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Abstract 

This study reports the synthesis and characterization of geopolymer foam concrete (GFC). A 

Class F fly ash with partial slag substitution was used for GFC synthesis by mechanical mixing 

of preformed foam. The GFCs exhibited 28 day compressive strengths ranging from 3 to 48 

MPa with demolded densities from 720 to 1600 kg/m3 (105°C oven-dried densities from 585 

to 1370 kg/m3), with the different densities achieved through alteration of the foam content. 

The thermal conductivity of GFCs was in the range 0.15 to 0.48 W/m·K, showing better 

thermal insulation properties than normal Portland cement foam concrete at the same density 

and/or at the same strength. The GFC derived from alkali activation of fly ash as a sole 

precursor showed excellent strength retention after heating to temperatures from 100 to 800°C, 

and the post-cooling compressive strength increased by as much as 100% after exposure at 

800°C due to densification and phase transformations. Partial substitution of slag for fly ash 

increased the strength of GFC at room temperature, but led to notable shrinkage and strength 
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loss at high temperature. Thin GFC panels (20 - 25 mm) exhibited acoustic absorption 

coefficients of 0.7-1.0 at 40 to 150 Hz, and 0.1-0.3 at 800 to 1600 Hz.  

 

Keywords:  Alkali activated cement; Geopolymer; Foam concrete; Thermal insulation; 

Acoustic absorption; Thermal resistance 

 

1. Introduction 

The search for materials offering high thermal insulation has increasingly become a target of 

the modern construction and building industry, as energy-efficiency of buildings in service has 

become of ever increasing concern. Foam concrete is well known for its relatively low thermal 

conductivity, usually 10 to 50% of that of normal dense concrete, depending on the designed 

material density and composition [1-3]. This low thermal conductivity brings good thermal 

insulation, and usually energy efficiency in operation. Recent developments in alternative 

binders, and in engineering of products based on these binders, have led to the manufacture of 

foam concrete using geopolymer as the binder [4]. Geopolymers are a complex class of 

materials, principally manufactured through alkali hydroxide and/or silicate activation of a 

reactive aluminosilicate, in particular calcined clays (metakaolin) or fly ash [5]. One of the 

most attractive benefits of geopolymer materials is the reduced energy consumption and CO2 

emissions which are achievable compared to ordinary Portland cement [6]. The innovation of 

geopolymer foam concrete (GFC) creates an approach of developing energy efficient materials 

from material manufacturing to building operation, which seems to offer the possibility to be 

eco-friendly across the whole life cycle.  

http://dx.doi.org/10.1016/j.cemconcomp.2015.03.013
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GFC can be synthesized effectively by a chemical foaming technique [4]. Arellano Aguilar et 

al. [7] prepared GFCs based on alkali-activated metakaolin binders with Al powder as gas-

releasing agent. The 28 d compressive strength of GFCs was in the range of 2 to 14 MPa for 

densities from 600 to 1200 kg/m3. This strength is relatively high when compared with Portland 

cement-based foam concrete in a similar density range [8]. However, the thermal conductivity 

of the GFCs was high, from 0.49 to 1.22 W/m∙K, and this was attributed to the high humidity 

in the GFCs and the quartz and cristobalite present in metakaolin [7]. Kamseu et al. [9] also 

prepared metakaolin-based geopolymer foams using Al powder as a foaming agent, and the 

resulting foams had low thermal conductivity (0.15-0.4 W/m∙K). The thermal conductivities of 

the solid geopolymer binders synthesized by those authors increased with increasing Si/Al ratio 

[10], in agreement with previous research [11], which is related to the increased connectivity, 

the reduced porosity and the finer pore size distribution as the Si/Al ratio increases. Silica fume 

can also be used as the foaming agent in GFC production via an in situ foaming technique [12]. 

During sealed curing, free (reduced) silicon present in the silica fume will be oxidized by water, 

releasing hydrogen gas, which introduces bubbles into the geopolymer paste. Such products 

usually exhibit low thermal conductivity (0.22-0.24 W/mK) but also low strength (around 1 

MPa), due to the extremely heterogeneous pore structure and large pore size [13, 14]. 

GFC can also be made using a mechanical pre-foaming technique. Zhang et al. [15] 

manufactured a series of GFCs using fly ash as the main aluminosilicate precursor by 

mechanical mixing with a preformed foam. The fly ash-based GFCs possessed dry densities 

from 850 to 950 kg/m3 and compressive strengths of 4 to 9 MPa, depending on the type and 

dosage of alkali activator. Al Bakri Abdullah et al. [16] also manufactured GFC with fly ash 

by mixing pre-formed foam into geopolymer paste at a 2:1 volume ratio. The resulting GFCs 

reached 18 MPa under room temperature curing conditions at a density of 1660 kg/m3.  

http://dx.doi.org/10.1016/j.cemconcomp.2015.03.013
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The development of GFC is currently in the relatively early stages of technological maturity. 

Only limited information has been reported regarding the relationship between composition, 

structure and properties of this new material. Some special challenges related to this material 

require particular attention, such as understanding the differences between dense and foamed 

geopolymers [4]. This study has been conducted to investigate the key properties of GFCs, 

including compressive strength, acoustic absorption, thermal insulation and fire resistance. 

Understanding of these properties is useful for the widespread uptake of this new material.  

 

2. Materials and Methods 

2.1 Materials 

The geopolymer binder was prepared using a Class F fly ash (Tarong, Australia) with partial 

substitution of a granulated blast furnace slag (Cement Australia Pty Ltd) as secondary calcium 

source. The chemical compositions of the fly ash and the slag were determined by X-ray 

fluorescence (Table 1). Fig. 1 shows their particle morphology, as observed using a JEOL JCM-

600 Benchtop scanning electron microscope, for samples coated with gold. The majority of fly 

ash particles are in the range of 2-100 micrometers in diameter, and the slag seems to have 

more fine particles than the fly ash. The particle size distributions of the two solid materials 

were also determined using a Malvern Mastersizer 2000 (Fig. 2). The surface areas of the fly 

ash and the slag used are estimated by this method to be 0.64 and 0.69 m2/g respectively. The 

activators used included an NaOH solution and a sodium silicate solution. The NaOH solution 

was prepared by dissolving NaOH pellets (99% purity, Taiwan Alum Chemical Industrial Co., 

Ltd.) in water to a concentration of 12 mol/L, and cooling to room temperature. The sodium 

silicate solution was D-Grade TM liquid sodium silicate (PQ Australia) with Ms (molar ratio 

http://dx.doi.org/10.1016/j.cemconcomp.2015.03.013
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SiO2/Na2O) = 2.0 (Na2O = 14.7 wt.%, SiO2 = 29.4 wt.%). Distilled water was used throughout 

the experimental section. The foaming agent was a diluted aqueous surface active concentrate. 

2.2 Methods 

2.2.1 GFC manufacture 

Two batches of GFCs (Table 2) were manufactured to examine the effects of slag substitution 

and foam dosage on the mechanical and thermal properties of the material. Due to the lack of 

standards available for GFC preparation, some Portland cement (PC) foam concrete 

specifications have been used as a reference baseline [17]. The fly ash and slag were dry-mixed 

for 5 min, then mixed with the NaOH solution, followed by the sodium silicate solution and 

additional water. At the end of paste mixing, foam was generated using an air pressure foam 

generator, weighed, and immediately transferred into the homogeneous geopolymer paste for 

final mixing for 1 - 2 min. Low speed mixing was used to avoid bubble breakage due to the 

high viscosity of the geopolymer paste. The fresh foamed mixtures were cast in ø53×105 mm 

and ø100×200 mm plastic molds, sealed with with plastic film wrap, cured at 40°C for 24 h, 

aged for 27 d at ambient conditions, and then demolded for testing and characterization. 

2.2.2 Mechanical testing  

The compressive strength of GFC was tested using an MTS universal mechanical testing 

instrument at a loading speed of 0.5 mm/min. A minor volume change after curing was noted; 

therefore the top surfaces of samples were all sanded carefully to be flat and parallel before 

testing. The weight, diameter and length of each sample were measured to enable calculation 

of demolded density (weight/volume). Dry densities of GFCs were also measured after drying 

the crushed specimens at 105±2°C in oven for 24 h, as per ASTM C495. For the strength and 

http://dx.doi.org/10.1016/j.cemconcomp.2015.03.013
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density measurements, the mean values of four samples for each mixture are reported, and the 

standard deviations for each mix are reported as apparent errors.   

2.2.3 Acoustic absorption  

The acoustic absorption of GFC was evaluated in accordance with ASTM E 1050, using a 

modified impedance tube. The apparatus, described elsewhere [18], tests the sound absorption 

of acoustic insulating materials by using a vacuum pump behind the sample; the testing of GFC 

was performed under ambient air conditions. Cylindrical samples with diameter of 100 mm 

were cut into pieces with thickness of 20 and 25 mm, and sanded carefully on the surface to a 

diameter of 95 mm, which fit snugly into the specimen holder. The specimen holder was placed 

into the testing tube at one end, and the other end was the sound source. Along the tube were 

placed two microphones, which detected the sound wave pressure transmitted to the sample 

and the portion of the wave that was reflected. The complex reflection coefficient (R) at a 

particular frequency is determined by Eq.1: 

ܴ = ௘ೕೖ೏భି௉௘ೕೖ೏మ௉௘షೕೖ೏మି௘ೕೖ೏భ                                                                                 (Eq.1) 

 

where j is ξെ1, k is the wave number, d1 and d2 are the distances between the specimen surface 

and the near and far active microphones respectively, and P is the ratio of sound pressure at the 

two active microphone locations.  

The normal incidence acoustic absorption coefficient (α) is calculated by Eq.2: 

α = 1 - |R|2                                                                                                                        (Eq.2) 

To obtain precise measurements without influence from moulded or free end surfaces, samples 

were cut from the middle of each specimen. The two surfaces were cleaned with compressed 

http://dx.doi.org/10.1016/j.cemconcomp.2015.03.013
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air to remove any particles that were blocking the foam voids. The frequency range tested was 

from 0 to 1600 Hz, which is limited by the fixed diameter of the impedance tube.  

2.2.4 Thermal conductivity  

The thermal conductivity of GFC was measured at ambient conditions using the transient plane 

source (TPS) method on a Hot Disk 2500 system. The samples were cut from GFC specimens 

with diameter 53 mm, to form discs with thickness of 15±2 mm. In order to ensure good contact 

between the TPS element and the sample surface, all samples were polished flat and parallel, 

and cleaned with compressed air. Fig. 3 shows two pieces used for one sample. For each 

geopolymer mixture, four replicate tests were conducted.  

The humidity of the sample has an important impact on the measured thermal conductivity [11, 

19]. Because drying at high temperatures for long periods may change the phases and/or 

microstructure of the geopolymer, a short drying period (6 h) at a moderate temperature (80°C) 

was adopted in this study. It was noted that the weight loss did not exceed 1% if they were 

dried for a further 6 h; the porous microstructure and the low thickness enabled this rapid drying 

of the samples at 80°C. 

2.2.5 Thermal resistance 

Thermal resistance of GFC was evaluated by measuring the strength and volume changes after 

exposure to high temperatures. Selected specimens were heated in an oven at a 10°C/min 

heating rate to 100°C and held for 4 h, then naturally cooled down to room temperature in the 

oven. Some were heated in a muffle furnace with a 10°C/min heating rate from room 

temperature to 400 and 800°C, held for 3 h, and allowed to cool down to room temperature in 

the furnace. The compressive strengths of GFCs before and after heating were tested using the 

MTS universal mechanical testing instrument as described in section 2.2.2. The linear 

http://dx.doi.org/10.1016/j.cemconcomp.2015.03.013
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shrinkage of the heated specimens was also measured. Phase changes after heating were 

analyzed by X-ray diffraction (XRD) using an ARL 9900 Series X-ray workstation (Thermo 

Scientific) with Co KĮ radiation, operated at 40 kV and 40 mA, with a step size of 0.02° and 

count time of 1 s/step from 8 to 80° 2ș. 

 

3. Results and discussion  

3.1 Compressive strength of GFC 

Fig.4 shows the effect of slag substitution on the compressive strength of the GFCs produced 

in this study. At a constant foam dosage of 5% (mass ratio to solid precursor), the 100% fly 

ash GFC specimen F5S0 achieves 7.5 MPa at 28 d. By using 20% slag substitution for fly ash, 

the compressive strength of F5S20 increases to 12.6 MPa, while further slag substitution causes 

a slight loss of strength. The largely beneficial influences of slag addition on the strength 

development of fly ash-based geopolymers have been reported extensively in the literature [20-

23]. The alkali-activated fly ash binder consists of sodium aluminosilicate gel (N-A-S-(H)) as 

the dominant phase, with residual embedded fly ash particles [5]. When calcium cations are 

made available by slag dissolution under geopolymerization conditions, there will be more 

calcium-rich aluminosilicates, mostly Al-substituted calcium silicate hydrates (C-A-S-H), 

formed [5, 23]. Homogeneous but XRD-amorphous phases with composition of N-C-A-S-H 

are also often observed in alkali-activated systems [22]. These phases with relatively high Ca/Si 

ratios (by the standards of geopolymerization reaction products, but not compared to Portland 

cement hydrates) are regarded as strengthening phases in geopolymer binders [20, 23]. In 

addition to the formation of calcium-containing products, the reaction extent of fly ash can be 

improved through blending with slag. When the alkali activator contains soluble silicate, the 

http://dx.doi.org/10.1016/j.cemconcomp.2015.03.013
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calcium dissolved from the fly ash is able to form precipitates in the liquid phase, rather than 

on the fly ash surface, thus reducing hindrance of the dissolution of bulk particles [24]. The 

much higher reaction heat release rate for fly ash-based geopolymer mixes containing higher 

CaO or slag contents has been demonstrated [21, 25]. However, in the case of manufacturing 

GFC, slag substitution also changes the pore structure, due to the changes in rheology and 

setting time. The relationship between slag content and density (Fig. 4) shows that 

incorporation of 30% or more slag leads to reduced density. This implies that more bubbles are 

stabilized in the binder, giving a reduction in strength. Thus, the optimal slag substitution for 

this application is probably between 20 and 30%.     

Fig. 5 shows the effect of foam dosage on the compressive strength of GFC, for a set of samples 

with a constant 30% slag substitution. The compressive strength of GFC is closely related to 

its density, both decreasing notably with the addition of up to 7% foam, and then more 

gradually beyond that point. The compressive strengths and densities of normal PC foam 

concretes are in the ranges 1 to 10 MPa and 360 to 1400 kg/m3 respectively [4], but the strength 

performance has been shown to be improved by the addition of fly ash, e.g. to a density range 

of 650 - 1224 kg /m3 with compressive strengths of 2 - 18 MPa [26]. Highly blended PC foam 

concretes which incorporated silica fume, fly ash and slag exhibited 710 - 1520 kg /m3 and 4.2 

- 23.7 MPa [27]. In comparison, the GFCs produced here have higher strengths at the same 

density. In the density range higher than 1000 kg /m3, the GFCs are able to be used for semi-

structural to structural purposes.  

3.2 Thermal insulation  

Fig. 6 presents the thermal conductivity and thermal diffusivity of GFC at room temperature. 

The thermal conductivity increases from 0.15 to 0.48 W/m·K when the dry density increases 

http://dx.doi.org/10.1016/j.cemconcomp.2015.03.013
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from 585 to 1370 kg/m3, as the foam dosage decreases accordingly. The thermal diffusivity 

was measured to be 0.27 - 0.34 mm2/s, with a general increasing trend as a function of density. 

The thermal conductivity of GFC is in the same range as that of geopolymer foams derived 

from metakaolin with Al powder as the foaming agent [11]. The thermal conductivity of PC 

foam concretes has been observed to range from 0.15 to 0.6 W/m·K for densities between 400 

and 1700 kg/m3, across a variety of foaming or density-reduction methods [4]. At a density of 

1000 kg/m3, the GFCs have a thermal conductivity of 0.24 W/m·K, which is lower than the 

range reported for PC foam concretes, 0.3 to 0.5 W/m·K, depending on the composition, fillers 

and testing conditions [4]. This is attributed to the low level of chemically bound water in the 

geopolymer gel, providing a more discontinuous gel structure in these materials. The thermal 

diffusivity of GFC is much lower than that of fully dense PC concretes, which decreases creases 

from 1.2 to 1.1 mm2/s as the hydration degree of cement increases from 0 to 1 (fully hydrated) 

[28]. The measured thermal diffusivities of the as-cured dense metakaolin-based geopolymers 

are between 0.24 and 0.26 mm2/s [11], which are close to the results in the present study. The 

GFCs can thus be regarded as excellent thermal insulation building materials for their low 

thermal conductivity and relatively low thermal diffusivity.  

3.3 Thermal resistance 

The thermal resistance of GFC is evaluated here by measuring changes in strength and volume 

after high temperature exposure. Fig.7 presents the residual compressive strengths of GFCs 

after exposure at temperatures between 100 and 800°C. The compressive strengths of F5S0 

and F5S30 both increase after heating at 100°C, but when exposed to 400 and 800°C, the two 

mix types exhibit different strength behaviors. F5S0, which is a purely fly ash-based foam and 

thus contains a solely aluminosilicate gel, maintains its strength at 400°C, and increases by 

http://dx.doi.org/10.1016/j.cemconcomp.2015.03.013


Preprint of: Z Zhang, JL Provis, A Reid, H Wang, Mechanical, thermal insulation, thermal resistance 

and acoustic absorption properties of geopolymer foam concrete (GFC), Cement and Concrete 

Composites, 62(2015): 97-105. Final published version is at: 

http://dx.doi.org/10.1016/j.cemconcomp.2015.03.013  

 

 
11 

 

50% after heating to 800°C. The good compressive strength retention up to 400°C (actually 

slight increase in this study) was also observed in the dense 8 M NaOH-activated fly ash binder 

[29]; the remarkable strength increase of F5S0 at 800°C is in agreement with these reported 

results. Rickard et al. [30] also showed that the strengths of solid geopolymers increase after 

exposure to 1000°C, when low iron and low calcium-bearing fly ashes are used. In contrast, 

F5S30 decreases in strength by 40% at 400°C and 50% at 800°C, as its structure is much more 

disrupted by the loss of chemically bound water from the relatively calcium-rich gels formed 

through combined fly ash-slag activation. The better strength retention of Al-Si rich gels 

compared to calcium-containing gels was also observed in alkali-activated metakaolin/slag 

blends [31]. Substitution of slag by 20% metakaolin led to relatively larger strength loss upon 

heating than in the unblended binder, attributed to the dehydroxylation of Ca-containing 

products formed in these systems. It was also noted that the alkali-activated metakaolin binder 

(Al -Si rich gels) in that study gained some strength after exposure to 1000°C, while the slag 

blended binder did not [31].   

The large strength loss in F5S30 is a consequence of both physical and chemical property 

changes, including volume, pore structure and phase decomposition. The volume change has 

caused cracks on the surfaces, which is linked to the strength loss, but is also the reason for the 

large variability in the post-heating testing results, as crack formation is a stochastic process 

and so induces cracks of different size in each replicate specimen. A large standard derivation 

in compressive strength after heating, such as the large errors indicated in Fig. 7, has also been 

found in other research [32, 33]. Fig. 8 shows the volumetric stability, expressed in terms of 

linear shrinkage, of the specimens after heating to different temperatures. The linear shrinkage 

increases directly with temperature in the heating range studied. Because dimensional 

measurements are taken after cooling of the specimens, the transient swelling/expansion peaks 

http://dx.doi.org/10.1016/j.cemconcomp.2015.03.013
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seen in dilatometry analysis of fly ash geopolymer specimens [34, 35] are not seen here, as the 

expanded product collapses relatively rapidly.  

From room temperature to 100°C, F5S0 and F5S30 show little shrinkage (-0.02 to -0.07%), 

which is consistent with results for dense inorganic polymers [35]. In this temperature region, 

only free water evaporates from the geopolymer foams. For metakaolin-based geopolymers, 

which contain relatively higher amount of evaporable water, the loss of free water may cause 

large shrinkage, and even visible cracks [36]. However, the dilatometric curves presented by 

Dombrowski et al. [37] do not show shrinkage when their dense fly ash-based geopolymer 

samples with varied amounts of Ca(OH)2 were heated up to 100°C. Instead, their results show 

a 0.1% expansion for the samples under load and no shrinkage for the samples without load. 

Although some other dilatometric studies [38, 39] also showed a similar small expansion before 

100°C, a certain extent of shrinkage is normally observed at 100°C when starting from as-cured 

(moist) samples [32, 34, 35, 40]. The small expansion before 100°C observed in some research 

is probably due to the thermal expansion properties of the solid geopolymer gel. Lemougna et 

al. [40] reported the dilatometric study of dense geopolymers, showing consistent shrinkage 

from room temperature to 800°C. They also calculated the thermal expansion coefficient, 

which is around 12×10-6/°C, by measuring the expansion rate of post-heated samples in a 

second heating cycle. As the dilatometric study is performed at high temperature, it could 

reflect an overall small expansion when the shrinkage due to water loss is smaller than the 

thermal expansion. However, the much less dense GFC specimens studied here did not display 

such behavior after being cooled down to room temperature.   

From 100°C to 800°C, both samples shrank to a larger extent. In combination with the results 

obtained through high temperature in-situ measurements [34, 35, 37], this can be divided into 

three sub-regions: in region I (100-300°C), a large shrinkage occurs mainly due to pore water 

http://dx.doi.org/10.1016/j.cemconcomp.2015.03.013
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release from gels, also called ‘capillary strain’ [41]; region II (300-600°C), a relatively stable 

region where the few residual bound hydroxyl groups are lost without much volumetric change; 

and region III (600-800°C), which shows a large shrinkage to a ‘sintering point’ and then 

sometimes expansion. The temperature of the sintering point is affected by many factors, such 

as the solid materials, the calcium content, and the molar ratio of SiO2/Na2O used in the 

activator, which effectively defines geopolymer microstructure [42]. For example, the sintering 

point seems not to appear before 900°C if metakaolin is used as the raw material, and the 

samples are cured to maturity [31, 43]. However, for less-mature samples derived from fly ash, 

when SiO2/Na2O increases from 0 to 2.0, the sintering point shifts from >900°C to 700°C at a 

liquid/solid ratio of 0.125. An increased liquid/solid ratio also shifts the sintering point towards 

a lower temperature [35]. The liquid/solid ratio used in this study is 0.395, which may bring 

the sintering point lower than 800°C. However, it is noted that the 4% change observed here is 

still much less than would take place if the foamed structure of the GFC matrix was collapsing 

or densifying in a bulk sense, which means that the foamed nature of the material is clearly 

being retained. 

Fig. 9 shows photographs of the samples before and after heating. The cross section of F5S0 

does not show any macroscopic cracks, and only a few microcracks are observed on the surface 

after heating. However, there are visible cracks appearing on the cross section of F5S30 after 

exposure to 800°C, as shown in Fig. 9(d). This means that slag incorporation has changed the 

reaction products and their refractory behavior. This could be due to the presence of calcium, 

as reported previously for dense geopolymers [31, 37, 39]. Cracks were also observed on a 

cross section of solid inorganic polymer after heating at 900°C, when the material was 

synthesized with a high iron-content fly ash [44]. The presence of iron decreases the glass 

transition temperature (Tg) of the geopolymers, causing densification and shrinkage. This role 
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of iron, as a flux, was reported in the formation of coal ash slag (Al2O3-CaO-‘FeO’-SiO2) [45], 

in which a completely liquid phase was formed at lower temperature as FeO concentration 

increased. The previous study [38] also proposed that the crystallization at high temperature 

(700-800°C) may lead to the thermal expansion of fly ash geopolymers.  Fig. 10 shows the 

XRD analysis of the GFCs before and after heating. As discussed above and in common with 

fly ash geopolymers in general, the reaction products in F5S0 are amorphous to semi-

crystalline sodium aluminosilicates (N-A-S-(H)). These phases are different from the Ca-

containing gel present in F5S30, and so may undergo different thermal transformation 

processes under firing temperatures. The major activation products present in both binders are 

amorphous, with a certain amount of unreacted mullite and quartz. When exposed to 800°C for 

3 h, some of the amorphous phases in F5S0 crystallize into nepheline (NaAlSiO4), which is 

often found in heated geopolymers [34, 46, 47]. In F5S30, the diffraction peaks attributed to 

nepheline are much more intense than in F5S0. Two other crystalline phases, åkermanite 

(Ca2Mg0.75Al 0.5Si1.75O7), associated with devitrification of remnant slag grains, and 

dehydrated Ca-substituted zeolite A (CaNa11.44Al 11.21Si11.59O48) are observed. As noted above, 

the heating was only carried out at three temperatures (100, 400 and 800°C) in this study, so 

the expansion behaviour due to crystallization was not observable in detail. However, it is 

evident that the expansion, if any, could not compensate for the large shrinkage in the low 

temperature region.   

Volumetric stability is a very important property for a fire resistant material. Dramatic 

shrinkage may cause cracks in a structure, or even structural collapse, even if each material 

component which comprises the structure is itself retaining satisfactory strength. The presence 

of calcium and iron is seen to be harmful to the volumetric stability of geopolymers under firing 

conditions. From this point of view, it is suggested to avoid calcium and iron bearing materials, 
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such as slag and high iron fly ash, in preparing geopolymers for use in refractory or high 

temperature applications. 

3.4 Acoustic absorption  

Fig. 11 shows the sound absorption properties of selected GFCs. The four samples tested 

provide a high degree of absorption for the low frequency sound waves, from 40 to 150 Hz. 

Slag substitution for 30% of the fly ash does not significantly change the absorption in the low 

frequency region, but increases the sound absorption at higher frequency, particularly at 800 to 

1600 Hz. This is probably due to the changes in pore size, porosity and tortuosity introduced 

though the addition of the slag [48]. Increasing the thickness of the GFC specimens can increase 

the sound absorption in the low frequency region, to a greater extent than would be predicted 

simply from the fact that there is more material present through which the sound waves must 

be transmitted, but has insignificant effect at higher frequencies. The higher wavelength (lower 

frequency) sound is much more sensitive to the thickness of the material. Increasing the foam 

dosage from 5% to 10% seems to result in a material which is less effective for the absorption 

of low frequency sound, but more efficient for medium frequency sound, from 600 to 1000 Hz. 

Compared to the normal density PC concrete, which usually has an acoustic absorption 

coefficient <0.1 over the range 125 to 2000 Hz [49], GFC exhibits better acoustic absorption 

properties. The thin GFC specimens tested in this study have lower sound absorption in the 

medium to high frequency regions than ceramsite porous concrete, which has an average 

acoustic absorption coefficient >0.5 in this region [50]. However, any further increase in the 

thickness of the GFC material will increase its sound absorption.   
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4. Conclusions 

Geopolymer foam concretes (GFCs) with a wide range of densities were successfully 

synthesized by mechanical mixing with preformed foam. Several properties of this material 

were investigated and reported for the first time: 

(1) The compressive strength of GFC is notably influenced by slag substitution for fly ash. 

The 30% slag-containing GFC exhibits 28 d compressive strengths ranging from 3 to 48 

MPa, depending on density. The relatively higher strength compared to PC foam concrete of 

equivalent density means that GFC may be able to be used for semi-structural to structural 

purposes.    

(2) The thermal conductivities of the near-dried GFCs are in a range of 0.15 to 0.48 W/m·K 

when their demolded densities change from 720 to 1600 kg/m3 (105°C oven-drying densities 

from 585 to 1370 kg/m3) as the foam dosage decreases from 16% to 0. In this regard, GFC 

exhibits better thermal insulation property than normal PC foam concrete at the same density. 

(3) The GFCs derived from alkali activation of low-calcium fly ash possess excellent 

strength retention after high temperature treatment; the compressive strength increases by 

100% after exposure at 800°C. However, slag substitution for fly ash causes a large strength 

loss after heating, which is attributed to the loss of structural integrity of the calcium-rich 

components of the binder gel.  

(4) Thin GFC specimens (20 - 25mm) exhibit an impressive acoustic absorption rate (α = 

0.7-1.0) in the low frequency region of 40 to 150 Hz. The average sound absorption of GFC 

is better than dense concrete, and could be equivalent to PC foam concrete.  
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Fig. 1. SEM images of (a) fly ash and (b) slag. 
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Fig. 2. Cumulative particle size distributions of fly ash and slag. 

 

 



       

 

Fig. 3. GFC slices used for thermal conductivity testing. The optical micrograph shows the 
pore structure. 
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Fig.4. Compressive strength and demolded density of GFC as a function of slag substitution 
for fly ash.  
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Fig.5. Compressive strength, demolded density and dry density of GFC as a function of foam 
dosage (in terms of mass ratio of solid materials). The slag substitution is constant at 30%.   
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Fig.6. Thermal conductivity of GFC as a function of foam dosage. Error bars show the 
standard deviation between four replicate tests.  
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Fig.7. Compressive strengths of GFCs F5S0 and F5S30 after exposure to different 
temperatures.  
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Fig.9. Linear shrinkage of GFC after heating. 

 



    

    

 

Fig.9. Cross-section of GFC specimens: (a) F5S0 before; (b) F5S0 after; (c) F5S30 before; 
and (d) after 800oC exposure. 
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Fig. 10. XRD patterns of GFCs before and after high temperature exposure: (a) F5S0; (b) 
F5S30. Phases identified: mullite, Al4.8Si1.2O9.5; nepheline, NaAlSiO4; åkermanite, 
Ca2Mg0.75Al 0.5Si1.75O7; dehydrated zeolite (Ca,Na)-A, CaNa11.44Al 11.21Si11.59O48. 
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Fig. 11. Acoustic absorption spectra for selected GFCs with thicknesses of 20 mm and 25 
mm, as marked.  
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Figure 9 Cross-section of GFC specimens: (a) F5S0 before; (b) F5S0 after; (c) F5S30 

before; and (d) after 800°C exposure. 

Figure 10 XRD patterns of GFCs before and after high temperature exposure: (a) F5S0; 

(b) F5S30. Phases identified: mullite, Al4.8Si1.2O9.5; nepheline, NaAlSiO4; 

åkermanite, Ca2Mg0.75Al 0.5Si1.75O7; dehydrated zeolite (Ca,Na)-A, 

CaNa11.44Al 11.21Si11.59O48. 

Figure 11 Acoustic absorption spectra for selected GFCs with thicknesses of 20 mm and 

25 mm, as marked. 

 



Table 1. Compositions of fly ash and slag as determined by XRF, wt.%. LOI is loss on ignition at 
1000°C.  

 

 SiO2 Al 2O3 CaO MgO K2O Na2O Fe2O3 P2O5 SO3 TiO2 LOI 

Fly ash 72.1 24.7 0.1 0.2 0.5 ≤0.1 1.2 ≤0.1 ≤0.1 1.4 0.4 

Slag 33.3 14.6 41.7 6.1 0.3 0.2 0.8 0.2 0.6 0.6 0.5 

 

 

Table 2. Mix proportions of the GFCs.  

 

Mixture Fly ash (g) Slag (g) NaOH  solution, 12 M (g) Sodium silicate,  
Ms = 2.0 (g) 

Water (g) Foam (g) 

F5S0 100 0 15.5 24 8 5 

F5S10 90 10 15.5 24 7 5 

F5S20 80 20 15.5 24 6.5 5 

F5S30 70 30 15.5 24 6 5 

F5S40 60 40 15.5 24 6 5 

F0S30 70 30 15.5 24 10 0 

F1.3S30 70 30 15.5 24 10 1.3 

F3.3S30 70 30 15.5 24 8 3.3 

F6.7S30 70 30 15.5 24 4.5 6.7 

F10S30 70 30 15.5 24 3 10 

F13S30 70 30 15.5 24 1.5 13 

F16S30 70 30 15.5 24 0 16 
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