4, but only clear

for discharge in L8. From Fig. 4(b) it can also be extracted that coarse

solutions (L4) are likely to be poorly well-balanced (larger perturba-

tions of a quiescent state, in this particular case) than finer solutions

(L8). This is expected, since the momentum wave created depends on

how much the solution needs to be reshaped which in turn responds
o cell size. Therefore, mesh refinement can alleviate this issue for

cheme 2.

Adaptive results for Scheme 1 are shown in Fig. 4(c). The fig-

re shows that the quiescent state is preserved accurately. Discharge

hows deviations from zero in the magnitude of 10−10, which are in-

roduced by truncation errors in the arithmetic of the adaptive pro-

ess, and are acceptable. Fig. 4(d) shows adaptive results for Scheme

. The water surface profile in this figure looks deceivingly correct,

.e., it looks constant and perfectly quiescent. However, the discharge

s highly perturbed, with variations in the order of 0.3 m2/s, which

re definitively not acceptable for a quiescent state. Interestingly, the

daptive scheme can again alleviate, but cannot solve, the non well-

alancedness of Scheme 2 for partially wet cells, in the sense that the

ater surface profile is improved (when compared with the uniform

4), following the previous discussion on resolution for Scheme 2.

CPU time for both the wet-wet and wet-dry quiescent cases is

hown in Table 1. The table shows that all adaptive cases provided

speed up, on average around 2.5 when compared to the uniform

8 case. On the other hand, clearly, coarse meshes are significantly

heaper in terms of computational time. Notice that adaptive results

how cells mostly between levels 4 and 8, and that CPU time is, clearly

ot reduced to the levels of L4, but significantly nonetheless. Finally,

t is clear that the modest speed-up comes from the proportionally
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Fig. 4. Uniform and adaptive results with two reference schemes for partially-wet quiescent flow over a non-differentiable topography.
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.2. Transcritical steady flow with shock

This test case is based on the setup proposed by [44] as ‘Problem 6’.

t features 1D steady flow with friction over a changing bed, with two

ranscritical points, one of which is a shock. This case has been cho-

en to show that the adaptive scheme can properly handle all the real

eatures of a flow, and indeed converge over a transient to a steady so-

ution. Furthermore, since steady flow is achieved, comparisons with

ifferent meshes and RKDG-accuracy can be performed easily.

The case consists of a rectangular prismatic channel of width

= 10 m, length L = 200 m, and a steady flow of Q = 20 ms−3. Since

he present shallow water model follows a unit-width formulation,

oundary conditions are as follows: an inflow of q = Q/B = 2 ms−2 is

mposed in the upstream boundary and depth h = 1.700225 m is im-

osed at the downstream boundary. The initial condition was set as a

onstant water elevation h + z = 4 m.

The analytical steady state solution for x < 100 is

ˆ(x) = 0.741617 − 0.25

tanh (3)
tanh

(
3

50
(x − 50)

)
(25)

For x > 100 the solution is

ˆ(x) = e−p(x−x�)
M∑

i=0

ki

(
x − x�

x�� − x�

)i

+ φ(x) (26)

ith

(x) = φb exp φc(x − φd) (27)

nd x� = 100, x�� = 200, M = 4, p = 0.3, k0 = 1.0656,

1 = 0.0604859, k2 = −0.00423834, k3 = 0.00198394, k4 =
0.00144967, φb = 1.7, φc = 0.005 and φd = 200. This solution

efines a subcritical region for x < 50, a supercritical region for 50 <

< 100 and a subcritical region for x > 100.
Bed slope is given by

∂z

∂x
=

(
1 − Q2B

gĥ3(x)B3

)
∂ ĥ

∂x
+

Q2n2

(
B + 2ĥ(x)

)4/3

ĥ10/3(x)B10/3
(28)

The case was run with Manning’s coefficient set to n = 0.02. The

imulation was computed for 1000 s, a time for which steady flow is

lready reached.

Figs. 5 through 8 show results for both adaptive and uniform

omputations with Scheme 1, together with the exact solution. The

ull solution U˜ is shown with solid lines, while mean values Ui, 0 are

hown with markers. In general terms, the numerical steady state

olutions match the analytical solution well. Small differences exist

nd are due to the chosen discretization of the friction source term,

ere discretized following [36,42], which in turn is a generalisation

f FV techniques [5,8,17,49,59]. This friction modelling technique
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is commonplace, but has nevertheless been shown to result in

somewhat inaccurate solutions clearly observable in steady cases

[8,48], since it does not properly balance the equation. Uniform (L8)

and adaptive (L8-A) solutions overlap almost fully. This illustrates

that the adaptive strategy does not reduce accuracy when compared

to the equivalent uniform high resolution mesh, fully consistent with

previous results [18,31].

Fig. 6 also clearly shows the resolution levels throughout the do-

main under steady flow. Note that the minimum resolution is pre-

dicted at level 4, and the maximum at level 8. Maximum resolution

is only obtained at the shock (x = 100 m) and at both boundaries.

Boundaries are kept at the highest resolution to avoid possible per-

turbations of the steady state discharge. Intermediate levels of reso-

lution are obtained at x = 50 m where the flow transitions from sub-

critical to supercritical, and therefore relevant waves are propagating.

The adaptivity clearly also responds to the bed at 100 ≤ x ≤ 140 where

the bed slope changes, thus requiring levels 5 and 6 of resolution.

The adaptive solution results in 67 cells when steady flow is

achieved. This represents only 13% of the highest resolution uniform

mesh. Clearly, a significant gain is achieved in terms of computational

cost, while preserving high spatial resolution at those regions where

it is necessary and convenient. To further illustrate the gain in quality

by using the adaptive strategy, additional results were computed with

a uniform mesh of 67 cells (U67), and also shown in Fig. 6 for com-

parison. Only the mean values are shown for clarity in the figure. Note

how the U67 solution fails to capture the shock as accurately as L8-A

or L8. Furthermore, the subcritical region x > 100 is slightly less accu-

rate as well. These differences show that the adaptive scheme can op-

timally use cells to minimise errors at the same computational cost.

Fig. 7 shows the results for specific discharge (momentum). Note

that both the uniform and adaptive solutions capture the steady dis-

charge throughout the domain. In particular, the mean values (zero-

order coefficients) of both the uniform (not shown, for clarity) and

adaptive solutions are accurate. Around the shock, the limiting strat-

egy chosen for the reference scheme allows the slope of the numer-

ical solutions to be very high, but ensures that the mean values –

responsible for conservation– remain accurate [33]. Furthermore, as

can be seen in the figure, this feature of the reference numerical

scheme is preserved by the adaptive scheme (both non-adaptive and

adaptive solutions have this feature). For comparison, computations

with an alternative limiting strategy [10] termed here TVB-minmod

(used in [18]) were also performed, which resulted in small pertur-

bations of the mean value of the momentum around the shock. Ad-

ditionally, for comparison, computations with Scheme 2 were per-

formed. The results also show a small perturbation of the mean val-

ues. These comparisons show that, depending on the choice of strate-

gies of the reference (non-adaptive) RKDG scheme, results can vary,
pecially for discharge. The adaptive strategy, on the other hand,

ransparently uses the information from the reference RKDG scheme,

nd because of the increase in local resolution, can keep the error to

minimum.

Fig. 8 shows the Froude number results. In this figure it is easy to

ee the features of the solution that may be difficult to appreciate in

ig. 6 because of scale. Notably, critical points and regime changes

re well captured by both the uniform and adaptive scheme. Fur-

hermore, since only mean values are represented, it is possible to

learly see how the mesh is adapted around both transcritical points

= 50 m and x = 100 m and boundaries.

To further show the implications and possibilities of the pro-

osed SW-MWRKDG strategy additional cases were computed. The

ame test case was computed using SW-MWRKDG3 and the same

forementioned parameters. Adaptive results are shown in Fig. 9

ogether with the adaptive results with SW-MWRKDG2. The adaptive

W-MWRKDG3 simulation results in 46 cells under steady flow

onditions. This is only 9% of NL, and a 35% increase in the efficiency

in terms of cell number) from P = 2 to P = 3. In terms of degrees of

reedom (DOF), under steady conditions both solutions are almost

quivalent, with 134 DOFs for P = 2 and 138 for P = 3. In Fig. 9,

he resolution levels for both P = 2 and P = 3 are also shown. Note

hat, at the boundaries and at the shock, both solutions achieve the

ighest level and the same adaptivity pattern. The reason for this is

hat boundaries have been set to a fixed resolution level, and that

he shock shows the maximum values for detail coefficients in both

ases. The differences in the adaptive pattern arise in the smooth

egions of the solution, even at the transcritical point at x = 50 m.
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he P = 3 solution systematically requires less resolution than the

= 2 in smooth regions while providing a practically indistinguish-

ble steady water surface profile. That is, higher-order solutions

an accommodate coarser resolution, and potentially, can efficiently

perate with coarse baseline meshes. Finally, a P = 3 solution was

omputed with a uniform mesh of 46 cells. The results also shown in

ig. 9 confirm the previous result for P = 2 and 67 cells, namely that,

hen using the same number of cells, better results are obtained

ith the adaptive scheme. Note that the solution is relatively inac-

urate at the shock, and also in the subcritical region downstream of

he shock. This again shows the advantages of adaptivity, which for

he same number of cells achieves a better solution.

One last relevant conclusion that may be drawn from this anal-

sis. Recall that the adaptive pattern with SW-MWRKDG3 does not

iffer from the pattern obtained with SW-MWRKDG2 at shocks but

nly in smooth region. This suggests that SW-MWRKDG3 could be

sed in those smooth regions that allow for coarser cells, and SW-

WRKDG2 should be used in those regions near the shock where

ells are equally refined for both schemes. This would result in a re-

uction of computational cost, since SW-MWRKDG2 is cheaper –in

erms of operations– per cell than SW-MWRKDG3. In other words,

hese results clearly suggest to explore polynomial degree adaptivity

p-adaptivity) together with mesh adaptivity within the same mul-

iresolution context, and feeding both adaptive processes with the

ultiresolution decomposition. This approach would result not only

n a reduction in the number of cells, but also in an effective reduction

n the number of degrees of freedom.

Finally, CPU time for the uniform L8 case with P = 2 was 306.9 s,

nd for the adaptive 32.4 s (of which around 9 s where required for

daptation processes). That is, the adaptive computation provides a

peed-up of 9.5.

.3. 1D Oscillatory flow in a parabolic bowl

[65] proposed an oscillatory flow in a parabolic bowl and its ana-

ytical solution. This case has been extensively used for benchmark-

ng hydraulic models [36,42,70]. It is a rigorous test including a com-

lex bed with a changing slope and moving wetting and drying fronts,

nd has no interference from boundaries. The goal of performing this

est is to study the effects of adaptivity on capturing moving wet-

ry fronts. Although an analytical solution with friction exists for this

ase [58], only the frictionless case is computed here. The reason for

his is that the frictionless case is more demanding on the numerical

cheme since friction dampens and smooths the solution. Following

he results in the previous tests, only Scheme 1 is used in this case.
The bed is described by

(x) = H0

(
x

a

)2

(29)

here H0 and a are constants.

The transient analytical solution for the free water surface is given

y

(x, t) = H0 − B2

4g
cos (2st) − B2

4g
− x

g
Bs cos (st) (30)

and momentum is

(x, t) = B sin (2st)
[
η(x, y) − z(x)

]
(31)

here s is the frequency

= 1

2a

√
8gH0 (32)

The position of the wet-dry front follows

wd(t) = − Bsa2

2gH0

cos (st) ± a (33)

Numerical results shown here were computed with a = 3000, B =
, and H0 = 10. Under these conditions T = 1345.94 s. The simulation

as run for until t = 5000 s, therefore more than 3.5 periods were

omputed. Two solutions were computed. A uniform, non-adaptive

ase with L = 3 named L3 consisting of NL = 16 cells (δx = 625 m),

nd L8-A, an adaptive solution with L = 8, which implies NL = 512,

ith means a maximum resolution of δxL = 19.53 m.

Fig. 10 shows the position of the water surface for several times,

ncluding the exact solution and both numerical solutions. Note that

he L3 solution tracks quite well the exact solution, although, because

f the coarse resolution, fails to provide an accurate trail of the wet-

ry front. The L8-A results also reproduce the solution accurately,

ut with the added value of better tracking the wet/dry front. Im-

ortantly, note that level 8 is only achieved around the wet/dry front,

nd that most of the domain is actually in level 3. Furthermore, Fig. 10

learly shows how the finest cells track the wet-dry front as the tran-

ient flow evolves with time.

Since Fig. 10 does not allow to rigorously compare the quality of

he solution because of scale, consider Fig. 11, which shows the evo-

ution of maximum water surface error in the domain, i.e., the infin-

ty norm –Eq. (35)– of the error ε defined by Eq. (34). For compari-

on, several other uniform (non-adaptive) meshes are included and

amed L4 (L = 4, NL = 32), L6 (L = 6, NL = 128) and L8 (L = 8, NL =
12). Fig. 11 shows that L8-A produces a maximum error which is

omewhere in between L4 and L6, and that there is little difference

etween L6 and L8. But most importantly, there is a large reduction

f maximum error when moving from L3 to L8-A, although most of

he domain is represented at level 3.

i =
∑[

U˜(xi) − U(xi)
]
δxi (34)

∞ = max
i∈MA

(|εi|) (35)

Root Mean Square Error (RMSE), as shown in Eq. (36), can also be

f interest. RMSE of water surface elevation is shown in Fig. 12. RMSE

ehaves quite differently than the maximum error. Firstly, note that

he L8 results tend to slowly grow in time, showing that the error is

eing accumulated. The RMSE for L8-A is highly oscillatory in time.

t shows values smaller than other cases but can also reach values

s high as those obtained from L3. This is reasonable, since a large

ortion of the domain is on level 3, but the wet-dry front (which is

ne of the main sources of error, and typically where the maximum

ocal error is at) is computed on level 8.

MSE =
√ ∑

i∈MA

ε2
i

(36)
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Fig. 10. Comparison of uniform and adaptive water surface results (full solution) with the analytical solution for the parabolic bowl test, along with adaptive resolution levels.
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Together, the RMSE and maximum error (infinity norm) allow to

better assess the effects of resolution and adaptivity. They clearly

show a gain in accuracy as resolution is increased under uniform

meshes –as is expected–, but they also quantitatively show the leap

that adaptivity provides, specially in terms of the maximum (local)

errors that may arise in regions of the flow that require high resolu-

tion. The error analysis also shows what can be seen in Fig. 10, i.e.,
he L3 mesh produces good results on average terms, as evidenced

y RMSE, but not in local terms at the wet/dry front, as evidenced by

aximum error.

Following this behaviour of the errors around the wet/dry front,

hich is one of the key issues in this test case, consider Fig. 13 which

hows the evolution of the right wet/dry front (i.e., for x > 0). The

xact solution is shown together with the L3, L8 and L8-A numerical
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olutions. To complement and better assess the results, also consider

ig. 14 where the error εwd in position of the (right-side) wet-dry

ront is shown, computed as

wd = x˜wd(t) − xwd(t) (37)

Firstly, note that the L3 wet-dry front approximately tracks the

xact front, but has large gaps, specially near inflexion points (that

s, around t = nT/2). The abrupt changes in the position of the front,

nd the gaps shown by the L3 solution are clearly due to the coarse

esolution δx = 625 m. It is reasonable that the position of the front

an only be approximated coarsely with such resolution. The L8 case

racks accurately the front during the entire simulation. Finally, the

8-A case, in which the wet-dry front is solved at the highest resolu-

ion tracks closely the exact solution, with small differences at the

nflexion points. The errors shown in Fig. 14 make this very clear.

he error in front position for L8-A is comparable to L8. Another re-

arkable behaviour is that, as Fig. 13 shows, the transition of the

ront from drying-to-wetting (minimum points in the figure) seems

o be more difficult to reproduce numerically than the wetting-to-

rying transition (maximum points). This is likely to be associated

ith small spurious waves generated at the wet-dry front, which in

rder to suppress, may require improvements to the wet-dry strategy.

n summary, the results indicate that, driven by the same threshold

alue-parameter, the SW-MWRKDG2 method is able to locally sim-
late wet-dry fronts at the highest resolution available, while effi-

iently and sensibly allowing for coarser meshes elsewhere.

The choice of the threshold value should be based on the allow-

ble error for the flow feature of interest. In this case, it is the wet-

ry front. However, a priori, the magnitude of the threshold value

s not clear. To explore what the effects of different threshold val-

es are, additional computations were performed with εa = 0.01 and

a = 0.001. In general terms, the solution with all three threshold val-

es are similar. Nevertheless, the results on wet-dry front tracking are

learly improved from εa = 0.1 to εa = 0.01 in the drying-to-wetting

minimum points in Fig. 13). From εa = 0.01 to εa = 0.001 there is

ittle difference. This is clear in Fig. 14, where the error results for

a = 0.01 and εa = 0.001 follow closely those of the non-adaptive L8

olution. Average cell number for computations with εa = 0.1 was

3 cells (10.4% of uniform L8), for εa = 0.01 it was 81 cells (15.8%)

nd for εa = 0.001 it was 140 cells (27.3%). By examining the changes

n accuracy and in efficiency, the optimal threshold value should be

round εa = 0.01, since there is little gain in accuracy with εa = 0.001

ut a significant increase in cost. Note, nevertheless, that the adap-

ive strategy neither introduces nor eliminates the inaccuracies due

o wet-dry cell treatment. The adaptive strategy can only alleviate

hem by increasing resolution at such location and therefore mak-

ng these errors smaller, or it can make them evident, when a (too)

arge threshold value is chosen. Additionally, CPU time for the uni-

orm L8 case was 27.3 s. For the adaptive L8 − A case with εa = 0.1

PU time was 1.5 s, which translates into a speed-up of 18.2. With

a = 0.01 the speed-up was 11.5 and for εa = 0.001 it was 7.4. These

ather large speed-ups are the result of refining only at the wet-dry

ront, while keeping all other regions at a coarse level.

Altogether, these results suggest that the wet-dry strategy should

e improved in the reference model to enhance its performance, and

ransparently further improving enhancing the adaptive model both

n terms of accuracy and efficiency.

Following the previous discussion on the adaptive threshold, a

alue of εa = 0.01 has been chosen to illustrate momentum results.

ig. 15 shows the exact and computed momentum profile at time

= T/4 when the curvature of the momentum is maximum. The

ull polynomial solution is shown. The figure clearly shows that the

oarse L3 mesh approximates the exact solution well, with the ex-

eption of the wet-dry front where the full polynomial solution over-

hoots, although the mean values do not. This is relevant, since it

hows that the overshooting comes only from the coarse resolution

f the L3 case. The adaptive L8-A case accurately reproduces the ex-

ct solution, with no overshooting. Note that the adaptive patterns
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Fig. 18. Experimental dam break over triangle setup and gauge locations.
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is slightly different from the one shown in Fig. 10(b) because of the

change in the adaptive threshold.

Fig. 16 shows mesh convergence curves for uniform and adap-

tive computations, also performed using εa = 0.01, in terms of the

L1 norm defined in Eq. (38) It is worth noting the clear asymptotic

behaviour in the uniform case showing that there is little gain in in-

creasing resolution any further. The adaptive computations were all

performed with a coarse baseline mesh of N0 = 2 cells and varying

the number of levels. Therefore, the highest resolution in each adap-

tive case is the same as the corresponding uniform case with the

same name. The adaptive solution shows that there is a significant

gain between L4 and L6, but there is no real gain afterwards. More

importantly, the error for L6, L7 ans L8 is similar to the asymptotic

error in the uniform case for L5 through L8. This shows that the ap-

proximation error for the adaptive computations is of the same mag-

nitude as the uniform computations, but with significantly less cells.

This is consistent with previously reported convergence analysis on

this topic [31] for fully wet cases.

L1 =
∑

i∈MA

|εi| (38)

Finally, relative mass error is shown in Fig. 17, where it can be seen

that mass error with both the uniform and adaptive achieve a low

relative mass error. The mass error in the adaptive scheme is larger

than the uniform scheme, which is attributed to truncation and hard

thresholding in the adaptive process.

5.4. Experimental dam break flow over triangular obstacle

This test case is an experimental dam-break on a one-dimensional

channel with a symmetric triangular obstacle [25]. It is a well-known

case which has been previously reported for benchmarking [6,32,42].
he purpose of simulating this experimental case is to test the per-

ormance of the adaptive strategy in a case which includes realistic

eatures that usable hydraulic models should consider, namely, inter-

cting moving shocks, a non-smooth bed, fast-moving wet-dry fronts

nd friction. Experimental data was recorded by seven water level

auges, denoted GX (where X is the distance in meters from the initial

am location). The setup is schematically shown in Fig. 18. Manning’s

oefficient is 0.0125 m−1/3s. The simulation was run until t = 90 s.

The numerical setup is with a baseline mesh with N0 = 2 cells

nd L = 8. A uniform, non-adaptive solution was computed on an L8

quivalent mesh with NL = 512.

Fig. 19 shows the experimental and numerical depth time evolu-

ion at each gauge. Both uniform and adaptive results are shown. Nu-

erical results reproduce experimental data well, and agree to what

as been reported in the literature [6,32,42]. Adaptive and uniform

olutions match each other very closely, with no observable differ-

nces at the gauges. Fig. 19 also shows the evolution of the resolution

evel of the cell which (at any time) contains the gauge in the sim-

lation. Cell level evolution has an informative behaviour across all

auges. Fig. 19(d) shows that G10 is the only gauge which does not

xperience a change in resolution level; instead, it is constantly at

evel 8. This is because resolution is further governed by the bed at

his location which falls exactly at a kink in the bed. At this location,

ven when under the initially dry conditions the mesh is refined to

he highest level. Regardless of flow conditions, the level cannot fall

elow the level required by the bed, in order to preserve its overall

ccuracy throughout the simulation. All other gauges show a highly

daptive behaviour. Common to all, is the response to shock arrival.

his is clearly observed in Fig. 19(a) for example. Whenever a shock

rrives, that location is quickly refined to level 8, and as the shock

asses, that location is slowly coarsened down to level 3. Fig. 19(f)

hows that at G13, there is a more intense adaptive response. When-

ver G13 is wet, the level quickly rises to level 8 and stays at high

evels of resolution. Conversely, as soon as it becomes dry, the level

mmediately drops and remains at level 3. This is even more evident

n Fig. 19(g) which shows that at G20, resolution is kept at level 2 for

ost of the simulation, with the exception of the period during which

20 is wet, where it requires level 3 or 4. Furthermore, the arrival

f the wave and the wetting front trigger an immediate refinement

o level 8, which has a very short duration. This overall behaviour

learly demonstrates how the multiresolution adaptive strategy can

nherently cope with the complex features of the flow, namely mov-

ng shocks, moving wet-dry fronts and capturing their arrival times.

Fig. 20 shows water surface profiles at different times. Both nu-

erical solutions are shown, as well as the corresponding cell level

rofile. Cell edges are marked with a dot on the bed for a visual ref-

rence of cell sizes. The profiles allow to observe the spatial distri-

ution of resolution, in response to flow and bed features. Initially

Fig. 20(a)), the discontinuity in water elevation and the kinks in the

ed are refined to the highest level. The shock wave is tracked at level

as shown at all times in Fig. 20. The wet-dry front is also tracked

t level 8 as shown in Figs. 20(b), (e) and (f). It is worth discussing

the small oscillations trailing the shock. These are due to the cho-

sen limiting strategy, which allows tiny oscillations around the shock,
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Fig. 19. Depth and refinement level evolution at experimental gauges for the experimental test.
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n order to avoid unnecessary limiting in smoother regions [55] de-

ending on the choice of the discontinuity detector threshold value

δ̂
. Note that it happens both in the non-adaptive and the adaptive

esults, which is evidence that it is not introduced by the adaptive

cheme. However, the adaptive scheme presents the added issue that

hese oscillations can generate significant details, therefore trigger-

ng the adaptive process to attempt to track these (artificially and

nnecessarily) complex features of the solution, thus slightly over-

efining around the region which trails the shock. The response of

he adaptive scheme to these spurious perturbations is controlled by

he threshold value εa, which in this particular case is chosen already

ather large, to achieve high efficiency. To alleviate the effects of these

purious perturbations ε
δ̂

< 1 could be set to increase the activity of

he slope limiter, while keeping εa ≥ 0.1 in order to lessen the sensi-
ivity of the adaptive process. Nonetheless, it would be preferable, in

rder to optimise the adaptive solution, to avoid generating such per-

urbations in the reference scheme. Even so, as shown in the results,

he adaptive solution is as accurate as the uniform solution. More-

ver, if limiting in the non-adaptive scheme is improved, the adaptive

cheme will consequently improve as well, not only in accuracy but

lso in efficiency.

Fig. 21 shows the evolution of the number of cells in the adaptive

ase, as a percentage of the (constant) number of cells in the non-

daptive case NL = 512. From the figure it is clear that the adaptive

olution with εa = 0.1 requires no more than 22% of the cells that

he uniform scheme used. The adaptive solution required a minimum

f 9.6% of the uniform cell number, and on average 13.9%. For the

ake of comparison, results for smaller threshold values (εa = 0.01
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Fig. 20. Evolution of water surface profiles and adaptive mesh refinement for the experimental test case.
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and εa = 0.001) are included. Depth evolution and depth profiles are

similar with all threshold values (and therefore are omitted for clar-

ity in Figs. 19 and 20). However, as seen in Fig. 21, the number of cells

clearly varies with changes in the order of magnitude of the threshold
alue. As is expected, the smaller threshold value εa = 0.001 gener-

tes the most cells during the simulation, because small perturba-

ions in the wet-dry front and around the shock are preserved. Con-

ersely, these small perturbations are filtered out by larger threshold

alues. These small perturbations originate from standing issues in

he reference (non-adaptive) scheme, but can clearly decrease the ef-

ciency of the adaptive scheme. It is expected that, by further improv-

ng the reference scheme, such small perturbations may be avoided.

oreover, this would lead to the adaptive response, with different

hreshold values, to show less dispersion, since adaptivity will re-

pond only to physical variations. This remains to be investigated, but

pens the need to further adopt and build upon the latest techniques

n computational hydraulics to further optimise the response of the

daptive scheme.

CPU time for uniform mesh computations was 130.8 s. Adaptive

omputations for εa = 0.1 achieved a speed up of 7.0, for εa = 0.01

he speed up was 1.8 and for εa = 0.001, it was 2.1. In all three cases,

he adaptive processes are responsible for approximately 20% of CPU

ime. The speed-up result for the εa = 0.01 case are surprising, since

t does not follow the expected trend, i.e., lower thresholds require

ore cells, therefore less speed-up. Such behaviour cannot be ex-

lained by cell number, in particular when considering Fig. 21, which

hows that at all times the number of cells satisfies the aforemen-

ioned trend. In order to explore the cause of this, consider Fig. 22,

n which time step evolution for the uniform and all three adaptive
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ases are shown. Firstly, note that the uniform and the εa = 0.1 and

a = 0.001 cases resemble very much, and the smallest time steps

re obtained at around 40 s ≤ t ≤ 50 s in the three cases. This time

oughly corresponds to the period on which water is spilling for the

econd time over the obstacle (see Fig. 19(f)), when flow conditions

re strenuous on numerical stability. On the other hand, Fig. 22 shows

hat the εa = 0.01 case results in an overall similar time step size evo-

ution, but with a very relevant difference at around 5 s ≤ t ≤ 20 s, a

ime at which the time steps are very small, in the same order as in

0 s ≤ t ≤ 50 s. Detailed inspection of the results has shown that the

hin layer flowing downstream of the obstacle is of similar magnitude

o the perturbations of the numerical solution at those points. There-

ore, with this particular threshold value, the scheme cannot discrim-

nate between the wet-dry front and the perturbations, resulting in a

ast moving train of wet-dry fronts which of course impacts the time

tep. When the εa is larger, the perturbations are filtered out, and

hen it is lower, the perturbations are actually resolved, thus stabil-

sing the computations. Remarkably, aside from the highlighted dif-

erences, time step evolution is similar in all four cases, showing that

umerical stability is indeed being controlled by cells at the highest

esolution level, either by moving shocks or wet-dry fronts at differ-

nt times.

. Summary, conclusions and outlook

The combination of MultiWavelets (MW) and the Runge–Kutta

iscontinuous Galerkin methods (RKDG) has resulted in a new form

f adaptive models (MWRKDG). In the framework of an MWRKDG nu-

erical solution, spatial-resolution adaptivity is driven by one user-

nput parameter, the use of a coarse baseline mesh is straightforward,

ata connectivity across various resolutions is rigorous, and quan-

itative control of the perturbation-error from the finest-uniform-

esh (i.e. reference mesh) is feasible [19,20,28]. Despite the recent

heoretical development in MWRKDG adaptive methods, this work

as provided a first-time exploration of its implications for computa-

ional hydraulics. The tailoring and application of a robust MWRKDG2

daptive model for Shallow Water (SW) modelling has been stud-

ed. An MWRKDG2 model has been explored and assessed within the

cope of enabling the application of this adaptive-mesh technology to

odel realistic SW flows. In the context of adaptive SW-MWRKDG2

odelling, a reference RKDG2 scheme is needed on which the so-

ution on the reference mesh is evaluated by the multiresolution

nalysis, which is referred to as the reference scheme. Two RKDG2

chemes have been considered for this purpose. Scheme 1 follows

he approach of [36], while Scheme 2 adopts the method in [70]. Both

chemes are known to somewhat possess the ability of handling the
eatures of relevance to practical SW modelling (incl. accurate treat-

ent of irregular topographies with wetting and drying). Steady and

ransient benchmark tests have been used to assess the practical per-

ormance of the adaptive SW-MWRKDG2 model in relation to the

hoice of the reference scheme. For all the test cases, adaptive simu-

ations have been run for a baseline coarse mesh consisting of 2 com-

utational cells and allowing a maximum of 8 refinement levels. The

daptive results have been analysed (qualitatively and quantitatively)

omparing with analytical and experimental data, and with the out-

uts of the reference schemes. When possible, further comparison

ith a third-order SW-MWRKDG model (SW-MWRKDG3) has been

ncluded. Analysis of the present findings offers new insights into the

otential strengths and weaknesses of adaptive SW-MWRKDG mod-

lling for real hydraulic problems.

• The quiescent flow test (Section 5.1) clearly illustrates the rele-

vance of choosing an appropriate reference scheme. In conjunc-

tion with Scheme 1, the adaptive SW-MWRKDG2 is found to

achieve reliable SW modelling (i.e. over non-differentiable to-

pographies with the presence of wet-dry fronts), as the reference

(non-adaptive) Scheme 1 did as such. This scheme is therefore

favoured for use with the SW-MWRKDG2, and has been employed

for all test cases. In contrast, with Scheme 2, well-balancing issues

have occurred, which, although are noted to reduce within the as-

sociated adaptive MWRKDG2 model, remained quite present in

the momentum (discharge) prediction.
• For a steady transcritical flow with shock (Section 5.2), the adap-

tive SW-MWRKDG2 model has delivered better-resolved capture

of the flow transitions than the RKDG2 computations on a uniform

mesh with the same number of cells, and at almost the same com-

putational costs. Further comparison with the SW-MWRKDG3 re-

sults suggests that the increase in accuracy-order offers coarser-

mesh predictions at smooth regions than with the SW-MWRKDG2

model, although it does not seem to improve shock capturing

(as expected). This clearly lays out a benefit in further capitalis-

ing on the MW scalability to enable both resolution and accuracy

adaptivity (hp-adaptivity) to improve the efficiency of the SW-

MWRKDG approach.
• The oscillatory flow over a parabolic bowl test (Section 5.3)

shows an excellent ability of the SW-MWRKDG2 model to achieve

(locally and temporarily) highest-resolution tacking of (mov-

ing) wet-dry fronts without any additional treatment. However,

slightly more reliable predictions of the wetting front are identi-

fied, compared to the drying front, which may be caused by the

weaker magnitude of the detail coefficients when the front is re-

cessing and by potential shortcomings from the adopted wetting

and drying strategy.
• More realistic assessments of the adaptive SW-MWRKDG2 model

have been carried out for the experimental dam-break test

(Section 5.4), which involved flow transients over a frictional and

uneven bed and a shock-refection and wet-dry front movement.

Comparisons with experimental data confirm the SW-MWRKDG2

model’s adaptivity is able to sensibly track features of shock-,

smooth-, topographic- and wet/dry-character (combined), driven

entirely by a single threshold-value parameter.

Common to all the tests and simulations (at any particular time),

he adaptive SW-MWRKDG2 model has offered (i.e. for a MW’s

hreshold-value parameter of 0.1) very significant gain in compu-

ational efficiency; namely by reducing cell number to 20–80% and

peed-up runtime to 2–18 times, relative to the RKDG2 scheme on

he reference mesh. The results show that the decrease in computa-

ional time is case dependent, since a case might require large propor-

ions of fine cells, thus producing a low speed-up, or on the contrary,

equire only a few high resolution cells, thus resulting in high speed-

p. Computational time also showed that there is an overhead for the
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[

adaptive strategy (in its current implementation) at around 20% of

the total (adaptive) computational time.

From this study, future research topics to be tackled, which are rel-

evant to widen the range of applicability of the SW-MWRKDG2 solver,

are laid out. In terms of 2D extension, although theoretically feasible

for scheme 2 [18], is not straightforward with scheme 1 due to its

reliance on bed-continuity across all interfaces (and at more than 1

points), which is not possible in 2D quadrilateral meshes. This topic

requires more in-depth exploration so that the adaptivity gains of-

fered by MWRKDG2 are not compromised by the shortcomings of the

reference scheme. Analysis of the trade-off between baseline mesh

resolution and number of resolution levels is also worth a particular

investigation.
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