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Partial mirror symmetry, lattice presentations and algebraic
monoids

Brent Everitt and John Fountain

Abstract

This is the second in a series of papers that develops the theory of reflection monoids, motivated
by the theory of reflection groups. Reflection monoids were first introduced in [7]. In this paper we
study their presentations as abstract monoids. Along the way we also find general presentations
for certain join-semilattices (as monoids under join) which we interpret for two special classes
of examples: the face lattices of convex polytopes and the geometric lattices, particularly the
intersection lattices of hyperplane arrangements. Another spin-off is a general presentation for the
Renner monoid of an algebraic monoid, which we illustrate in the special case of the “classical”
algebraic monoids.

Introduction

“Numbers measure size, groups measure symmetry”, and inverse monoids measure partial
symmetry. In [7] we initiated the formal study of partial mirror symmetry via the theory of
what we call reflection monoids. The aim is three-fold: (i). to wrap up a reflection group and a
naturally associated combinatorial object into a single algebraic entity having nice properties,
(ii). to unify various unrelated (until now) parts of the theory of inverse monoids under one
umbrella, and (iii). to provide workers interested in partial symmetry with the appropriate
tools to study the phenomenon systematically.
This paper continues the programme by studying presentations for reflection monoids. As

one of the distinguishing features of real reflection (or Coxeter) groups are their presentations
this is a natural thing to do. Broadly, our approach is to adapt the presentation found in [4]
to our purposes.
Roughly speaking, an inverse monoid (of the type considered in this paper) is made up out

of a group W (the units), a poset E with joins ∨ (the idempotents) and an action of W on
E. A presentation for an inverse monoid thus has relations pertaining to each of these three
components. In particular, we need presentations for W as a group and E as a monoid under
∨.
For a reflection monoid, W is a reflection group. If it is a real reflection group, as all in this

paper turn out to be, then it has a Coxeter presentation; so that part is already nicely taken
care of.
The poset E is a commutative monoid of idempotents, and we invest a certain amount

of effort in finding presentations for these (§1). We imagine that much of this material is of
independent interest. Here we are motivated by the notion of independence in a geometric
lattice (see for instance [21]), which we first generalize to the setting of graded atomic ∨-
semilattices. The idea is that relations arise when we have dependent sets of atoms. Our first
examples are the face monoids of convex polytopes, and it turns out that simple polytopes
have particularly simple presentations. The pay-off comes in §5, where these face monoids are
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the idempotents in the Renner monoid of a linear algebraic monoid (Renner monoids being to
algebraic monoids as Weyl groups are to algebraic groups). We then specialize to geometric
lattices–their presentations turn out to be nicer (Theorem 1.6). We finally come full circle with
the intersection lattices of the reflecting hyperplanes of a finite Coxeter group (§1.4), where we
work though the details for the classical Weyl groups. These reappear in §4 as the idempotents
of the Coxeter arrangement monoids.
Historically, presentations for reflection monoids start with Popova’s presentation for the

symmetric inverse monoid In [22]. Just as the symmetric group Sn is one of the simplest
examples of a reflection group (being the Weyl group of type An−1) so In is one of the
simplest examples of a reflection monoid (the Boolean monoid of type An−1; see [7, §5]). Our
general presentation for a reflection monoid (Theorem 2.1 of §2) specializes to Popova’s in this
special case, unlike those found in [11, 25]. In the resulting presentation there is one relation
that seems less obvious than the others. This turns out to always be true. The units in a
reflection monoid form a reflection group W and each relation in this non-obvious family arises
from an orbit of the W -action on the reflecting hyperplanes of W . So, the interaction between a
reflection group and a naturally associated combinatorial object – in this case the intersection
lattice of the reflecting hyperplanes of the group – manifests itself in the presentation for the
resulting reflection monoid.
Sections 3 and 4 work out explicit presentations for the two main families of reflection

monoids that were introduced in [7]: the Boolean monoids and the Coxeter arrangement
monoids.
Finally, we turn our attention to algebraic monoids and Renner monoids in §5. We are not

aware of a length function for general reflection monoids or even for Coxeter arrangement
monoids. Moreover, a Coxeter arrangement monoid does not seem to be associated with a
particular reductive monoid. Thus the techniques used in [10] and [11] to find presentations
for Renner monoids are not available to us in getting presentations for reflection monoids. We
therefore use only elementary combinatorics. Although not all Renner monoids are reflection
monoids (see [7, Example 8.3]), our methods are easily adapted to get presentations for Renner
monoids and our general result involves fewer generators and relations than those found in [10]
and [11]. The basic principle here is to build an abstract monoid of partial isomorphisms from
a reflection group acting on a combinatorial description of a rational polytope. This abstract
monoid is then isomorphic to the Renner monoid of an algebraic monoid–the reflection group
corresponds to the Weyl group of the underlying algebraic group and the polytope arises from
the weights of a representation of the Weyl group (a reflection group and naturally associated
combinatorial structure being wrapped up!). We work the details for the “classical” algebraic
monoids (special linear, orthogonal, symplectic) as well as another nice family of examples
introduced by Solomon in [26].
As a final remark, we recall that although every Renner monoid is a homomorphic image

of a geometric lattice reflection monoid (see [7, Theorem 8.1]), it is not clear (to us) what
connection, if any, there is between the presentations of the two monoids. In particular, we
do not know if it is possible to obtain a presentation for a Renner monoid from one for the
corresponding reflection monoid.
We end this section by setting notation for reflection groups (see [3, 14, 16] for more details)

and recalling the monoids of partial symmetries introduced in [7].
Let V be a finite dimensional vector space over R and W = W (Φ) ⊂ GL(V ) finite, be the

reflection group generated by the reflections {sv}v∈Φ for Φ ⊂ V a finite root system. Then
there is a distinguished set S of generating reflections giving W the structure of a Coxeter
group with generators S and relations (st)mst = 1 for mst ∈ Z≥1. For future reference we list
in Table 1 the Φ, the S and the Coxeter symbol for the Weyl groups of types An, Bn and Dn.
The full set T of reflections inW is the set ofW -conjugates of S. Write A = {Ht ⊂ V | t ∈ T }

for the set of reflecting hyperplanes ofW . ThenW naturally acts on A and every orbit contains
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an Hs with s ∈ S. Moreover, if s, s′ ∈ S then Hs and Hs′ lie in the same orbit if and only if
s and s′ are joined in the Coxeter symbol by a path of edges labeled entirely by odd mst.
Thus the number of orbits of W on A is the number of connected components of the Coxeter
symbol once the even labeled edges have been dropped. This number will appear later on as
the number of relations in a certain family in the presentation for a reflection monoid.
As in [7], when G ⊆ GL(V ) is any group and X ⊆ V , a key role is played by the isotropy

groups GX = {g ∈ G | vg = v for all v ∈ X}. A theorem of Steinberg [29, Theorem 1.5] asserts
that for G = W (Φ), the isotropy group W (Φ)X is itself a reflection group; indeed, generated
by the reflections sv for v ∈ Φ ∩X⊥.
Now to partial mirror symmetry. Recall from [7, §2] that if G ⊂ GL(V ) and S is a system

of subspaces for G then the monoid of partial isomorphisms is defined by M(G, S) := {gX | g ∈
G,X ∈ S} where gX is the partial isomorphism with domain X . It is a factorizable inverse
monoid. If G = W is a reflection group then M(W, S) is called a reflection monoid.
Similarly we have monoids of partial permutations: replace V by a finite set E; the group G is

now G ⊆ SE and S is a system of subsets of E for G [7, §9.2]. In all the examples in this paper
E will turn out to have more structure: it will be a ∨-semilattice with a unique minimal element
0 and with the G-action by poset isomorphisms. The system of subsets S consists of intervals
in E, namely, for any a ∈ E the sets E≥a := {b ∈ E | b ≥ a}. Then E = E≥0, E≥a · g = E≥a·g

for g ∈ G, and E≥a ∩ E≥b = E≥a∨b. Ordering S by reverse inclusion, the map E → S given by
a 7→ E≥a is a poset isomorphism that is equivariant with respect to the G-actions on E and S.

1. Idempotents

1.1. Generalities

Let E be a finite commutative monoid of idempotents. It is a fundamental result that E
acquires, via the ordering x ≤ y if and only if xy = y, the structure of a join semi-lattice with
a unique minimal element. Conversely, any join semi-lattice with unique minimal element is a
commutative monoid of idempotents via xy := x ∨ y. Moreover, in either case we also have a
unique maximal element–the join of all the elements of (finite) E. From now on we will apply
monoid and poset terminology (see [28, Chapter 3]) interchangeably to E and write 0 for the
unique minimal element and 1 for the unique maximal one. The reader should beware: the 0
of the poset E is the multiplicative 1 of the monoid E and the 1 is the multiplicative 0. Recall
that a poset map f : E → E′ is a map with fx ≤′ fy when x ≤ y.
All of our examples will turn out to have slightly more structure: E is graded if for every

x ∈ E, any two saturated chains 0 = x0 < x1 · · · < xk = x have the same length. In this case
E has a rank function rk : E → Z≥0 with rk(x) = k. In particular rk(0) = 0, and if x and y are
such that x ≤ z ≤ y implies z = x or z = y, then rk(y) = rk(x) + 1. Write rkE := rk(1). The
elements of rank 1 are called the atoms, and E is said to be atomic if every element is a join
of atoms. In particular, an atomic E is generated as a monoid by its atoms.
For example, the Boolean lattice BX of rank n is the lattice of subsets of X = {1, . . . , n}

ordered by reverse inclusion. It is graded with rk(Y ) = |X \ Y | and atomic with atoms the
ai := {1, . . . , î, . . . , n}. The monoid operation is just intersection.
Writing

∨
S for the join of the elements in a subset S ⊆ E, call a set S of atoms independent

if
∨

S \ {s} <
∨
S for all s ∈ S, and dependent otherwise; S is minimally dependent if it

is dependent and every proper subset is independent. These notions satisfy the following
properties, most of which are clear, although some hints are given:
(I1). If |S| ≤ 2 then S is independent; in particular, any three element set of dependent atoms

is minimally dependent.
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(I2). If S is dependent then there exists T ⊂ S with T independent and
∨
T =

∨
S

(successively remove those s for which
∨
S \ {s} =

∨
S).

(I3). Any subset of an independent set is independent.
(I4). If T is independent and S = T ∪ {b} is dependent then there is a T ′ ⊆ T with T ′ ∪ {b}

minimally dependent (this is clear if |S| = 3; if S arbitrary is not minimally dependent
already then there is an s ∈ S with S \ {s} dependent, and in particular s 6= b. The result
then follows by induction applied to S \ {s}.)

(I5). If S is independent then there is an injective map of posets BS →֒ E, not necessarily
grading preserving (send T ⊆ S to

∨
T in E); consequently, if S is independent then

|S| ≤ rkE.
There is an obvious analogy here with linear algebra, which becomes stronger in §1.3 when E
is a geometric lattice.
Here is our first presentation. Throughout this paper we adopt the standard abuse whereby

the same symbol is used to denote an element of an abstract monoid given by a presentation
and the corresponding element of the concrete monoid that is being presented. Apart from the
proof of the following (where we temporarily introduce new notation to separate these out) the
context ought to make clear what is being denoted.

Proposition 1.1. Let E be a finite graded atomic commutative monoid of idempotents
with atoms A. Then E has a presentation with:

generators: a ∈ A.

relations: ab = ba (a, b ∈ A), (Idem2)

a1 . . . ak = a1 . . . akb (ai, b ∈ A), (Idem3)

for a1, . . . , ak , (1 ≤ k ≤ rkE) independent and b ≤
∨

ai.

Notice that when k = 1 the (Idem3) relations are a = a2 for a ∈ A. To emphasise the point
we separate these from the rest of the (Idem3) relations and call them family (Idem1). Note
also that the {a1, . . . , ak, b} appearing in (Idem3) are dependent.

Type Root system Φ Coxeter symbol and simple system

An−1 (n ≥ 2) {vi − vj (1 ≤ i 6= j ≤ n)}
v2 − v1

v3 − v2

vn−1 − vn−2

vn − vn−1

Dn (n ≥ 4) {±vi ± vj (1 ≤ i < j ≤ n)}
vn − vn−1

vn−1 − vn−2

v3 − v2

v2 − v1

v1 + v2

Bn (n ≥ 2)
{±vi (1 ≤ i ≤ n),
±vi ± vj (1 ≤ i < j ≤ n)}

vn − vn−1

vn−1 − vn−2

v2 − v1

v14

Table 1. Root systems, simple systems and Coxeter symbols for the classical Weyl groups.
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Proof. We temporarily introduce alternative notation for the atoms and then remove it
at the end of the proof: we use Roman letters a, b, . . . for the atoms A of E and their Greek
equivalents α, β, . . . for a set in 1-1 correspondence with A. Let M be the quotient of the free
monoid on the α ∈ A by the congruence generated by the relations (Idem2)-(Idem3), with
Greek letters rather than Roman. We have already observed that E is generated by the a ∈ A,
and the relations (Idem2)-(Idem3) clearly hold in E, so the map α 7→ a induces an epimorphism
M → E. To see that this map is injective, we choose representative words: for any e ∈ E \ {0},
let Ae := {a ∈ A | a ≤ e} and

e =
∏

a∈Ae

α.

It remains to show that any word in the α’s mapping to e can be transformed into the
representative word e using the relations (Idem1)-(Idem3). Let α1 . . . αk be such a word and
let b ∈ Ae be such that b 6= ai for any i. If no such b exists then the word is e already and we
are done. Otherwise, there is an independent subset {ai1 . . . , aiℓ} with e = ai1 ∨ · · · ∨ aiℓ , and
so we have an (Idem3) relation αi1 · · ·αiℓ = αi1 · · ·αiℓβ. Multiplying both sides by α1 . . . αk,
reordering using (Idem1) and removing redundancies using (Idem2), we obtain α1 . . . αk =
α1 . . . αkβ. Repeat this until the word is e.

For a simple example, the Boolean lattice BX of rank n has atoms the ai = {1, . . . , î, . . . , n}
with

∨
aij the setX with the indices ij omitted. Removing an atom from this join has the effect

of re-admitting the corresponding index. The resulting join is thus strictly smaller than
∨
aij ,

and we conclude that any set of atoms is independent. As an (Idem3) relation in Proposition 2.3
arises as a result of a set {a1, . . . , ak, b} of dependent atoms, the (Idem3) relations are vacuous
when k > 1 and we have a presentation with generators a1, . . . , an and relations a2i = ai and
aiaj = ajai for all i, j.

1.2. Face monoids of polytopes

In §5 we will encounter a class of commutative monoids of idempotents that are isomorphic
to the face lattices of convex polytopes. It is to these that we now turn.
A (convex) polytope P in a real vector space V is the convex hull of a finite set of points.

The standard references for convex polytopes are [12, 31]. An r-dimensional face is defined in
[12, §2.4]. We consider P itself to be a face, and say P is a d-polytope when dimP = d, and
∅ to be the unique face of dimension −1. A (d− 1)-face of a d-polytope is called a facet.
Let F (P ) be the faces of P ordered by reverse inclusion (this is the opposite order to

that normally used in the polytope literature). In any case, it is well known that F (P ) is
a graded (with rkf = codim P f := dimP − dim f) atomic lattice with atoms the facets, join
f1 ∨ f2 = f1 ∩ f2, meet f1 ∧ f2 the smallest face containing f1 and f2, unique minimal element
0 = P and maximal element 1 = ∅ (hence rkF (P ) = dimP ). We call the associated monoid
the face monoid of the polytope P .
Two polytopes are combinatorially equivalent if their face lattices are isomorphic as lattices.

The combinatorial type of a polytope is the isomorphism class of its face lattice, and when one
talks of a combinatorial description of a polytope, one means a description of F (P ). In this
paper, all statements about polytopes are true up to combinatorial type.

Example 1 (the d-simplex ∆d). Let V be a (d+ 1)-dimensional Euclidean space with basis
{v1, . . . , vd+1} and ∆d the convex hull of these basis vectors. Any subset of the vi of size k + 1
spans a k-simplex. If X = {1, . . . , d+ 1} then F (∆d) is isomorphic to the Boolean lattice BX

by the map sending Y ⊆ X to the convex hull of the points {vi | i ∈ Y }. Thus, any set of facets
is independent.
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In particular F (∆d) has a presentation with generators a1, . . . , ad+1 and relations a2i = ai
and aiaj = ajai. We will meet this commutative monoid of idempotents twice more in this
paper: as the idempotents of the Boolean reflection monoids in §3, and as the idempotents of
the Renner monoid of the “classical” linear monoid k×SLd in §5.2.

A d-polytope is simplicial when each facet has the combinatorial type of a (d− 1)-simplex.

Example 2 (the d-octahedron or cross-polytope ✸
d). Let V be d-dimensional Euclidean

and let ✸d be the convex hull of the vectors {±v1, . . . ,±vd}. To describe ✸
d combinatorially,

let ±X = {±1, . . . , ±d} and call a subset J ⊂ ±X admissible whenever J ∩ (−J) = ∅. Alter-
natively, if J+ = J ∩ X and J− = J ∩ (−X) then −J+ ∩ J− = ∅. Note that the admissible
sets are closed under passing to subsets (hence under intersection) but not under unions. Let
E0 be the admissible subsets of ±X ordered by reverse inclusion. This poset has a number of
minimal elements, namely, any set of the form J+ ∪ J− with J+ ⊆ X and J− = −X \ −J+.
In particular these sets are completely determined by J+. Let E be E0, together with ±X , and
ordered by reverse inclusion. Then the map sending J ∈ E to the convex hull of the points

{vi | i ∈ J+} ∪ {−v−i | i ∈ J−},

is a lattice isomorphism E → F (✸d). In particular, if fJ , fK are faces corresponding to J,K ∈
E then fJ ∨ fK = fJ∩K . We will meet the monoid E again in §5.2 as the idempotents of the
Renner monoids of the classical monoids k×SO2d, k×SO2d+1 and k×Sp2d.

For a convex polytope P there is a dual polytope P ∗, unique up to combinatorial type, with
the property that F (P ∗) = F (P )opp, the opposite lattice to F (P ), i.e. F (P )opp has the same
elements as F (P ) and order f1 ≤ f2 in F (P )opp if and only if f2 ≤ f1 in F (P ) (see [12, 3.4]).
Call P simple if and only if its dual P ∗ is simplicial. Equivalently, each vertex (0-face) of P is
contained in exactly dimP facets. The d-simplex is self dual, corresponding to the fact that a
Boolean lattice is isomorphic as a lattice to its opposite. Another simple polytope is:

Example 3 (the d-permutohedron). Let V be (d+ 1)-dimensional Euclidean and let the
symmetric group Sd+1 act on V via viπ = viπ for π ∈ Sd+1. Writing v ·Sd+1 for the orbit of
v ∈ V , let 0 ≤ m1 < · · · < md+1 be integers and define a d-permutohedron P to be the convex
hull of the orbit (

∑
mi vi) ·Sd+1. The combinatorial type of P does not depend on the mi, so

we will just say the d-permutohedron. Figure 1(c) shows the 3-permutohedron. Our interest in
permutohedra comes about as the lattice F (P ) is isomorphic to the idempotents of the Renner
monoid of §5.3.
To get a presentation for F (P ) it is useful to have a combinatorial version of F (P ), and we

now describe such a version in some detail. To this end, an orientation of a 1-face (i.e. edge)
{vi, vj} vi vj of the d-simplex ∆d has the form vi vj , written (vi, vj), or
vi vj written (vj , vi). If ∆

d is a d-simplex with some edges oriented, then we say
that the oriented edges form a partial orientation O of ∆d.
A partial orientation O is admissible when (i). for any 2-face {vi, vj , vk} in ∆d with (vi, vj)

and (vj , vk) ∈ O we have (vi, vk) ∈ O also, i.e.

∈ O ⇒ ∈ O

∆d
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and (ii). every 2-face in ∆d has either 0 or ≥ 2 of its incident edges in O. We call these two
properties transitivity and incomparability .
Let E0 be the set of admissible partial orientations of ∆d and define O1 ≤ O2 iff every edge

in O1 is also in O2 and with the same orientation, i.e. the order is just inclusion. This is a
partial order on E0 with a unique minimal element ∅ (i.e. no edges oriented) and maximal
elements with every edge oriented. Formally adjoin a unique maximal element 1 to get the
poset E. Define O1 ∨O2 to be the union of the oriented edges in O1 and O2 if this gives an
admissible partial orientation, or 1 if it doesn’t. Then E has the structure of a join semi-lattice.
If there is an edge oriented one way in O1 and the other way in O2 then O1 ∨O2 is not even
a partial orientation. It turns out that this is the only obstacle to O1 ∨O2 being admissible:

– If O1, O2 are admissible with O1 ∨O2 a partial orientation, then O1 ∨O2 is transitive.
– If O1, O2 are partial orientations satisfying incomparability and with O1 ∨O2 a partial
orientation, then O1 ∨O2 satisfies incomparability.

Thus for Oi ∈ E we have
∨
Oi < 1 exactly when

∨
Oi is a partial orientation, i.e. each edge

is oriented consistently, if at all, among the Oi.
For J a non-empty proper subset of X = {1, . . . , d+ 1}, let ∆J be the sub-simplex of ∆d

spanned by the vertices {vj | j ∈ J} and ∆X\J similarly. Let OJ be the partial orientation where
the only edges oriented are those not contained in either ∆J or ∆X\J ; necessarily such edges
have one vertex vj (j ∈ J) and the other vi (i ∈ X \ J). Orient the edge with the orientation
running from the latter vertex to the former. We leave it to the reader to show that the OJ are
admissible partial orientations and moreover, are minimal non-empty elements in the poset E,
i.e. OJ ∈ E, and if O ∈ E with O < OJ then O = ∅.
For any O ∈ E define a relation ∼ on the vertices of ∆d by u ∼ v exactly when there is

no path of (consistently) oriented edges from u to v or from v to u. This is easily seen to be
reflexive and symmetric, and also transitive, the last using the incomparability and transitivity
of the partial orientation O. Let {Λ1, . . . ,Λp} be the resulting equivalence classes. It is easy
to show that given Λi,Λj and vertices u ∈ Λi, v ∈ Λj that the edge connecting them lies in
O, oriented say from u to v. Moreover, given any other such pair u′, v′, the edge connecting
them is also oriented from u′ to v′. Define an order on the Λ’s by Λi � Λj whenever the pairs
are oriented from Λi to Λj in this way. In particular, � is a total order and so we write the
equivalence classes (after relabelling) as a tuple (Λ1, . . . ,Λp), i.e. we have an ordered partition.
For the OJ above we just get (X \ J, J) via this process. If O ∈ E and (Λ1, . . . ,Λp) is the

corresponding ordered partition then let Jk = Λk ∪ · · · ∪ Λp. We leave the reader to see that
we can then write

O =

p∨

k=2

OJk
, (1.1)

an expression for O as a join of atomic OJ . In particular the OJ comprise all the atoms in E.

Proposition 1.2. Let P be the d-permutohedron and E the poset of admissible partial
orientations of the d-simplex with a formal 1 adjoined. If O ∈ E is given by (1.1), let fO be
the convex hull of those vertices

∑
miπvi such that

∑
j∈Jk

mjπ = m1 + · · ·+m|Jk|

for all k. Then O 7→ fO is an isomorphism E ∼= F (P ) of lattices. Moreover, the two facets
fJ := fOJ

, fK := fOK
are disjoint if and only if neither of J,K is contained in the other, i.e.

J 6= J ∩K 6= K.
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(a)

(b) (c)

Figure 1. (a). the poset E0 of admissible partial orientations of ∆2 with O1 → O2 indicating
O1 < O2 (b). the poset E0 superimposed on a distorted 2-permutohedron (or hexagon) (c). the

3-permutohedron.

Proof. That O 7→ fO is a well defined map and a bijection is well known (see, e.g.: [31,
Lecture 0]). If O1 ≤ O2 in E then each J2k coincides with some J1k′ . Thus, if the fOi

are the
convex hulls of sets of vertices Si as in the Proposition, we have S2 ⊆ S1 and so fO1

≤ fO2
.

This argument can be run backwards, so that we have a poset isomorphism. For the final
part, fJ ∩ fK = ∅ iff OJ ∨OK = 1, and it is easy to check that this happens exactly when
J 6= J ∩K 6= K.

Returning to generalities, it turns out that the face lattices of simple polytopes have
particularly simple presentations as commutative monoids of idempotents. Recalling the
definition of independent atoms from §1.1, we lay the groundwork for this with the following
result:

Proposition 1.3. Let P be a simple d-polytope.

(i) If v is a vertex of P then the interval [P, v] := {f ∈ F (P ) |P ≤ f ≤ v} is a Boolean
lattice of rank d. In particular, facets f1, . . . , fk with

∨
fi < ∅ are independent.

(ii) Let P be the d-permutohedron and f1, . . . , fk ∈ F (P ) independent facets such that∨
fi = ∅. Then k ≤ 2.

The first part is standard; indeed it is often stated as an equivalent definition of a simple
polytope as in [31, Proposition 2.16]. The second part is not true for an arbitrary simple
polytope: consider the triangular prism ∆2 × [0, 1]. To see it, we show that if f1, . . . , fk are
facets with

∨
fi = ∅ then there are 1 ≤ j < m ≤ k with fj ∨ fm = ∅; in particular k ≥ 3 facets

with join ∅ are dependent. This uses the combinatorial description of the d-permutohedron.
Let the facets fi correspond to admissible partial orientations Oi of ∆d. We have

∨
fi = ∅

exactly when
∨
Oi is not a partial orientation. Thus there is an edge of ∆d and Oj , Om with

the edge oriented in different directions in these two. But then fj ∨ fm = ∅.
Part 1 of Proposition 1.3 means that for a simple polytope the (Idem3) relations in

Proposition 2.3 are vacuous when
∨
ai < ∅; part 2 means that for the d-permutohedron the

(Idem3) relations further reduce to a1a2 = a1a2b for each pair a1, a2 of disjoint facets.
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v1

v2

v3

±X =
1 2 3

−1 −2 −3

Figure 2. Independent triples of facets in the 3-octahedron ✸
3: we have {x1, x2, x3} = X = {1, 2, 3}

and option (1) of Proposition 1.5 is chosen for each j. The atoms in E are depicted by blackened
boxes and the corresponding facets of the octahedron shaded. Every other triple is equivalent to this

one via a symmetry of ✸3.

Proposition 1.4. Let E be the face monoid of a simple polytope P with facets A. Then
E has a presentation with:

generators: a ∈ A.

relations: a2 = a (a ∈ A), (Idem1)

ab = ba (a, b ∈ A), (Idem2)

a1 . . . ak = a1 . . . akb (ai, b ∈ A), (Idem3)

for a1, . . . , ak , (2 ≤ k ≤ dimP ) independent with
∨

ai = ∅.

Combining this presentation with part 2 of Proposition 1.3 and the combinatorial description
of the d-permutohedron gives:

The d-permutohedron: has presentation with generators aJ for ∅ 6= J ( X = {1, . . . , d+ 1}
and relations a2J = aJ for all J ; aJaK = aKaJ for all J,K, and

aJaK = aJaKaL

for all J 6= J ∩K 6= K and all L.

The facets of the d-permutohedron are parametrized by the admissible partial orientations
OJ , for J a non-empty proper subset of X , and two facets have join ∅ exactly when they
correspond to OJ , OK with J 6= J ∩K 6= K. The presentation follows.
Finally, we return to the d-octahedron ✸

d, where things are not so simple (pun intended).
Recalling the poset E of Example 2, let J ⊆ X = {1, . . . , d} and write a(J) := J ∪ (−X \ −J)
for the atoms in E (note that J is now a subset of X rather than ±X). The independent sets
can be described by the following, the proof of which is [6, Proposition 5]:

Proposition 1.5. Let {x1, . . . , xk} ⊆ X with k ≥ 3 and d ≥ 3, and J10, . . . , Jk0 subsets of
X \ {x1, . . . , xk}. For j = 1, . . . , k we recursively define sets J1j , . . . , Jkj as follows: either,
(0). do not add xj to Jj,j−1 but do add xj to all other Ji,j−1 for i 6= j; or
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(1). do add xj to Jj,j−1 but do not add xj to all other Ji,j−1 for i 6= j.
Then, if Jj := Jjk, the a(J1), . . . , a(Jk) are independent atoms in E, and every set of k
independent atoms arises in this way.

Thus, at the 0-th step we have the sets J10, . . . , Jk0; at the 1-st step either add x1 to J10 and
not to the others, or vice-versa; iterate. Figure 2 illustrates the independent triples of facets in
the 3-octahedron: we have X = {1, 2, 3} and 23 independent triples corresponding to a choice
of the (0)-(1) options in Proposition 1.5. Letting xj = j (hence Jj0 = ∅) and choosing option
(1) for each j gives the atoms a(1) = {1,−2,−3}, a(2) = {−1, 2,−3} and a(3) = {−1,−2, 3}
corresponding to the shaded triple of faces. Any other triple of independent facets is equivalent
to this one via a symmetry of the octahedron.
Let Indk be the set of independent tuples (a(J1), . . . , a(Jk)) arising via Proposition 1.5.

The d-octahedron ✸
d: has a presentation with generators aJ for J ⊆ X = {1, . . . , d} and

relations a2J = aJ for all J ; aJaK = aKaJ for all J,K and

aJ1
. . . aJk

= aJ1
. . . aJk

aK

for all (a(J1), . . . , a(Jk)) ∈ Indk with 2 ≤ k ≤ d and all a(K) ⊇
⋂
a(Ji).

1.3. Geometric monoids

Suppose now that E is a lattice, hence with both joins ∨ and meets ∧. A graded atomic
lattice E is geometric when

rk(a ∨ b) + rk(a ∧ b) ≤ rk(a) + rk(b), (1.2)

for any a, b ∈ E. We will call the corresponding commutative monoid of idempotents geometric.
Beginning with a non-example, the face lattices of polytopes are not in general geometric: if

f1, f2 are non-intersecting facets of a d-polytope then the left hand side of (1.2) is d and the
right hand side is 2.
The canonical example of a geometric lattice is the collection of all subspaces of a vector space

under either inclusion/reverse inclusion, where (1.2) is a well known equality. The example
that will preoccupy us is the following: a hyperplane arrangement is a finite set A of linear
hyperplanes in a vector space V , and the intersection lattice H is the set of all intersections
of elements of A ordered by reverse inclusion, with the null intersection taken to be V . The
result is a geometric lattice [20, §2.1] with rk(A) = codimA, atoms the hyperplanes A ; 0 = V
and 1 =

⋂
H∈A

H . If A are the reflecting hyperplanes of a reflection group W ⊂ GL(V ) then
A is called a reflection or Coxeter arrangement. If W = W (Φ) for Φ some finite root system,
we will write H(Φ) for the intersection lattice of the Coxeter arrangement.
The linear algebraic analogy of §1.1 can be pushed a little further in a geometric lattice:

(I6). rk(
∨

S) ≤ |S| for atoms S, with S independent if and only if rk(
∨

S) = |S|.
(I7). If S is minimally dependent then

∨
S \ {s} =

∨
S for all s ∈ S.

That rk(
∨
S) ≤ |S| is a well known property of geometric lattices that follows from (1.2)–see

for example [21]. Indeed, (I6) is the normal definition of independence in a geometric lattice.
To see it, we show first by induction on the size of |S| that if rk(

∨
S) < |S| then S is

dependent: a three element set with rk(
∨
S) < 3 is the join of any two of its atoms, hence

dependent, as the join of two atoms always has rank two (the result is vacuous if |S| = 2 as
the join of two distinct atoms has rank 2). If S is arbitrary and

∨
S \ {s} =

∨
S for all s then

S is clearly dependent. Otherwise, if
∨
S \ {s} <

∨
S for some s ∈ S with rk(

∨
S \ {s}) <

rk(
∨
S) < |S|, then rk(

∨
S \ {s}) < |S \ {s}|. By induction, S \ {s} is dependent, hence so is

S.
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On the other hand, if rk(
∨
S) = |S| but

∨
S \ {s} =

∨
S for some s, then rk(

∨
S \ {s}) =

rk(
∨
S) = |S| > |

∨
S \ {s}|, a contradiction. Thus rk(

∨
S) = |S| implies that S is independent,

and we have established (I6).
Condition (I7) is a straightforward comparison of ranks. Taking three facets of the 2-

octahedron (diamond) gives a minimally dependent set S in the face lattice where
∨
S \ {s} =∨

S is true for only one of the three s, so this property is not enjoyed by arbitrary graded
atomic lattices.
Minimal dependence comes into its own when we have a geometric lattice. In particular we

can replace the (Idem3) relations of Proposition 2.3 with a smaller set:

Theorem 1.6. Let E be a finite geometric commutative monoid of idempotents with atoms
A. Then E has a presentation with:

generators: a ∈ A.

relations: a2 = a (a ∈ A), (Idem1)

ab = ba (a, b ∈ A), (Idem2)

â1 . . . ak = · · · = a1 . . . âk (ai ∈ A), (Idem3a)

for all {a1, . . . , ak}minimally dependent.

Proof. The Theorem is proved if we can deduce the (Idem3) relations of Proposition 2.3
from the relations above. Suppose then that a1 . . . ak = a1 . . . akb is an (Idem3) relation with
{a1, . . . , ak} independent in E and b ≤

∨
ai. Thus {a1, . . . , ak, b} is dependent, so by (I4)

of §1.1 there are ai1 , . . . , aik with {ai1 , . . . , aik , b} minimally dependent. In particular, we have
ai1 , . . . aik = ai1 . . . aikb by (Idem3a), and multiplying both sides by a1 . . . ak and using (Idem1)-
(Idem2) gives the result.

It is sometimes convenient to use the (Idem3a) relations in the form:

a1 . . . ak = a1 . . . âi . . . ak (Idem3b)

for all {a1, . . . , ak} minimally dependent and all 1 ≤ i ≤ k.

1.4. Coxeter arrangements

In §4 we will encounter a class of commutative monoids of idempotents isomorphic to the
Coxeter arrangements H(Φ) for Φ the root systems of types An−1, Bn and Dn. In this section
we interpret Theorem 1.6 for these monoids. We follow a similar pattern to §1.2: first we give
the arrangement, then a combinatorial description (which as in §1.2 means a description of
the lattice H) and then use this to identify the independent and minimally dependent sets of
atoms. It turns out to be convenient to expand on an idea of Fitzgerald [8].

Example 4 (H(An−1) and the partition lattice Π(n)). Let V be Euclidean with orthonor-
mal basis {v1, . . . , vn} and A the hyperplanes with equations xi − xj = 0 for all i 6= j.
Equivalently, if Φ is the type An−1 root system from Table 1 then A consists of the hyperplanes
{v⊥ | v ∈ Φ} and W (Φ) is the symmetric group acting on V by permuting the vi.
We remind the reader of a well known description of H(An−1). Let X = {1, . . . , n} and

consider the partitions Λ = {Λ1, . . . ,Λp} of X ordered by refinement: Λ ≤ Λ′ iff every block Λi

of Λ is contained in some block Λ′
j of Λ′. This is a graded atomic lattice with

rkΛ =
∑

(|Λi| − 1) (1.3)
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and atoms the partitions having a single non-trivial block of the form {i, j}. The map sending
(vi − vj)

⊥ to the atomic partition {i, j} extends to a lattice isomorphism H → Π(n) given by
X(Λ) 7→ Λ where

∑
tivi ∈ X(Λ) whenever ti = tj for i, j in the same block of Λ.

To proceed further we borrow an idea from [8]: for a set S of atoms in either H(An−1) or
Π(n), form the graph ΓS with vertex set X and |S| edges of the form:

i j

for each atom (vi − vj)
⊥ or {i, j} ∈ S. Recall that a connected graph (possibly with multiple

edges and loops) having fewer edges than vertices cannot contain a circuit. If Λ =
∨
S is the

join in Π(n), then the blocks of the partition Λ are the vertices in the connected components
of ΓS . Thus, by (1.3), S is independent when the component corresponding to the block Λi

has |Λi| − 1 edges, i.e. has a number of edges that is one less than the number of its vertices.
Such a connected graph is a tree, so S is independent exactly when ΓS is a forest.
The atoms S are thus dependent when ΓS contains a circuit, and minimally dependent when

ΓS is just a circuit.

Example 5 (H(Bn)). Let V be as in the previous example and A the hyperplanes with
equations xi = xi ± xj = 0 for all i 6= j; equivalently, if Φ is the type Bn root system from
Table 1 then A consists of the hyperplanes v⊥i and (vi ± vj)

⊥, with W (Φ) acting on V by
signed permutations of the vi (see also the end of §5.2).
A combinatorial description of H(Bn) appears in [7, §6.2] (see also [20, §6.4]): a coupled

partition is a partition of the form Λ = {Λ11 + Λ12, . . . ,Λq1 + Λq2,Λ1, . . . ,Λp}, where the Λij

and Λi are blocks and Λi1 + Λi2 is a “coupled” block. The + sign is purely formal. Let T be
the set of pairs (∆,Λ) where ∆ ⊆ X = {1, . . . , n} and Λ is a coupled partition of X \∆. An
order is defined in [7, §5.2] making T a graded atomic lattice with

rk(∆,Λ) = |∆|+
∑

(|Λi1|+ |Λi2| − 1) +
∑

(|Λi| − 1). (1.4)

Let X(∆,Λ) ⊆ V be the subspace with v =
∑

tivi ∈ X(∆,Λ) exactly when ti = 0 for i ∈ ∆;
ti = tj if i, j lie in the same block of Λ (either uncoupled or in a couple); and ti = −tj if i, j
lie in different blocks of the same coupled block. Then the map X(∆,Λ) 7→ (∆,Λ) is a lattice
isomorphism H(Bn) → T.
If S is a set of atoms in H(Bn), let ΓS be the graph with vertex set {1, . . . , n} and edges

given by the scheme:

i j

(vi − vj)
⊥

(a)

i j

(vi + vj)
⊥

(b)

i

v⊥i

(c)

A circuit is a closed path of type (a) and (b) edges, and a circuit is odd if it contains an odd
number of (b) type edges, and even otherwise.
If

∨
S = X(∆,Λ) ∈ H(Bn), then a vertex i of ΓS is contained in ∆ if and only if for all

v =
∑

tivi ∈ X(∆,Λ) we have ti = 0. In particular, i ∈ ∆ if and only if every vertex in the
connected component of i is in ∆. Otherwise, the vertices in this component form a block or
coupled block of Λ.
If a component contains a vertex i incident with an edge of type (c) above, then ti = 0, and

so tj = 0, for all v ∈ X(∆,Λ) and all the vertices j in the component. We thus have all the
vertices of the component in ∆. Similarly if the connected component contains an odd circuit,
for then ti = −ti for each vertex i in the circuit, and all the vertices are in ∆ too. On the other
hand, suppose the component has no (c) edges and all circuits even. Label a vertex by 1, and
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propagate the labelling through the component by giving vertices joined by (a) edges the same
label and vertices joined by (b) edges labels that are negatives of each other. The absence of
odd circuits means this labelling can be carried out consistently. Label the remaining vertices
of ΓS by 0, to give an v ∈ X(∆,Λ) with ti 6= 0 for i some vertex of our component, and so the
component gives a block or coupled block.
We conclude that the vertices of a component of ΓS lie in ∆ exactly when the component

has a (c) edge or contains an odd circuit. We claim that S is independent exactly when each
component of ΓS has one of the forms
– a tree of (a) and (b) type edges together with at most one (c) type edge;
– contains a unique odd circuit, no (c) type edges, and removing one (hence any) edge of
the circuit gives a tree.

For, if the component contains no (c) edges and no odd circuits, then its vertices contribute
a block or coupled block to Λ, and by (1.4), its edges are independent exactly when there are∑

(|Λi1|+ |Λi2| − 1) +
∑

(|Λi| − 1) of them; in other words, when the number of edges is one
less than the number of vertices. Thus we have a tree of (a) and (b) edges.
If the component contains a (c) edge then its vertices are in ∆, and by (1.4) its edges are

independent when there are the same number of them as there are vertices. Removing the (c)
edge gives a connected graph with number of edges one less than the number of vertices, hence
a tree. The original component was thus a tree of (a) and (b) edges with a single (c) edge.
Finally, if the component contains an odd circuit, then for the edges to be independent it

cannot have any (c) edges by the previous paragraph. Again the vertices are in ∆ and so for
independence the numbers of edges and vertices must be the same. Removing an edge from
the circuit must give a tree as in the previous paragraph. In particular, the circuit is unique.
We finish with the minimally dependent sets. A branch vertex of a tree of (a) and (b) edges

is a vertex incident with at least three edges. A line is a tree of (a) and (b) edges containing at
least one edge and no branch vertices. It contains exactly two vertices (its ends) incident with
a single edge.

Proposition 1.7. A set S of atoms in H(Bn) is minimally dependent precisely when ΓS

has one of the forms:
(i) an even circuit;
(ii) an odd circuit with a single (c) edge, or two odd circuits intersecting only in a single

vertex;
(iii) a line, each end of which is incident with either a (c) edge or an odd circuit intersecting

the line only in this end vertex.

The proof splits into various cases depending on the number of type (c) edges in ΓS . For the
details we refer the reader to [6, Proposition 6].

Example 6 (H(Dn)). This is very similar to the previous example, so we will be briefer. Let
V be as before and A the hyperplanes with equations xi ± xj = 0 for all i 6= j; equivalently,
if Φ is the type Dn root system of Table 1 then A consists of the hyperplanes (vi ± vj)

⊥,
with W (Φ) acting on V by even signed permutations of the vi (see also the end of §5.2).
In particular we have a sub-arrangement of H(Bn). If T

◦ ⊂ T consists of those (∆,Λ) with
|∆| 6= 1 then the isomorphism H(Bn) → T restricts to an isomorphism H(Dn) → T

◦. We have
the same expression (1.4) for rk(∆,Λ) and the same conditions for a v to lie in X(∆,Λ) as in
the previous example.
If S is set of atoms in H(Dn), let ΓS be the graph with vertex set {1, . . . , n} and edges of

types (a) and (b) above. The arguments from here on are what you get if you drop the (c) type
edges from all the arguments in the previous example. Thus, the vertices of a component of ΓS
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(A1) = =

Figure 3. Relations for the intersection lattice H(An).

lie in ∆ exactly when the component contains an odd circuit. It follows that S is independent
when each component of ΓS is either a tree of (a) and (b) type edges or contains a unique
odd circuit, removing one (hence any) edge of which gives a tree. The equivalent version of
Proposition 1.7 gives S minimally dependent when ΓS is one of the forms: (i). an even circuit;
(ii). two odd circuits intersecting only in a single vertex; or (iii). a line, each end of which is
incident with an odd circuit intersecting ΓS only in this end vertex.

We are now ready to give our presentations for the three classical reflection arrangements. In
each case we have replaced the (Idem3a) family of relations given in Theorem 1.6 by a smaller
set.

The intersection lattice H(An−1) or partition lattice Π(n): has generators

i j
(1 ≤ i 6= j ≤ n)

and relations (A0): the generators are commuting idempotents, and the relation (A1) of Figure
3, which holds for all triples {i, j, k}. See also [8, Theorem 2]. As the generators commute the
relations in Figure 3 can be interpreted unambiguously and can be applied to a graph fragment
while leaving the rest untouched. Observe that multiplying together any two of the graphs in
Figure 3 gives an (Idem3b) relation of the form: “a triangle equals a triangle minus an edge”.
To see the presentation, the (Idem3a) relations for H(An−1) are of the form ΓS = ΓS \ {e}

where ΓS is a circuit and e some edge of it. Given such a circuit, repeated applications of the
relations (A1), as in say,

= = =
e

ΓS = = ΓS \ {e}

move e anticlockwise around the circuit until we have a triangle, from which the edge can then
be removed. Thus the (Idem3a) relations follow from the relations (A0)-(A1).

The intersection lattice H(Bn): has generators

i j i j
(1 ≤ i 6= j ≤ n)

i
(1 ≤ i ≤ n)

and relations (B0): the generators are commuting idempotents and the (B1)-(B4) of Figure
4. The relations (B1), (B2) and (B4) hold for all triples {i, j, k} and (B3) holds for all pairs
{i, j}.
That these relations hold in H(Bn) follows by checking that the corresponding subspaces

are the same, i.e. if ΓS ,ΓS′ are two graphs differing only by applying one of these relations to
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= = (B1) = =(B2)

= = (B3) =(B4)

Figure 4. Relations for the intersection lattice H(Bn).

some fragment, then
∨
S =

∨
S′ in the intersection lattice. For example, let the vertices in the

relations (B4) be labelled anti-clockwise as i, j and k. If v =
∑

tivi ∈
∨
S (the left hand side)

then we have ti = tj = tk and ti = −tk, hence ti = tj = tk = 0; similarly for v ∈
∨
S′. As all

the other t’s are the same we get our equality.
The presentation follows by showing that if ΓS is one of the graphs in Proposition 1.7, and e

is some edge of it, then the (Idem3b) relation ΓS = ΓS \ {e} follows from (B0)-(B4). We start
with a series of relations that can be deduced from (B0)-(B4):
(i). If Γ is a circuit of type (a) edges, then Γ = Γ \ {e} for any edge e.
(ii). If Γ is a circuit of type (a) and (b) edges then it can be replaced by a circuit composed

entirely of (b) edges, as for example in:

=Γ = = Γ′

(iii). A fragment of 2m consecutive (b) edges can, by the relations (B2), be replaced by a
connected fragment containing m consecutive (a) edges:

Γ = = Γ′=

(iv). A fragment of consecutive (a) edges can be augmented:

Γ = = Γ′=

(v). Let Γ be connected containing a (c) edge, and Γ′ on the same vertices, each incident with
a (c) edge, and having no other edges. Then, using the relations (B3), Γ = Γ′.

(vi). Let Γ contain an odd circuit and Γ′ a graph on the same vertex set as Γ, each of which
is incident with a (c) edge, and having no other edges. Then Γ = Γ′.

Now let ΓS be a graph of the form given in part 3 of Proposition 1.7 and e ∈ ΓS some edge.
Then every component of both Γ and ΓS \ {e} contains an odd circuit and/or a (c) edge, hence
by (v)-(vi) there is a Γ′ such that Γ = Γ′ = Γ \ {e} can be deduced from (B1)-(B4). Similarly
for ΓS of the form given in part 2 of Proposition 1.7.
Finally, let ΓS be an even circuit as in part 1 of Proposition 1.7 and e a type (b) edge in

this circuit (if no such e exists then we are done by (i)). Applying (ii) gives the fragment below
left, and this equals the fragment at the right by (iii):

e
e′

=
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= (D1) =(D2)

= = (D3)

Figure 5. Relations for the intersection lattice H(Dn): relations (B1) and (B2) from Figure 4
together with relations (D1)-(D3) above.

Applying (i), we can remove the edge e′ and then run the process backwards to get ΓS \ {e}.
If instead e is a type (a) edge then the argument is similar.

The intersection lattice H(Dn): has generators

i j i j
(1 ≤ i 6= j ≤ n)

and relations (D0): the generators are commuting idempotents, (B1) and (B2) of Figure 4,
and (D1)-(D3) of Figure 5. The relations (D1) and (D3) in Figure 5 hold for all triples {i, j, k}
and the relations (D2) for all 4-tuples {i, j, k, ℓ}.
The proof of the presentation is very similar to the H(Bn) case. See [6] for more details.

2. A presentation for reflection monoids

We now return to the specifics of reflection monoids and give a presentation (Theorem 2.1
below) for those reflection monoids M(W, S) where W ⊂ GL(V ) is a finite reflection group and
S a graded atomic system of subspaces of V for W . We also give the analogous presentation
when S is a system of subsets of some set E. The main technical tool is the presentation for
factorizable inverse monoids found in [4].
Let V be a finite dimensional real vector space and W ⊂ GL(V ) a finite real reflection group

with generating reflections S and full set of reflections T = W−1SW . Let A = {Ht ⊂ V | t ∈ T }
be the reflecting hyperplanes of W . Suppose also that:
(P1). S is a finite system of subspaces in V for W , and that via X ≤ Y if and only if X ⊇ Y ,

the system is a graded (by rkX = codimX := dim V − dimX) atomic ∨-semilattice with
atoms A. We have rkS = dim V − dim

∨
S
X . The W -action preserves the grading, and

in particular we have AW = A. If a1, . . . , ak are distinct atoms let Ok be a set of orbit
representatives for the W -action {a1, . . . , ak}

w
7→ {a1w, . . . , akw}.

(P2). We use the Greek equivalents of Roman letters to indicate a fixed word for an
element in terms of generators. In particular, the reflection group W has presentation
with generators the s ∈ S and relations (st)mst = 1 for s, t ∈ S, where mst = mts ∈
Z≥1 ∪ {∞} with mst = 1 if and only if s = t. For each w ∈ W we fix a word ω for
w in the reflections s ∈ S (subject to σ = s).

(P3). Now for the action of W on S: For each a ∈ A fix a representative atom a′ ∈ O1 and a
w ∈ W with a = a′w subject to w = 1 if a ∈ O1. Now define the word α to be ω−1a′ω.
If w is an arbitrary element of W and a ∈ A then by αω we mean the word obtained
in this way for aw ∈ A. Note that this is not necessarily ω−1aω. For e ∈ S, fix a join
e =

∨
ai (ai ∈ A) and define ε :=

∏
αi.
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(P4). Let {Hs1 , . . . , Hsℓ} be representatives for the W -action on A with the si ∈ S. For
example, drop the even labeled edges in the Coxeter symbol for W and choose one s
from each component of the resulting graph. For each i = 1 . . . , ℓ consider the set of
X ∈ S with the property that Hsi ⊇ X . If this set is non-empty them form the pairs
(e, si) for each e ∈ S minimal in this set. Let Iso be the set of all such pairs.

With the notation established we have:

Theorem 2.1. Let W ⊂ GL(V ) be a finite real reflection group and S a graded atomic
system of subspaces for W . Then the reflection monoid M(W, S) has a presentation with

generators: s ∈ S, a ∈ O1.

relations: (st)mst = 1, (s, t ∈ S), (Units)

a2 = a, (a ∈ O1), (Idem1)

α1α2 = α2α1, ({a1, a2} ∈ O2), (Idem2)

α1 . . . αk−1 = α1 . . . αk−1α, ({a1, . . . , ak−1, a} ∈ Ok)

with a1, . . . , ak−1 , (3 ≤ k ≤ rkS) independent and a ≤
∨

ai, (Idem3)

sα = αss, (s ∈ S, a ∈ A), (RefIdem)

εs = ε, (e, s) ∈ Iso. (Iso)

To prove Theorem 2.1 we start with a presentation for an arbitrary factorizable inverse
monoid [4, Theorem 6], interpret the various ingredients in the setting of a reflection monoid,
and then remove relations and generators.
Suppose then that M is a factorizable inverse monoid with units W = W (M) and idem-

potents E = E(M). Let 〈S |RW 〉 and 〈A |RE 〉 be monoid presentations for W and E. For
w ∈ W , fix a word ω for w in the s ∈ S and similarly for e ∈ E fix a word ε in the a ∈ A,
with the usual conventions applying when w ∈ S and e ∈ A. For w ∈ W and e ∈ E we have
w−1ew ∈ E, and by εω we mean the chosen word for w−1ew in the a ∈ A (it turns out that we
will only have need for the notation εω in the case that w ∈ S and e ∈ A). For each e ∈ E let
We = {w ∈ W | ew = e} be the idempotent stabilizer, and Se ⊆ We a set of monoid generators
for We.

Theorem 2.2 ([4]). The factorizable inverse monoid M has a presentation with,

generators: s ∈ S, a ∈ A,

relations: RW , RE ,

sa = ass, (s ∈ S, a ∈ A),

εω = ε, (e ∈ E,w ∈ Se).

This theorem will give presentations for arbitrary reflection monoids. Here, W is a reflection
group, and in the real case we take the standard Coxeter presentation for W . If moreover W
is finite, then by Steinberg’s theorem the We are parabolic subgroups of W , so Se consists of
reflections. Although the presentation thus obtained looks much the same as that in Theorem
2.2, it is, in fact, more precise and economical. However, under the assumptions (P1)-(P4)
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we can be much more explicit and as all the natural examples satisfy these conditions, we
concentrate on this case.
We now interpret the various ingredients in the presentation. The s of Theorem 2.2 are the

generating reflections s of the reflection groupW . Identifying X ∈ S with the partial identity on
X , the A of Theorem 2.2 are the atomic subspaces A of the system S. If s ∈ S and a ∈ A then
as ∈ A, so that αs is just another one of the symbols in A, and we write as for this symbol. If
X ∈ S thenWX is the isotropy groupWX = {w ∈ W | yw = y for all y ∈ X}, a group generated
by reflections, and so we can take SX to consist of those t ∈ T with Ht ⊇ X .
As an intermediate step we thus have the presentation for M(W, S) with

generators: s ∈ S, a ∈ A,

relations: (st)mst = 1 (s, t ∈ S), (a)

a2 = a (a ∈ A), (b)

a1a2 = a2a1 (a1, a2 ∈ A), (c) (∗)

a1 . . . ak−1 = a1 . . . ak−1a (ai, a ∈ A) (d)

for a1, . . . , ak−1 , (3 ≤ k ≤ rkS) independent and a ≤
∨

ai.

sa = ass (s ∈ S, a ∈ A), (e)

ετ = ε, (e ∈ S, t ∈ Se). (f)

Deducing Theorem 2.1 is now a matter of thinning out relations and generators from (∗),
using the W -action on S.

Lemma 2.3. Let w ∈ W and for j = 1, . . . , k let aj ∈ A and a′j = aj · w. Let Wi(x1, . . . , xk)
for i = 1, 2 be words in the free monoid on the xi. Then the relation W1(a1, . . . , ak) =
W2(a1, . . . , ak) and the relations (e) imply the relation W1(a

′
1, . . . , a

′
k) = W2(a

′
1, . . . , a

′
k).

Proof. If s ∈ S, a ∈ A and as = a′ ∈ A, then relations (e) of (∗) give a relation sa = a′s,
hence a′ = sas. By induction, if a′ = aw for some w ∈ W we have the relation a′ = ω−1aω.
Thus, for all j we have a′j = ω−1ajω so that Wi(a

′
1, . . . , a

′
k) = Wi(ω

−1a1ω, . . . , ω
−1akω) =

ω−1Wi(a1, . . . , ak)ω, and the result follows.

Lemma 2.4. Let e ∈ S and t ∈ T be such that Ht ⊇ e. Then there is an (e′, s) ∈ Iso and
w ∈ W with t = w−1sw and e′w ⊇ e and the relation ετ = ε of (∗) implied by the (Iso) relation
ε′σ = ε′ and the relations (a)-(e).

Proof. There is an element s with Hsw = Ht. Thus Hs ⊇ ew−1 and there is an element e′

with Hs ⊇ e′ ⊇ ew−1 and (e′, s) ∈ Iso. This pair satisfies the requirements of the Lemma and
moreover, e = e · e′w in (the monoid) S, so that the relations (a)-(e) of (∗) give ε = εω−1ε′ω
and τ = ω−1sω. Thus

ετ = εω−1ε′ωω−1sω = εω−1ε′sω = εω−1ε′ω = ε.

Proof of Theorem 2.1. Lemma 2.4 allows us to thin out family (f) in (∗) to give the (Iso)
relations of Theorem 2.1. Lemma 2.3 allows us to thin out the families (b)-(d) in (∗) to involve
just the orbit representatives as in Theorem 2.1. The (Units) relations we leave untouched.
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Finally a generator a ∈ A can be expressed as α = ω−1a0ω for some a0 ∈ O1, and this allows
us to thin these generators, replacing each occurrence of a in the (RefIdem) relations by α.

Remarks. There are a number of variations on Theorem 2.1:

(i) There is a completely analogous presentation when M(W, S) is a monoid of partial
permutations. Let E be a set, W = (W,S) a (not necessarily finite) Coxeter system
acting faithfully on E and S a graded atomic system of subsets of E for W . For t ∈ T =
W−1SW let Ht ⊆ E be the set of fixed points of t and A = {Ht | t ∈ T }. Notice that
Ht · w = Hw−1tw so there is an induced W -action on A . There is one condition that we
must impose: for any e ∈ S the isotropy group We is generated by reflections; indeed,
by the t ∈ T with Ht ⊇ e. Adapting (P1)-(P4), the presentation of Theorem 2.1 now
goes straight through for M(W, S).

(ii) If S is a geometric lattice, then the (Idem3) relations of Theorem 2.1 can be replaced
by

α̂1 . . . αk = · · · = α1 . . . α̂k, (a1, . . . , ak ∈ Ok)

with a1, . . . , ak minimally dependent and 3 ≤ k ≤ rkS.
(iii) The sets Ok of (P1) can sometimes be hard to describe; their definitions can be varied

in two ways–either by changing the group or the set on which it acts (or both, as in
§5.2). This has the effect of introducing more relations. If W ′ is a subgroup of W we
can replace Ok by O′

k, a set of orbit representatives for the W -action restricted to W ′.
On the other hand, it may be more convenient to describe orbit representatives for the
W -action (a1, . . . , ak)

w
7→ (a1 · w, . . . , ak · w) on ordered k-tuples of distinct atoms. The

commuting of the idempotents then allows us to return to sets {a1, . . . , ak}.

3. Boolean reflection monoids

In [7, §5] we introduced the Boolean reflection monoids, formed from a Weyl group W (Φ)
for Φ = An−1, Bn or Dn, and the Boolean system B. In this section we find the presentations
given by Theorem 2.1. In particular, we recover Popova’s presentation [22] for the symmetric
inverse monoid by interpreting it as the Boolean reflection monoid of type A.
Recall from [7, §5] that V is a Euclidean space with basis {v1, . . . , vn} and inner product

(vi, vj) = δij , with Φ ⊂ V a root system from Table 1 and W (Φ) ⊂ GL(V ) the associated
reflection group. The Coxeter generators for W (Φ) are given in the third column of Table 1:
let si (1 ≤ i ≤ n− 1) be the reflection in the hyperplane orthogonal to vi+1 − vi, with s0 the
reflection in v1 (type B) or in v1 + v2 (type D).
For J ⊆ X = {1, . . . , n} let

X(J) =
⊕

j∈J

Rvj ⊆ V,

and B = {X(J) | J ⊆ X} with X(∅) = 0. Then by [7, §5], B is a system in V for W (Φ)–the
Boolean system–and M(Φ,B) := M(W (Φ),B) is the Boolean reflection monoid of type Φ.
We’ve obviously seen the poset (B,⊇) before: it is isomorphic to the Boolean lattice BX

of §1.1, with atoms A the ai := X(1, . . . , î, . . . , n) = v⊥i . For k ≤ n the W (Φ)-action on A is
k-fold transitive, so the Ok each contain a single element. We choose O1 = {a1} and O2 the
pair {a1, a2}. Rather than a1 we will write a ∈ O1 for our single idempotent generator. If i > 1
then let w be the reflection sv1−vi so that ai = aw; let ω := s1 . . . si−1 so that

αi := (si−1 . . . s1)a(s1 . . . si−1) (3.1)

Any e ∈ B can be written uniquely as e = ai1 ∨ · · · ∨ aik for i1 < · · · < ik; write ε := αi1 . . . αik .
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The result is that the Boolean reflection monoids have generators the si and a single
idempotent a, with the (Idem1) relations a2 = a, and the (Idem2) relations aα2 = α2a, or
as1as1 = s1as1a.
We saw at the end of §1.1 that any set of atoms in B is independent, so the (Idem3)

relations are vacuous. Note also the “thinning” effect of the W (Φ)-action: the n generators and
n+ 1

2n(n− 1) relations of §1.1 have been reduced to just one generator and two relations.
Now to the (Iso) relations. Dropping the even labeled edges from the symbols in Table 1 and

choosing an s ∈ S from each resulting component gives representatives Hs1 in types A and D
and Hs0 , Hs1 in type B. If X(J) ∈ B is to be minimal with Hs1 ⊇ X(J) then J is minimal
with 1, 2 6∈ J , i.e. J = {3, . . . , n} and X(J) = a1 ∨ a2 (compare this with the calculation at the
end of Example 7 in §5.2). Similarly with Hs0 we have X(J) = a1, and so

Φ Iso

An−1 (a1 ∨ a2, s1)
Bn (a1 ∨ a2, s1), (a1, s0)
Dn (a1 ∨ a2, s1)

The (Iso) relations are thus as1a = as1as1 in all cases, together with as0 = a in type B.
This completes the presentation given by Theorem 2.1 for the Boolean reflection monoids.

But it turns out that the (RefIdem) relations can be significantly reduced in number. For all
three Φ we have (Units) relations (sisi+1)

3 = 1 for 1 ≤ i ≤ n− 2, which we use in their “braid”
form, si+1sisi+1 = sisi+1si. Then:

Lemma 3.1. The relations siαj = αsi
j si for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n are implied by the

(Units) relations and the relations sia = αsisi for 1 ≤ i ≤ n− 1, ie.: the relations sia = asi,
(i 6= 1).

Proof. We have

ajsi =





aj−1, i = j − 1,
aj+1, i = j,
aj , i 6= j − 1, j,

hence αsi
j is one of the words αj−1 (i = j − 1) or αj+1 (i = j) or αj (otherwise) chosen in (3.1).

There are then four cases to consider: (i). 1 ≤ i < j − 1:

siαj = si(sj−1 . . . s1)a(s1 . . . sj−1) = (sj−1 . . . sisi+1si . . . s1)a(s1 . . . sj−1)

= (sj−1 . . . si+1sisi+1 . . . s1)a(s1 . . . sj−1) = (sj−1 . . . s1)si+1a(s1 . . . sj−1)

= (sj−1 . . . s1)asi+1(s1 . . . sj−1) = (sj−1 . . . s1)a(s1 . . . si+1sisi+1 . . . sj−1)

= (sj−1 . . . s1)a(s1 . . . sisi+1si . . . sj−1) = (sj−1 . . . s1)a(s1 . . . sj−1)si

= αjsi,

where we have used the braid relations and the commuting of si+1 and a. (ii). Suppose that
j < i ≤ n− 1: si commutes with s1, . . . , sj−1 and a, giving the result immediately. (iii). i =
j − 1: sj−1αj = sj−1(sj−1 . . . s1)a(s1 . . . sj−1) = (sj−2 . . . s1)a(s1 . . . sj−1)sj−1sj−1 = αj−1sj−1

(iv). i = j: sjαj = sj(sj−1 . . . s1)a(s1 . . . sj−1) = (sj . . . s1)a(s1 . . . sj−1)sjsj = αj+1sj .

Putting it all together in the type A case we get the following presentation:
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The Boolean reflection monoid of type A:

s1 s2 sn−2 sn−1

M(An−1,B) = 〈s1, . . . , sn−1, a | (sisj)
mij = 1, a2 = a,

sia = asi (i 6= 1),

as1a = as1as1 = s1as1a〉

Recall that the mij can be read off the Coxeter symbol, with the nodes joined by an edge
labelled mij if mij ≥ 4, an unlabelled edge if mij = 3, no edge if mij = 2 (and mij = 1 when
i = j). The relation sia = αsisi is vacuous when i = 1.

Remark. We saw in [7, §3.1] that M(An−1,B) is isomorphic to the symmetric inverse
monoid In – we thus recover Popova’s presentation [22] for the symmetric inverse monoid.

Now to the type B Boolean reflection monoids, where the relations s0αj = αs0
j s0, (1 ≤ j ≤ n)

are implied by the (Units) relations and the relation s0α2 = α2s0, i.e. s0s1as1 = s1as1s0.

The Boolean reflection monoid of type B:

s0 s1 sn−2 sn−1

4

M(Bn,B) = 〈s0, . . . , sn−1, a | (sisj)
mij = 1, a2 = a,

sia = asi (i 6= 1), as0 = a,

s0s1as1 = s1as1s0,

as1as1 = s1as1a = as1a〉.

Remark. We saw in [7, §5] that just as the Weyl group W (Bn) is isomorphic to the group
S±n of signed permutations of X = {1, 2, . . . , n} (see also §5.2), so the Boolean reflection
monoid M(Bn,B) turns out to be isomorphic to the monoid of partial signed permutations
I±n := {π ∈ IX∪−X | (−x)π = −(xπ) and x ∈ domπ ⇔ −x ∈ domπ}. See also [30].

And so finally to the type D Boolean reflection monoids, where the relations s0αj = αs0
j s0

for 1 ≤ j ≤ n are implied by s0a = α2s0, s0α3 = α3s0 and the relations for W .

The Boolean reflection monoid of type D:

s0

s1

s2 sn−2 sn−1

M(Dn,B) = 〈s0, . . . , sn−1, a | (sisj)
mij = 1, a2 = a,

sia = asi (i > 1), s0a = s1as1s0,

as1a = as1as1 = s1as1a,

s0s2s1as1s2 = s2s1as1s2s0〉.

4. Coxeter arrangement monoids

We repeat §3 for the Coxeter arrangement monoids [7, §6]. Let W = W (Φ) ⊂ GL(V ) be a
reflection group with reflecting hyperplanes A = {v⊥ | v ∈ Φ} and H = H(Φ) the intersection
lattice of §§1.3-1.4: this is a system for W in V –the Coxeter arrangement system. We write
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M(Φ,H) for the resulting Coxeter arrangement monoid of type Φ. We use the notation for the
Coxeter generators from §3.
The atoms A for the system and the hyperplanes A coincide now. Drop even labeled edges

from the symbols in Table 1 to get O1 = {a} in types A and D, or {a1, a2} in type B, where

a = a1 := (v2 − v1)
⊥ and a2 := v⊥1 ;

giving generators the si of §3 and a for types A and D, or the si and a1, a2 for type B.
The (Iso) relations are particularly simple when the system and the intersection lattice are

the same: the (e, s) ∈ Iso consist of the representative a = Hs and the s above. Thus, the
relations are as1 = a for types A and D, or a1s1 = a1 and a2s0 = a2 in type B.
We deal with the remaining relations on a case by case basis.

4.1. The Coxeter arrangement monoids of type A

We have A = {aij := (vi − vj)
⊥ | 1 ≤ i < j ≤ n}, and write

αij :=

{
(si−1 . . . s1)(sj−1 . . . s2)a(s2 . . . sj−1)(s1 . . . si−1), for 2 ≤ i < j ≤ n,
(sj−1 . . . s2)a(s2 . . . sj−1) for i = 1 and 2 ≤ j ≤ n,

(4.1)

with α12 := a1.
The isomorphism H(An−1) → Π(n) of §1.4 and the isomorphism W (An−1) → Sn (written

as g(π) 7→ π) gives the W (An−1)-action on H(An−1) as X(Λ)g(π) = X(Λπ), where Λπ =
{Λ1π, . . . ,Λpπ}. Thus, as Sn acts 4-fold transitively on {1, . . . , n}, we take O2 to be {a12, a34}
and {a12, a23} when n ≥ 4, giving (Idem2) relations aα34 = α34a and aα23 = α23a. When n = 2
there is only one idempotent (hence no (Idem2) relations) and when n = 3 we take O2 to be
{a12, a23}.
We have the presentation for H(An−1) of §1.4. Lemma 2.3 and the triple transitivity of Sn

on {1, . . . , n} reduce the (A1) relations to:

1 3

2

=

1 3

2

=

1 3

2

that is, aα13 = aα23 = α13α23.
As with the Boolean monoids, the (RefIdem) relations can be reduced in number. The

relations siαjk = αsi
jksi for 1 ≤ j < k ≤ n and 1 ≤ i ≤ n− 1 are implied by the the (Units)

relations and the relations sia = αsi
12si for 1 ≤ i ≤ n− 1, i.e. the relations sia = asi, (i 6= 2).

The proof, which is a similar but more elaborate version of that for Lemma 3.1, is left to the
reader. Finally, the relation aα23 = α23a simplifies to aα13 = α13a and this allows us to show
that the final (A1) relation aα13 = aα23 = α13α23 is redundant. Putting it all together we get:

The Coxeter arrangement monoid of type An−1:

s1 s2 sn−2 sn−1

M(An−1,H) = 〈s1, . . . , sn−1, a | (sisj)
mij = 1, a2 = a, as1 = a,

sia = asi (i 6= 2), aα13 = α13a,

aα34 = α34a〉.

for n ≥ 4 and where αij is given by (4.1). We leave the reader to make the necessary adjustments
in the n = 2, 3 cases. We saw in [7, §2.2] that the type A Coxeter arrangement monoid is
isomorphic to the monoid of uniform block permutations. See also [8].
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4.2. The Coxeter arrangement monoids of type B

As in §4.1 we work with n ≥ 4 and leave the simpler cases n = 2, 3 to the reader. We have
A the aij from §4.1 together with

{dij := (vi + vj)
⊥ | 1 ≤ i < j ≤ n} and {ei := v⊥i | 1 ≤ i ≤ n}.

Let αij be the expression defined in (4.1), except with a1 instead of a, and

δij =

{
(si−1 . . . s1)(sj−1 . . . s2)s0a1s0(s2 . . . sj−1)(s1 . . . si−1), 2 ≤ i < j ≤ n,
(sj−1 . . . s2)s0a1s0(s2 . . . sj−1), i = 1 and 2 < j ≤ n,

(4.2)

with δ12 := s0a1s0; and

εi := (si−1 . . . s1)a2(s1 . . . si−1). (4.3)

for i > 1 with ε1 := a2. One can build a combinatorial model for the action of
W (Bn) on H(Bn) much as in §4.1: the isomorphism H(Bn) → T of §1.4 and the well
known isomorphism W (Bn) → Sn ⋉ 2n (see [7, §6.2] for notation) give the W (Bn)-
action on H(Bn) as X(∆,Λ)g(π, T ) = X(∆π,ΛTπ). One deduces from this that O2 =
{{a1, a34}, {a1, a23}, {a1, d12}, {a2, a23}, {a1, a2} {a2, e2}}, and hence that (Idem2) relations
are

a1α34 = α34a1, a1α23 = α23a1, a1δ12 = δ12a1, a2α23 = α23a2, a1a2 = a2a1 and a2ε2 = ε2a2.

We have the presentation for H(Bn) of §1.4, hence the relations a1α13 = a1α23 = α13α23 of
§4.1; the family (B2) reduces to:

1 3

2

=

1 3

2

=

1 3

2

that is, a1δ13 = δ13δ23 = a1δ23; families (B3) and (B4) become,

1 2

=

1 2

=

1 2

1 3

2

= 1 3

2

or a1a2 = ε2a2 = δ12a2 and a1α23δ13 = a2ε2ε3. The (RefIdem) relations can be deduced
from the (Units) relations and the relations sia1 = a1si (i 6= 0, 2), sia2 = a2si (i 6= 1), s0α2j =
α2js0 (j > 2), s0δ2j = δ2js0 (j > 2), s1δ12 = δ12s1 and s0ε2 = ε2s0. Finally, as in the type A
case, the single (A1) relation is redundant; moreover, the a1a2 = ε2a2 = δ12a2 can be reduced
to a1a2 = ε2a2.

The Coxeter arrangement monoid of type Bn:

s0 s1 sn−2 sn−1

4

M(Bn,H) = 〈s0, . . . , sn−1, a1, a2 | (sisj)
mij = 1, a2j = aj , a1s1 = a1, a2s0 = a2,

sia1 = a1si (i 6= 0, 2), sia2 = a2si (i 6= 1),

s0α2j = α2js0, (j > 2), s0δ2j = δ2js0, (j > 2),

s1δ12 = δ12s1, s0ε2 = ε2s0, ajα23 = α23aj,

a1a2 = a2a1 = a2ε2 = ε2a2, a1δ12 = δ12a1,

a1α34 = α34a1, a1δ13 = δ13δ23 = a1δ23,

a1α23δ13 = a2ε2ε3〉.

where αij , δij and εi are given by (4.1)-(4.3).



Page 24 of 38 BRENT EVERITT AND JOHN FOUNTAIN

Remark. Just as the type A Coxeter arrangement monoid is isomorphic to the monoid of
uniform block permutations, so the type B reflection monoid is isomorphic to the monoid of
“uniform block signed permutations”. See [7, §6.2] for details.

4.3. The Coxeter arrangement monoids of type D

The A are the aij and dij of §4.2; let αij be defined as in (4.1) and

δij =

{
(si−1 . . . s1)(sj−1 . . . s2)g

−1ag(s2 . . . sj−1)(s1 . . . si−1), 2 ≤ i < j ≤ n,
(sj−1 . . . s2)g

−1ag(s2 . . . sj−2), i = 1 and 2 < j ≤ n,
(4.4)

with g = s2s1s0s2 and δ12 := g−1ag.
There is also a combinatorial model for the action of W (Dn) on H(Dn). We refer the reader

to [7, §6.2] or [20, §6.4] for details, noting that O2 = {{a, a34}, {a, a23}, {a, d12}} when n > 4,
while for n = 4 we have {a, d34} as well. The (Idem2) relations are thus

aα34 = α34a, aα23 = α23a, aδ12 = δ12a,

together with aδ34 = δ34 when n = 4.
The presentation for H(Dn) of §1.4 together with Lemma 2.3 give the relations aα13 =

aα23 = α13α23 and aδ13 = δ13δ23 = aδ23 of §4.2, as well as

aα23δ23 = aδ12δ23 = aα23δ12δ23,

aα23δ13 = aα13α23δ13 and

aα23α34δ12δ23δ34 = aα34δ12δ34.

The (RefIdem) relations can be deduced from the relations sia = asi (i 6= 2), s0α3k =
α3ks0 (k > 3), s0δ3k = δ3ks0 (k > 3) and s3δ12 = δ12s3. Finally, we have the running redun-
dancies of the previous two cases together with aα23δ13 = aα13α23δ13 also redundant. All of
which leads us to:

The arrangement monoid of type Dn (n > 4):

s0

s1

s2 sn−2 sn−1

M(Dn,H) = 〈s0, . . . , sn−1, a | (sisj)
mij = 1, a2 = a, as1 = a, sia = asi (i 6= 2),

s0α3j = α3js0, s0δ3j = δ3js0, (both j > 3),

s3δ12 = δ12s3, aα34 = α34a, aδ12 = δ12a,

aα13 = α13a, aδ13 = δ13δ23 = aδ23,

aα23δ23 = aδ12δ23 = aα23δ12δ23,

aα23α34δ12δ23δ34 = aα34δ12δ34〉.

together with aδ34 = δ34a when n = 4, and where αij and δij are given by (4.1) and (4.4).

5. Renner monoids

5.1. Generalities

The principal objects of study in this section are algebraic monoids: affine algebraic varieties
that carry the structure of a monoid. The theory builds on that of linear algebraic groups, and
there are many parallels between the two. Standard references for both the groups and the
monoids are [2, 14, 15, 23, 24]. The beginner should start with the survey [26].
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Much of the structure of an algebraic group is encoded by the Weyl group W . The analogous
role is played for algebraic monoids by the Renner monoid R. It turns out that the Renner
monoid can be realized as a monoid M(W, S) of partial permutations. Moreover, the system S

is isomorphic (as a ∨-semilattice with 0) to the face lattice F (P ) of a convex polytope P . We
use these facts to obtain presentations for Renner monoids. Very different presentations have
been found by Godelle [11, 10] using a completely different approach.
We start by establishing notation from algebraic groups and monoids. Let k = k be an

algebraically closed field and M an irreducible algebraic monoid over k. We will assume
throughout that M has a 0. Let G be the group of units, and assume that G is a reductive
algebraic group. In particular, M is reductive.
All the examples in this paper will arise via the following construction. Let G0 be a

connected semisimple algebraic group and ρ : G0 → GL(V ) a rational representation with finite
kernel. Let M = M(G0, ρ) := k×ρ(G0), where k

× = k \ {0}. Then M is a reductive irreducible
algebraic monoid with 0 and units G := k×ρ(G0)–see [26, §2]. If G0 ⊂ GLn is a classical
algebraic group and ρ : G0 →֒ GLn is the natural representation then we call the resulting
M a classical algebraic monoid. Thus, if G0 = SLn,SOn and Spn, we have the general linear
monoid Mn = k×SLn (all n× n matrices over k), the orthogonal monoids MSOn = k×SOn

and the symplectic monoids MSpn = k×Spn.
Returning to generalities, let T ⊂ G be a maximal torus and T ⊂ M its (Zariski) closure.

Let X(T ) = Hom(T, k×) be the character group and X := X(T )⊗ R. Then X(T ) is a free Z-
module with rank equal to dim T . In the construction above, if T0 ⊂ G0 is a maximal torus
then T = k×ρ(T0) ⊂ G is a maximal torus with dimT = dimT0 + 1. If v ∈ X(T0) then the
map given by tρ(t′) 7→ v(t′), (t ∈ k×, t′ ∈ T ) is a character in X(T ), and so we can identify
X(T0) with a submodule of X(T ) with rkZX(T ) = rkZX(T0) + 1. If X0 = X(T0)⊗ R ⊂ X then
dimX = dimX0 + 1.
Let Φ = Φ(G, T ) ⊂ X(T ) be the root system determined by T . If Φ(G0, T0) is the system for

(G0, T0) above, then by [26, §2] or [27, Chapter 7] the character tρ(t′) 7→ v(t′), (t ∈ k×, t′ ∈ T )
is a root in Φ(G, T ). Thus we can identify Φ(G0, T0) with a subset of Φ(G, T ) where |Φ(G, T )| =
dimG− dimT = (dimG0 + 1)− (dimT0 + 1) = |Φ(G0, T0)|. In particular, we can identify the
root systems of G0 and G. The root systems for the examples considered in this section are
given in Table 2.
If v ∈ Φ let sv be the reflection of X in v and W (Φ) = 〈sv | v ∈ Φ〉 the resulting reflection

group. Let ∆ ⊂ Φ be a simple system (determined by the choice of a Borel subgroup T ⊂ B)
so that W (Φ) is a Coxeter system (W,S) with S the set of reflections sv in the simple roots
v ∈ ∆. Let W (G, T ) = N(T )/T be the Weyl group. If w ∈ W and w ∈ G with w = wT then
we will abuse notation throughout and write w−1tw rather than w−1tw. In particular, W acts
faithfully on X via vw(t) = v(w−1tw), realizing an injection W →֒ GL(X) and an isomorphism
W (G, T ) ∼= W (Φ). We will identify these two groups in what follows and just write W for both.
If G = k×ρ(G0) we identify the Weyl groups W (G0, T0) and W (G, T ) via the identifications of
their root systems.
We will also need the duals of these notions: let X

∨(T ) = Hom(k×, T ) be the cocharacter
group of T (i.e. 1-parameter subgroups of T ). The Weyl group acts on X

∨(T ) via λ 7→ λw where
(λw)(t) = w−1λ(t)w for t ∈ k×. If 〈·, ·〉 : X(T )× X

∨(T ) → Z is the natural pairing, let Φ∨ =
{v∨ ∈ X

∨(T ) | v ∈ Φ and 〈v, v∨〉 = 2} be the coroots and ∆∨ = {v∨}v∈∆ the simple coroots.
The idempotents E(T ) in T are a finite commutative monoid, and we adopt the partial

order of §1.1. The resulting poset is a graded atomic lattice with rk(e) = dimT − dimTe and
atoms A = {e ∈ E(T ) | dim Te = dimT − 1}. The Weyl group W acts faithfully on E(T ) via
e 7→ w−1ew, giving an injection W →֒ SE(T ). This action preserves the partial order and the
grading, so in particular restricts to the atoms A.
It turns out that there is a convex polytope P (see §1.2) with face lattice F (P ) isomorphic

to the lattice E. We describe, following [26, §5], how this polytope comes about in the situation
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that M = k×ρ(G0) for ρ : G0 → GL(V ). Let m = dimV , ℓ = dimT0 and Φ0 = Φ(G0, T0) with
simple roots ∆0 = {v1, . . . , vℓ} and simple coroots ∆∨

0 . For each i = 1, . . . , ℓ and simple coroot
v∨i , let χ

∨
i := ρv∨i ∈ X

∨(T ). We can write

χ∨
i (t) := χ(ai)

∨(t) = diag(tai1 , . . . , taim) (5.1)

with the ai = (ai1, . . . , aim) ∈ Zm. Let Rℓ be the space of column vectors and P the convex
hull in Rℓ of the m vectors (a1j , . . . , aℓj)

T . Thus, if A is the ℓ×m matrix with rows the ai
then P is the convex hull in Rℓ of the columns.
If f ∈ F (P ) is a face of P then define ef :=

∑
j Ejj , the sum over those 1 ≤ j ≤ m such

that (a1j , . . . , aℓj)
T ∈ f , and with Eij the matrix with 1 in row i, column j, and 0’s elsewhere.

Then the map ζ : F (P ) → E(T ) given by ζ(f) = ef is an isomorphism of posets. The P for the
examples of this section are given in Table 2 (these will be justified later). Actually, even more is
true. The Weyl group acts on X

∨(T ) via (λw)(t) = ρ(w)−1λ(t)ρ(w) so that χ(ai)
∨w = χ(bi)

∨,
with bi = (bi1, . . . , bim) a permutation of ai. In particular, W permutes the vertices of P
inducing an action ofW on F (P ). Then the poset isomorphism ζ : F (P ) → E(T ) is equivariant
with respect to the Weyl group actions on F (P ) and E(T ).
Let R = NG(T )/T be the Renner monoid of M – a finite factorizable inverse monoid with

units W and idempotents E(T ). It turns out that R is not in general a reflection monoid,
although it is the image of a reflection monoid with units W and system of subspaces in X (see
[7, Theorem 8.1]). For us the Renner monoid will be a monoid of partial permutations using
the construction described at the end of the Introduction. To see why we will need a result [7,
Proposition 2.1] which we restate here in abbreviated form:

Proposition 5.1. Let M = EG and N = FH be factorizable inverse monoids and let
θ : G → H and ζ : E → F isomorphisms such that
– ζ is equivariant: (geg−1)ζ = (gθ)(eζ)(gθ)−1 for all g ∈ G and e ∈ E, and
– θ respects stablizers: Geθ = Heζ for all e ∈ E.

Then the map ϕ : M → N given by (eg)ϕ = (eζ)(gθ) is an isomorphism.

Now let E = F (P ) above and SP be the system of intervals for W given, as at the end of
the Introduction, by E≥f = {f ′ ∈ F (P ) | f ′ ⊆ f}. Let M(W, SP ) be the resulting monoid of
partial permutations, in which every element can be written in the form idE≥f

w for f a face
of P and w ∈ W . The following is then an immediate application of Proposition 5.1 (with θ
the identity):

Proposition 5.2. If W is the Weyl group of G = G(M), SP the system arising from the
polytope P and R is the Renner monoid of M , then the map idE≥f

w 7→ efw is an isomorphism
M(W, SP ) → R.

For e ∈ E(T ) let Φe = {v ∈ Φ | sva = asv for all a ∈ E(T )≥e}. The proof of [7, Theorem 9.2]
shows that if X = E(T )≥e, the isotropy group WX is equal to W (Φe), the subgroup of W

M G0 Φ polytope P

general linear Mn SLn An−1 ∆n

special orthogonal MSO2ℓ+1 SO2ℓ+1 Bℓ ✸
ℓ

symplectic MSp2ℓ Sp2ℓ Cℓ ✸
ℓ

special orthgonal MSO2ℓ SO2ℓ Dℓ ✸
ℓ

Solomon’s example §5.3 SLn An−1 (n− 1)-permutohedron

Table 2. Basic data for the algebraic monoids considered in §5.
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generated by the {sv}v∈Φe
. Moreover, for v ∈ Φ and t = sv, we have Ht ⊇ E(T )≥e if and only

if v ∈ Φe.
The conditions of Remark 1 at the end of §2 are thus satisfied and we are ready to set up

our presentation for the Renner monoid:

(R1). Let A = {e ∈ E | dimTe = dimT − 1} be the atoms of E(T ). Let Ok be sets defined as
in (P1) of §2.

(R2). As before W has a presentation with generators the s ∈ S for S = {sv | v ∈ ∆} and
relations (st)mst = 1. For each w ∈ W we fix an expression ω for w in the simple
reflections s ∈ S (subject to σ = s).

(R3). The action of W on S is represented notationally as before: for a ∈ A fix an a′ ∈ O1 and
a w ∈ W with a = w−1a′w (subject to w = 1 when a ∈ O1) and define α := ω−1a′ω. If
w is an arbitrary element of W and a ∈ A then by αω we mean the word obtained in
this way for w−1aw ∈ A. As before this is not necessarily ω−1αω. For e ∈ S, fix a join
e =

∨
ai (ai ∈ A) and define ε :=

∏
αi.

(R4). For e ∈ E(T ) let Φe = {v ∈ Φ | sva = asv for all a ∈ E(T )≥e} and let {v1, . . . , vℓ} be
representatives, with vi ∈ ∆, for the W -action on Φ. For i = 1, . . . , ℓ, enumerate the
pairs (e, si := svi) where e ∈ E(T ) is minimal in the partial order on E(T ) with the
property that vi ∈ Φe. Let Iso be the set of all such pairs.

Theorem 5.3. Let M be an reductive irreducible algebraic monoid with 0. Then the
Renner monoid of M has a presentation with

generators: s ∈ S, a ∈ O1.

relations: (st)mst = 1, (s, t ∈ S), (Units)

a2 = a, (a ∈ O1), (Idem1)

α1α2 = α2α1, ({a1, a2} ∈ O2), (Idem2)

α1 . . . αk−1 = α1 . . . αk−1α, ({a1, . . . , ak−1, a} ∈ Ok)

with a1, . . . , ak−1 , (3 ≤ k ≤ dimT ) independent and a ≤
∨

ai, (Idem3)

sα = αss, (s ∈ S, a ∈ A), (RefIdem)

εs = ε, (e, s) ∈ Iso. (Iso)

All the presentations in this section can be obtained in an algorithmic way, and so can be
implemented in a computer algebra package for specific calculations.

5.2. The classical monoids

We illustrate the results of the previous section by giving presentations for the Renner
monoids of the k×G0 ⊆ Mn where G0 is one of the classical groups SLn,Spn,SOn (see
also [11]). We see from Table 2 that while the root systems for SO2ℓ+1 and Sp2ℓ are
different, the resulting Weyl groups W (Bℓ) and W (Cℓ) turn out to be isomorphic. Indeed,
the Weyl groups W (An−1),W (Bn) ∼= W (Cn) and W (Dn) all have alternative descriptions as
permutation groups: namely, the symmetric groupSn and the groups of signed and even signed
permutations S±n and S

e
±n (see below for the definitions of these).

The same is true for the Renner monoids: MSO2ℓ+1 and MSp2ℓ have isomorphic Weyl
groups and isomorphic idempotents, both isomorphic to F (✸ℓ), so it is not surprising that their
Renner monoids are isomorphic. Indeed, the four Renner monoids can be realized as monoids
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of partial permutations, with units one of Sℓ,S±ℓ or S
e
±ℓ, and E one of the combinatorial

descriptions of F (P ) given in §1.2.
Consequently there are two ways to get their presentations, and for variety we illustrate both.

For Mn = k×SLn we just apply (R1)-(R4) and Theorem 5.3 directly. For the other three we
work instead with their realizations as monoids of partial permutations, applying the adapted
versions of (P1)-(P4), as in Remark 1 at the end of §2, and then Theorem 2.1. We then give
an isomorphism from these to the Renner monoids.
Throughout Tn ⊂ GLn is the group of invertible diagonal matrices.

Example 7 (the general linear monoid Mn). Let G0 = SLn with T0 = SLn ∩Tn a
maximal torus; G = k×G0 = GLn with maximal torus T = k×T0 = Tn. The general linear
monoid is then Mn = k×SLn with T the diagonal matrices.
For diag(t1, . . . , tn) ∈ T let vi ∈ X(T ) be given by vi diag(t1, . . . , tn) = ti. Then X(T ) is the

free Z-module with basis {v1, . . . , vn} and X(T0) the submodule consisting of those
∑

tivi with∑
ti = 0. The root system Φ(G0, T0) = Φ(G, T ) has type An−1:

{vi − vj (1 ≤ i 6= j ≤ n)},

with simple system ∆ = {vi+1 − vi (1 ≤ i ≤ n− 1)} arising from the Borel subgroup of upper
triangular matrices.
In this case the Weyl group W (G, T ) can be identified with a subgroup of G, namely the set

of permutation matrices A(π) :=
∑

i Ei,iπ as π varies over the symmetric groupSn. Indeed, the
Weyl group is easily seen to be isomorphic to Sn, but we will stay inside the world of algebraic
groups in this example. The isomorphism W (G, T ) → W (An−1) is induced by A(i, j) 7→ svi−vj .
The idempotents E = E(T ) are the diagonal matrices diag(t1, . . . , tn) with ti ∈ {0, 1} for all

i. Alternatively, for J ⊆ X = {1, . . . , n}, let eJ :=
∑

j∈J Ejj , so that E(T ) consists of the eJ
for J ∈ BX (and indeed, E(T ) is easily seen to be isomorphic to BX , but again we stay inside
algebraic groups). The Weyl group action on E(T ) is given by

eJ 7→ A(π)−1eJA(π) = eJπ.

Let ei := eJ for J = {1, . . . , î, . . . , n}. Running through (R1)-(R4), the atoms in E(T ) are
A = {ei | 1 ≤ i ≤ n}. There is a single W -orbit on A and we choose e := e1 for O1. There is a
single W -orbit on pairs of atoms and we choose the pair {e, e2} for O2. We will see below that
there is no need for Ok for k > 2. If ei ∈ A, (i > 1), we have ei = si−1 . . . s1es1 . . . si−1, so let

εi = si−1 . . . s1es1 . . . si−1,

with ε1 = e. Let eJ ∈ E with X \ J = {i1, . . . , ik}, giving eJ = ei1 ∨ · · · ∨ eik , and let

εJ = εi1 . . . εik .

We have A(π)−1eJA(π) = eJ exactly when Jπ = J ; moreover, E≥eJ = {eI | J ⊇ I}. The result
is that

ΦeJ = {vi − vj | i, j 6∈ J}.

There is a single W -orbit on the roots Φ and we choose v2 − v1 ∈ ∆ as representative. If
eJ is to be minimal in E with the property that v2 − v1 ∈ ΦeJ then J is minimal (under
reverse inclusion!) with 1, 2 6∈ J . Thus J = {3, . . . , n}, and the set Iso consists of the single
pair (e{3,...,n}, s1) with ε{3,...,n} = ε1ε2 = es1es1.

A presentation for the Renner monoid of Mn: By Theorem 5.3 we have generators
s1, . . . , sn−1, e with (Units) relations (sisj)

mij = 1, where the mij are given by the Coxeter
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symbol

s1 s2 sn−2 sn−1

The (Idem1) relation is e2 = e the (Idem2) relations are

ε1ε2 = ε2ε1, or, es1es1 = s1es1e.

We saw in §1.1 that in BX – or in §1.2 that in F (∆n) – all subsets of atoms are independent and
so the (Idem3) relations are vacuous. The (RefIdem) relations are siεj = εsij si for 1 ≤ i ≤ n− 1
and 1 ≤ j ≤ n; as in Lemma 3.1 of §3 we can prune these to sie = εsisi (1 ≤ i ≤ n− 1). We
have s1es1 = s2 and siesi = e (i > 1) so that εs1 = ε2 = s1es1, ε

si = e (i > 1) and the relations
are

sie = esi (i > 1).

Finally, the (Iso) are εJs1 = εJ for J = {3, . . . , n}, or

es1e = es1es1.

Remark. It is well known that R is isomorphic to the symmetric inverse monoid In where
the si correspond to the (full) permutation (i, i+ 1) and e to the partial identity on the set
{2, . . . , n}, and so yet again we have the Popova presentation.

As promised we now introduce two families of monoids of partial permutations. Let ±X =
{±1, . . . ,±ℓ} and define the group S±X of signed permutations of X to be

S±X = {π ∈ SX∪−X | (−x)π = −xπ for all x ∈ ±X}.

(the reason for the change in notation from n to ℓ will become apparent in Example 8 below).
A signed permutation π is even if the number of x ∈ X with xπ ∈ −X is even, and the even
signed permutations Se

±X form a subgroup of index two in S±X .
The symmetric group is a subgroup in an obvious way: let π ∈ S±X be such that x and

xπ have the same sign for all x ∈ ±X . In particular π is even. Any such π has a unique
expression π = π+π− with π+ ∈ SX , π− ∈ S−X and π+(x) = π−(−x). The map π 7→ π+ is
then an isomorphism from the set of such π to SX . We will just write SX ⊂ S±X (or ⊂ S

e
±X)

from now on to mean this subgroup.
We require Coxeter system structures for S±X and S

e
±X . Indeed, we have S±X

∼= W (Bℓ) ∼=
W (Cℓ) via sv1 or s2v1 7→ (1,−1) and svi+1−vi 7→ (i, i+ 1)(−i,−i− 1) and S±X

∼= W (Dℓ) via
sv1+v2 7→ (1,−2)(−1, 2) and svi+1−vi 7→ (i, i+ 1)(−i,−i− 1).
Now to a system of subsets for S±X and S

e
±X . In [7, §5] we used the elements of BX

to give a system for S±X and this led to the monoid I±n of partial signed permutations.
Here we want something different. Recall from Example 2 the poset E of admissible subsets
of ±X , with ±X adjoined. If π ∈ S±X and J is admissible, then it is easy to see that Jπ is
also admissible, and so the action of S±X on ±X restricts to E. Our system consists of the
intervals E≥J = {I ∈ E | J ⊇ I} as in the Introduction.
Write M(S±X , S) and M(Se

±X , S) for the resulting monoids of partial permutations.

A brief interlude: We detour to parametrize the orbits of the action of the symmetric group
SX on k-tuples of distinct subsets of X given by (J1, . . . , Jk)

π
7→ (J1π, . . . , Jkπ). The results

here may well be part of the folklore of the combinatorics of the symmetric group; full details
are in [6, §6.3]. Let X = {1, . . . , ℓ}, Y = {1, . . . , k} with BY the Boolean lattice on Y , ordered
as usual by reverse inclusion, and [0, ℓ] ⊂ Z, with this interval inheriting the usual order from
Z.
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Let f : BY → [0, ℓ] be a poset map and define f∗ : BY → Z (not necessarily a poset map)
by

f∗(I) =
∑

J⊇I(−1)|J\I|f(J). (5.2)

Then f is a characteristic map if f∗(I) ≥ 0 for all I, and f∗(∅) = 0.
In [6, §6.3] (see also below) it is shown that a tuple (J1, . . . , Jk) gives rise to a characteristic

map and every characteristic map arises from some tuple. Moreover, two tuples lie in the same
SX -orbit exactly when they give rise to identical characteristic maps. Thus,

Lemma 5.4. With X,Y as above, the orbits of the diagonal action of SX on k-tuples of
distinct subsets of X are parametrized by the characteristic maps.

We write Chark for the set of characteristic maps f : BY → [0, ℓ] when |Y | = k. Although
Chark depends on both k and ℓ, in the examples below ℓ will be fixed. Write (J1. . . . , Jk)f
for the tuple arising from f ∈ Char k in the following way: let disjoint sets KI , (∅ 6= I ∈ BY )
be defined by first setting KY := {1, . . . , f∗(Y ) = f(Y )} if f(Y ) > 0, or KY := ∅ if f(Y ) = 0.
Now choose some total ordering � on BY having minimal element Y , and for general I let
KI be the next f∗(I) points of [0, ℓ] \

⋃
J≺ I KJ . Although the choice of � is not important,

for definiteness we take J ≺ I when |I| < |J | and order sets of the same size lexicographically.
Then for i = 1, . . . , k, let Ji =

⋃
KI , the (disjoint) union over those I with i ∈ I. See [6, §6.3]

for a proof using Möbius inversion that this construction works.
For fixed k the possible characteristic maps in Chark can be enumerated by letting f(Y ) =

f∗(Y ) = n0 ≥ 0. If I = Y \ {i} then f∗(I) = f(I)− f(Y ) ≥ 0 gives f(I) = ni ≥ n0. In general,
if I = Y \ J , (J ⊂ Y ) then f(I) can equal any nJ ∈ [0, ℓ] satisfying nJ ≥

∑
K⊆J(−1)|J\K|nK

(and f(∅) =
∑

J 6=∅
(−1)|J|+1nJ).

For example, if k = 1 then BY is the two element poset Y < ∅. We have f∗(Y ) = f(Y ) ≥
0 and f(∅) = f(Y ). Thus Char 1 consists of the f(∅) = f(Y ) = n0, for each n0 ∈ [0, ℓ], of
which there are ℓ+ 1. This coincides with the fact that SX acts t-fold transitively on X for
each 0 ≤ t ≤ ℓ, hence there are ℓ+ 1 orbits. As another example, explicit orbit representatives
(J1, J2, J3)f when k = 3 can be obtained as follows: let n0, . . . , n3, n12, n13, n23 be integers
such that 0 ≤ n0 ≤ ni ≤ ℓ, ni + nj − n0 ≤ nij ≤ ℓ and

∑
nij −

∑
ni + n0 ≤ ℓ. The following

picture depicts X = {1, . . . , ℓ}, with 1 at the left:

n0 n1 − n0 n2 − n0 n3 − n0 n12 − n1 − n2 + n0 n13 − n1 − n3 + n0 n23 − n2 − n3 + n0

{1,2,3} {2,3} {1,3} {1,2} {3} {2} {1}

(†)

and the number in each box gives the number of points in the box (so the left most box
represents the points {1, . . . , n0}, the second the points {n0 + 1, . . . , n1}, and so on). Each box
is also labeled below by a subset of Y . Then Ji is the union of those boxes for which i appears
in the subset below it; e.g.: J1 is the union of the grey boxes.

We return to the monoids M(S±X , S) and M(Se
±X , S). For the rest of the paper, all

mention of (P1)-(P4) refers to the adapted versions of these as in Remark 1 at the end of §2.
As observed in the Introduction, the map J 7→ E≥J is a poset isomorphism E ∼= S which is
equivariant with respect to the S±X and S

e
±X actions. Thus, in running through (P1)-(P4)

we can work with the admissible J ∈ E rather than the corresponding intervals E≥J ∈ S. This
makes the notation a little less cumbersome.

(1). The monoid M(S±X , S). The atoms in E are the a(I) := I ∪ (−X \ −I), I ⊆ X =
{1, . . . , ℓ} of §1.2. There are thus 2ℓ atoms here versus the ℓ in the SLn case. Now to the sets
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Ok for k ≥ 1. Let a(I) be an atom of E with I = {i1, . . . , ik}. Then

a(I) · (i1,−i1) · · · (ik,−ik) = −X = a(∅), (5.3)

so there is a single S±X -orbit on the atoms, and we take O1 = {a} with a := a(∅).
For O2 we can use the set Char 2, although it turns out that with the S±X action we do

can do a little more. Let a(I), a(K) be a pair of atoms with |I| ≤ |K| and I ∩K = {i1, . . . , ik}.
Then the pair (a(I), a(K)) · (i1,−i1) · · · (ik,−ik) = (a(I1), a(K1)) with I1 = I \ (I ∩K) and
K1 = K \ (I ∩K) disjoint. The pair I1,K1 can then be moved by the SX -action as far as
possible to the left of {1, . . . , ℓ} while remaining disjoint. Thus, for O2 we take the pairs
{a(I), a(K)} with I = {1, . . . , j1}, K = {j1 + 1, . . . , j2} for all 0 ≤ j1 < j2 ≤ ℓ.
For k = 3 we can play a similar game, but this doesn’t work for k > 3. Instead, for k > 2 we

restrict the S±X -action on E to the subgroupSX ⊂ S±X and consider orbit representatives on
the k-tuples as in remark 3 at the end of §2. Thus the Ok , (k > 2) will be sets of representatives
with possible redundancies. If f ∈ Chark is a characteristic map, then by the construction
following Lemma 5.4 we have a unique tuple (I1, . . . , Ik)f with characteristic map f . For Ok

we take the set of {a(I1), . . . , a(Ik)} where (I1, . . . , Ik)f arises via f ∈ Chark.
Write si := (i, i+ 1)(−i,−i− 1), (1 ≤ i ≤ ℓ− 1); s0 := (1,−1) and ωi := si−1 · · · s1s0s1 · · ·

si−1 for i > 1 and ω1 = s0. If a(I) is an atom with I = {i1, . . . , ik}, let

α(I) := ωi1 . . . ωikaωik . . . ωi1 . (5.4)

Let J ∈ E be admissible with ±X \ ±J = {±i1, . . . ,±ik}. Then, recalling that J+ = J ∩X ,
we take as fixed word for J

α( î1, . . . , ik, J
+) · · ·α(i1, . . . , îk, J

+) (5.5)

when k > 1 (and where α( î1, . . . , ik, J
+) means α( {̂i1, . . . , ik} ∪ J+)), or α(J+)α(i1, J

+) when
k = 1.
Finally then to (P4) and A = {Ht} where Ht = {J ∈ E | Jt = J}. Every t ∈ T in S±X is

conjugate to s0 or s1 (using the Coxeter group structure) so there are two S±X orbits on A

with representatives H0 := Hs0 and H1 := Hs1 , where H0 consists of those J ∈ E with ±1 6∈ J
and H1 those J with either ±1,±2 6∈ J or 1, 2 ∈ J or −1,−2 ∈ J . If J is to be minimal with
H0 ⊇ E≥J then J has the form

1

−1

(5.6)
which is α(J+)α(1, J+). Similarly, if J is to be minimal with H1 ⊇ E≥J then J has the form

1

−1

2

−2

(5.7)
which is α(1, J+)α(2, J+).
The set Iso thus consists of the pairs (α(1, I)α(2, I), s1) for all I ⊆ X \ {1, 2} and the pairs

(α(I)α(1, I), s0) for all I ⊆ X \ {1}. Rather than write out the resulting presentation for this
monoid here, we save it for Example 8 below.

(2). The monoid M(Se
±X , S). The difference here is that we pass to the subgroup S

e
±X of

S±X and its action on E. The atoms are the a(I) := I ∪ (−X \ −I), I ⊆ X as before. If a(I)
is one such with I = {i1, . . . , ik}, then for k even

a(I) · (i1,−i2)(−i1, i2) · · · (ik−1,−ik)(−ik−1, ik) = −X = a(∅), (5.8)
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and for k odd

a(I) · (i1,−i2)(−i1, i2) · · · (ik−2,−ik−1)(−ik−2, ik−1)(ik−1, ik)(−ik−1,−ik) · · · (1, 2)(−1,−2)
(5.9)

gives a(1). Although (5.3) still holds in the even case, we change here to the version (5.8)
because of our choice of generators for Se

±X below. Thus, O1 = {a1 := a(∅), a2 = a(1)}.
Let a(I), a(K) be a pair of atoms with I ∩K = {i1, . . . , ik}. Then a similar argument as in

the S±X case gives O2 the pairs {a(I), a(K)} with I = {1, . . . , j1}, K = {j1 + 1, . . . , j2} (when
k is even) or I = {1, . . . , j1}, K = {j1, . . . , j2} (when k is odd), with 0 ≤ j1 < j2 ≤ ℓ in both
cases.
The Ok , (k > 2) are exactly as in the S±X case, since SX ⊂ S

e
±X . Thus Ok is the set of

{a(I1), . . . , a(Ik)} where (I1, . . . , Ik)f arises via f ∈ Chark.
Write si := (i, i+ 1)(−i,−i− 1), (1 ≤ i ≤ ℓ− 1) and s0 := (1,−2)(−1, 2) and let ωij :=

si−1 · · · s1sj−1 · · · s2s0s2 · · · sj−1s1 · · · si−1 for 1 < i < j ≤ ℓ− 1, or ω1j := sj−1 · · · s2s0s2 · · · sj−1

for (j > 2) or ω12 := s0. If a(I) is an atom with I = {i1, . . . , ik} and k even, let

α(I) := ωi1i2 . . . ωik−1ika1 ωik−1ik . . . ωi1i2 , (5.10)

or if k is odd

α(I) := ωi1i2 . . . ωik−2ik−1
sik−1

· · · s1a2 s1 · · · sik−1
ωik−2ik−1

. . . ωi1i2 . (5.11)

If J ∈ E is admissible then it is represented by the word (5.5) and the comments following it.
The treatment of (P4) is also virtually identical to the previous case: every t ∈ T is conjugate
in S

e
±X to s1, so there is a single S

e
±X-orbit on A with representative H1 := Hs1 consisting

of the J ∈ E with either ±1,±2 6∈ J or 1, 2 ∈ J or −1,−2 ∈ J . The set Iso thus consists of the
pairs (α(1, I)α(2, I), s1) for all I ⊆ X \ {1, 2}. Again, we save the presentation of this monoid
for Example 10 below.

Example 8 (the symplectic monoids MSpn). Let n = 2ℓ and

G0 = Spn = {g ∈ GLn | g
TJg = J} for J =

[
0 J0

−J0 0

]
,

where J0 =
∑ℓ

i=1 Ei,ℓ−i+1 is ℓ× ℓ. Note that as in [19], this is the version of the symplectic
group given by Humphreys [15] rather than the version used by Solomon in [26]. Let T0 =
Spn ∩Tn, the matrices of the form diag(t1, . . . , tℓ, t

−1
ℓ , . . . , t−1

1 ) with the ti ∈ k×. Let G =
k×Spn with maximal torus T = k×T0, and let the symplectic monoid MSpn = k×Spn ⊂ Mn.
For i = 0, . . . , ℓ let vi ∈ X(T ) be given by vi t0 · diag(t1, . . . , tℓ, t

−1
ℓ , . . . , t−1

1 ) = ti so that X(T )
is the free Z-module on {v0, . . . , vℓ}. The roots Φ(G0, T0) = Φ(G, T ) have type Cℓ:

{±vi ± vj (1 ≤ i < j ≤ ℓ)} ∪ {±2vi (1 ≤ i ≤ ℓ)}

lying in an ℓ-dimensional subspace of X = X(T )⊗ R. The group G has rank ℓ+ 1 and
semisimple rank ℓ. We use the simple system ∆ = {2v1, vi+1 − vi (1 ≤ i ≤ ℓ− 1)} as described
in the Introduction.
We now describe an isomorphism between the Renner monoid R of MSp2ℓ and the monoid

M(S±ℓ, S) of partial isomorphisms described in (1) above. The units in M(S±ℓ, S) are S±ℓ

and the units in the Renner monoid R are the Weyl group W (Cℓ) so we have the isomorphism
S±ℓ

∼= W (Cℓ) given before the interlude. Let s0, . . . , sℓ−1 denote either the signed permutations
of S±ℓ introduced in (1) above or the simple reflections in W (Cℓ).
The idempotents in M(S±ℓ, S) are the partial identities idE≥J

on the E≥J ∈ S, and the

idempotents in R are E(T ), the matrices diag(t1, . . . , tℓ, t
−1
ℓ , . . . , t−1

1 ) with ti ∈ {0, 1}. We write
E for the idempotents in M(S±ℓ, S) as well as for the poset of admissible subsets. Let the map
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η : ±X → {1, . . . , n = 2ℓ} be given by

η(i) :=

{
i, i > 0
2ℓ+ 1 + i, i < 0.

Define ζ : E → E(T ) by idE≥J
7→ e(J) :=

∑
j∈ηJ Ejj for J ⊂ ±X admissible, and id±X 7→ In.

Then ζ : E → E(T ) is an isomorphism that is equivariant with respect to the S±ℓ-action on
E and the W (Cℓ)-action on E(T ) (see [26, Example 5.5]).
Finally, if e = idE≥J

is an idempotent in M(S±ℓ, S) and G = S±ℓ, then the idempotent
stabilizer Ge consists of those π ∈ S±ℓ that fix the admissible set J pointwise. Similarly, we
have W (Cℓ)eζ consisting of those πθ ∈ W (Cℓ) with e(J)πθ = e(J). This is also equivalent to
π fixing J pointwise. We thus have our isomorphism M(S±ℓ, S) ∼= R by Proposition 5.1 (we
could also have used Proposition 5.2 but the above is more direct).

A presentation for the Renner monoid of MSp2ℓ: It remains to take the (P1)-(P4) data for
M(S±ℓ, S) listed in (1) above and apply Theorem 2.1. We have generators s0, . . . , sℓ−1, a with
(Units) relations (sisj)

mij = 1 where the mij are given by

s0 s1 sℓ−2 sℓ−1

4

The (Idem1) relation is a2 = a, and the (Idem2) relations are

α(1, . . . , j1)α(j1 + 1, . . . , j2) = α(j1 + 1, . . . , j2)α(1, . . . , j1),

for all 0 ≤ j1 < j2 ≤ ℓ, with α(I) given by (5.4). The (Idem3) relations are

α(I1) . . . α(Ik−1) = α(I1) . . . α(Ik−1)α(I)

for (I1, . . . , Ik−1, I)f arising from f ∈ Char k, and with (a(I1), . . . , a(Ik−1)) ∈ Indk−1, (k ≥ 2)
and all a(K) ⊇

⋂
a(Ii), where Indk−1 is given by Proposition 1.5. The (RefIdem) relations

consist of three families:

s0 α(I) = α(I)s0, and si α(I) = α(I)si, and si α(I) = α(I)sisi.

The first is for all I ⊆ X with 1 6∈ I (if 1 ∈ I then the relations s0 α(I) = α(I)s0s0 are vacuous);
the second for 1 ≤ i ≤ ℓ− 1 and i, i+ 1 ∈ I or i, i+ 1 6∈ I; the third when exactly one of i, i+ 1
lies in I; finally, α(I)si = siωi+1ωi2 · · ·ωikaωik · · ·ωi2ωi+1 when I = {i, i2, . . . , ik}, and when
i+ 1 ∈ I is similar. Finally, the (Iso) relations are

α(1, I)α(2, I)s1 = α(1, I)α(2, I), and α(I)α(1, I)s0 = α(I)α(1, I),

the first for all I ⊆ X \ {1, 2} and the second for all I ⊆ X \ {1}.

Example 9 (the odd dimensional special orthogonal monoids MSOn). This is very similar
to the previous case. Let n = 2ℓ+ 1 and

G0 = SOn = {g ∈ GLn | g
TJg = J} for J =




0 0 J0
0 1 0

−J0 0 0


 ,

with J0 as in Example 8. We have taken the definition of SOn given in [19] rather than [15]
to make the similarity with Spn more apparent. We have T0 = SOn ∩Tn, the matrices of the
form diag(t1, . . . , tℓ,±1, t−1

ℓ , . . . , t−1
1 ) with the ti ∈ k×; G = k×SOn with T as before and the

orthogonal monoid MSOn = k×SOn ⊂ Mn.
The roots have type Bℓ, so are the same as Cℓ except with ±vi instead of ±2vi. Nevertheless,

as is well known, the Weyl group W (Bℓ) is isomorphic to W (Cℓ) and we take the simple system
∆ = {v1, vi+1 − vi (1 ≤ i ≤ ℓ− 1)}.



Page 34 of 38 BRENT EVERITT AND JOHN FOUNTAIN

If R is the Renner monoid of MSOn then the isomorphism M(S±ℓ, S) ∼= R is analogous to
Example 8, except in the isomorphism θ : S±ℓ → W (Bℓ) we have (1,−1) 7→ s0 := sv1 and in
the isomorphism ζ : E → E(T ) we have η : ±X → {1, . . . , n = 2ℓ+ 1} given by

η(i) :=

{
i, i > 0
2ℓ+ 2 + i, i < 0

and e(J) := Eℓ+1,ℓ+1 +
∑

j∈ηJ Ejj for J ⊂ ±X admissible.
The presentation for the Renner monoid of MSO2ℓ+1 is identical to the presentation in the

MSp2ℓ case of Example 8.

Example 10 (the even dimensional special orthogonal monoids MSOn). Let n = 2ℓ and

G0 = SOn = {g ∈ GLn | g
TJg = J} for J =

[
0 J0
J0 0

]
,

with J0 and MSOn as above. The roots have type Dℓ: {±vi ± vj (1 ≤ i < j ≤ ℓ)} with simple
roots ∆ = {v1 + v2, vi+1 − vi (1 ≤ i ≤ ℓ− 1)}. If R is the Renner monoid of MSO2ℓ, the
isomorphism M(Se

±ℓ, S)
∼= R is built from the isomorphism θ : Se

±ℓ → W (Dℓ) given before
the interlude together with ζ : E → E(T ) exactly as for MSpn.

A presentation for the Renner monoid of MSO2ℓ: We take the (P1)-(P4) data for
M(Se

±ℓ, S) listed in (2) above and apply Theorem 2.1. We have generators s0, . . . , sℓ−1, a1, a2
with (Units) relations (sisj)

mij = 1 where the mij are given by

s0

s1

s2 sℓ−2 sℓ−1

The (Idem1) relations are a21 = a1, a
2
2 = a2, and the (Idem2) relations are

α(1, . . . , j1)α(j1 + ε, . . . , j2) = α(j1 + ε, . . . , j2)α(1, . . . , j1),

for all 0 ≤ j1 < j2 ≤ ℓ, ε = 0, 1 and with α(I) given by (5.10)-(5.11). The (Idem3) relations
are exactly as in the MSpn case. The (RefIdem) relations are the same as for MSpn for
si (1 ≤ i ≤ ℓ− 1); the relations involving s0 are slightly different. We get:

s0α(I) = α(I)s0, and s0α(I) = α(I)s0s0.

with the first for all I with 1, 2 6∈ I and the second where at least one (or both) of 1, 2 are in
I It is straightforward to give an expression for α(I)s0 . Finally, the (Iso) relations are

α(1, I)α(2, I)s1 = α(1, I)α(2, I),

for all I ⊆ X \ {1, 2}.

5.3. An example of Solomon

For the beautiful interplay between group theory and combinatorics that results, we look at
a family of examples considered by Solomon in [26, Example 5.7]. We follow the pattern of the
last section, defining first an algebraic monoid M , followed by an abstract monoid of partial
isomorphisms which turns out to be isomorphic to the Renner monoid of M .
Let G0 = SLn and V0 the natural module for G0. Let

∧p V0 be the p-th exterior power and
let

V =
n−1⊗

p=1

p∧
V0, with dimV := m =

n−1∏

p=1

(
n

p

)
.
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If ρ : G0 → GL(V ) is the corresponding representation then let M = k×ρ(G0) ⊂ Mm. Let R
be the Renner monoid of M .
Now to a monoid of partial isomorphisms. Take an n-dimensional Euclidean space with basis

{u1, . . . , un} and Sn acting by uiπ = uiπ for π ∈ Sn. The (n− 1)-simplex ∆n−1 is the convex
hull of the ui, and as the Sn-action is linear, it restricts to an action on ∆n−1. This is just the
action of the group of reflections and rotations of ∆n−1. In particular, if O is an admissible
partial orientation of ∆n−1 as in Example 3 of §1.2, then it is clear that the image Oπ is also
admissible. Consider the induced Sn-action on the set E0 of admissible partial orientations
and extend it to the poset E of Example 3 by defining 1π = 1 for all π ∈ Sn. This action is
clearly by poset isomorphisms.
Thus the collection of intervals E≥O = {O′ ∈ E |O ≤ O′} forms a system S of subsets of E

for Sn with M(Sn, S) the corresponding monoid of partial isomorphisms.

The isomorphismM(Sn, S) ∼= R. By Proposition 5.2 it suffices to establish an isomorphism
from M(Sn, S) to M(W, SP ) where W is the Weyl group of G (or G0) and P is the polytope
described in §5.1. The Weyl group is W (An−1) and we take θ : Sn → W (An−1) the standard
isomorphism given by (i, i+ 1) 7→ si := svi+1−vi .
We now describe P , following [26, Example 5.7]. It turns out to be convenient to describe

another abstract polytope P ′ first, and then relate this back to the P we are interested in. Let
X = {1, . . . , n} and τ = {J1, . . . , Jn−1} be a collection of subsets of X with |Ji| = i. Thus, τ
contains exactly one non-empty proper set of each possible cardinality. Let Σ be the set of all
such τ . Given τ ∈ Σ, let aj be the number of Ji in which j occurs, and let vτ be the vector
(a1, . . . , an)

T ∈ Rn.

Proposition 5.5. The convex hull P ′ of the vτ , for τ ∈ Σ, is the (n− 1)-permutohedron
having the parameters m1, . . . ,mn = 0, . . . , n− 1.

The proof is in [6, §6.5]. The polytope P ′ is not quite the P described in §5.1. To get it
back, we need to compute the columns of the matrix A whose rows ai = (ai1, . . . , aim) are
given by (5.1). Recall the simple roots vp+1 − vp from Example 7 and let (vp+1 − vp)

∨(t) =
diag(1, . . . , t, t−1, . . . , 1) for 1 ≤ p ≤ n− 1 be the corresponding coroots with the t in the p-th
position. If vτ = (a1, . . . , an)

T arises from τ = {J1, . . . , Jn−1} with J1 = {i}, J2 = {j, k}, . . . ,
Jn−1 = {1, . . . , q̂, . . . , n}, then V has basis the v of the form

v = vi ⊗ (vj ∧ vk)⊗ · · · ⊗ (v1 ∧ · · · ∧ v̂q ∧ · · · ∧ vn),

as τ ranges over Σ and where {v1, . . . , vn} is a basis for V0. Then ρ(vp+1 − vp)
∨(t)v =

tap−ap+1v, and so the columns of A are the (a1 − a2, . . . , an−1 − an)
T . In particular the map

(x1, . . . , xn)
T 7→ (x1 − x2, . . . , xn−1 − xn)

T sends the permutohedron P ′ of Proposition 5.5 to
the polytope P described in §5.1.
Let O be an admissible partial orientation of ∆n−1 and O 7→ f ′

O be the isomorphism
E → F (P ′) of Proposition 2.4, with m1, . . . ,mn = 0, . . . , n− 1. The map Rn → Rn−1 given
by (x1, . . . , xn) 7→ (x1 − x2, . . . , xn−1 − xn) induces an isomorphism F (P ′) → F (P ) which we
write as f ′

O 7→ fO. Finally, let ζ send the partial identity on the interval E≥O of E to the
partial identity on the interval E≥fO of F (P ).
That ζ is equivariant and θ preserves idempotent stabilizers (which actually turn out to be

trivial) we leave to the reader, although we supply the following hint: the vertices of P can be
labeled (in a one to one fashion) by the g ∈ W (An−1) and the edges can be labeled by the si
so that there is an si-labeled edge connecting g to g′ if and only if g′ = gsi (in the language of
[5, Chapter 3], the 1-skeleton of P is the universal cover, or Cayley graph, of the presentation
2-complex of W with respect to its presentation as Coxeter group). The action of W (An−1)
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on the vertices of P can then be described as follows: if g = si1 . . . sik ∈ W (An−1) and v is the
vertex of P labeled by the identity, then let v′ be the terminal vertex of a path starting at v
and with edges labeled si1 , . . . , sik . For any vertex u, let sj1 . . . sjℓ be the label of a path from v
to u, and let u′ be the terminal vertex of a path starting at v′ and with label sj1 . . . sjℓ . Then g
maps u to u′ (and in particular v to v′). In the language of [5, Chapter 4], the W (An−1)-action
is as the Galois group of the covering of 2-complexes.
Define ϕ : M(Sn, S) → M(W (An−1), SP ) as in Proposition 5.1.

Presentation data for the monoid M(Sn, S). The atoms are the partial orientations aJ
from §1.2 for J a non-empty proper subset of X = {1, . . . , n}. The Sn-action on the partial
orientations induces an action on the atoms given by aJ · π = aJπ for π ∈ Sn. Thus, we just
have the action of Sn on the subsets of X , so for the representatives Ok we can appeal to the
interlude of the previous section.
The set Char 1 corresponds to the n0 with 0 ≤ n0 ≤ n, and we take O1 = {a1, . . . , an−1}

with ai := a{1...,i}. The absence of an a0 and an is because we have restricted to the action
on the non-empty proper subsets of X . The set Char 2 corresponds to the n0, n1, n2 such
that 0 ≤ n0 ≤ n1, n2 with n1 + n2 − n0 ≤ n and 0 < ni < n. From the interlude we get a tuple
(J,K) where

J = {1, . . . , n0} ∪ {n0 + 1, . . . , n1} and K = {1, . . . , n0} ∪ {n1 + 1, . . . , n1 + n2 − n0}

are representatives for the corresponding orbit. Thus we take O2 to be the pairs {aJ , aK}. The
set Char 3 corresponds to the n0, . . . , n3, nij satisfying the conditions given in the example at
the end of the interlude, together with 0 < nij < n. We get a corresponding tuple (J1, J2, J3)
using the scheme (†) above, and we take O3 to be the the set of {aJ1

, aJ2
, aJ3

}.
For J a non-empty proper subset of X , fix an element wJ ∈ Sn with JwJ = {1, . . . , |J |} and

let

αJ := ωJakω
−1
J . (5.12)

It turns out that for an arbitrary O ∈ E we do not require an expression in the atoms for O,
except in the case O = 1, the formally adjoined unique maximal element. We take 1 :=

∨
aJ ,

the join over all the atoms, i.e. over all non-empty proper subsets J of X .
Finally we have the set Iso. The set T consists of the transpositions (i, j) ∈ Sn and for t ∈ T ,

Ht = {O ∈ E0 |Ot = O} ∪ {1} with A = {Ht | t ∈ T }. There is a single Sn-orbit on A with
representative H1 := Hs1 where si := (i, i+ 1). The O are the partial admissible orientations
of ∆n−1, and one such is fixed by s1 exactly when the edge joining v1 and v2 is not in O, and
for all i > 2, the edge joining v1 and vi lies in O if and only if the edge joining v2 and vi lies
in O. We want O minimal with the property that H1 ⊇ E≥O. But if O < 1 then the interval
E≥O contains an admissible partial orientation in which all the edges of ∆n−1 are oriented (i.e.
a total order). Thus, E≥O contains an O′ in which the edge joining v1 and v2 is oriented, and
so O′s1 6= O′. The result is that H1 6⊇ E≥O.
The only element of E then that is minimal with H1 ⊇ E≥O is 1, and Iso consists of the

single pair (1, s1).

Example 11 (the presentation for the Renner monoid of M). We have generators
s1, . . . , sn−1 and a1, . . . , an−1 with (Units) relations (sisj)

mij = 1 where the mij are given
by the symbol

s1 s2 sn−2 sn−1
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The (Idem1) relations are a2i = ai (1 ≤ i ≤ n− 1) and the (Idem2) relations are αJαK = αKαL

where the α’s are given by (5.12),

J = {1, . . . , n0} ∪ {n0 + 1, . . . , n1},K = {1, . . . , n0} ∪ {n1 + 1, . . . , n1 + n2 − n0}

and 0 ≤ n0 ≤ n1, n2 are such that n1 + n2 − n0 ≤ n and 0 < ni < n.
The presentation for the permutohedron from §1.2 gives (Idem3) relations αJ1

αJ2
=

αJ1
αJ2

αJ3
for all {aJ1

, aJ2
, aJ3

} ∈ O3 where J1, J2 satisfy J1 6= J1 ∩ J2 6= J2; that is, n1 − n0,
n13 − n1 − n3 + n0 are not both zero, and n2 − n0, n23 − n2 − n3 + n0 are not both zero.
The (RefIdem) are siαJ = αJsisi for 1 ≤ i ≤ n− 1 and J a non-empty proper subset of X .

Finally the (Iso) are the single relation
∏

αJ · s1 =
∏

αJ ,

where the product is over all proper non-empty subsets J of X .
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