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Abstract 13 

The effects of activator dose on the properties of alkali-activated slag/metakaolin blends, 14 

were studied in fresh and hardened states: heat evolution, strength and accelerated 15 

carbonation. High activator concentrations affect the slag dissolution rate, reducing 16 

compressive strength when this is the sole precursor. An increased activator 17 

concentration favours metakaolin reaction, promoting high strengths and reduced 18 

permeability. Metakaolin addition, and increased activator concentrations reduce the 19 

susceptibility to carbonation, associated with the refinement of the pore network under 20 

extended CO2 exposure. The effect of adding an aluminosilicate precursor to an alkali-21 

activated slag system is strongly dependent on the activator concentration.  22 

 23 
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 26 

1. Introduction  27 

 28 

Alkali-activation technology is attracting the attention of industry and academy as a 29 

suitable alternative for valorisation of large streams of industrial wastes and by-products, 30 

for the production of environmentally friendly cementitious materials. Alkali-activated 31 

binders can develop advantageous properties for application in the construction sector, 32 
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such as high mechanical strength at early times of curing, high resistance to acid attack, 33 

and high performance when exposed to elevated temperatures, depending on the nature 34 

and dose of the precursor and activator used, and the curing conditions adopted [1-3]. 35 

The main raw materials typically used as precursors for alkali-activation are those which 36 

are also used as supplementary cementitious materials (SCMs) in Portland cement 37 

blends, such as blast furnace slag from the iron making industry, fly ashes from coal 38 

combustion, and thermally treated clays such as metakaolin [4, 5]. The nature of these 39 

raw materials is highly variable from source to source, and therefore, the production of 40 

alkali-activated binders requires higher quality control than conventional Portland 41 

cements, in order to develop specific desired properties.  42 

 43 

Alkali-activated slag binders can develop high mechanical strengths at early times of 44 

curing, with a lower permeability than identified in Portland cements [6]; however, blast 45 

furnace slags are already extensively exploited by the construction industry for the 46 

production of blended Portland cements. Consequently, in some parts of the world 47 

different precursors are needed for the production of alkali-activated binders. As a 48 

potential solution, the development of alkali-activated binders using blends of two or 49 

more precursors has been carried out over the past decades, including blended systems 50 

of fly ash/slag [7-10], fly ash/metakaolin [11] and slag/metakaolin [12-16]. These 51 

binders usually present improved properties compared to systems where the 52 

aluminosilicate precursors are activated alone, with a microstructure including co-53 

existing Ca-rich and Na-rich reaction products, depending on the fraction of the Ca-rich 54 

precursor incorporated in the blend.  55 

 56 

There is not yet a standardised methodology for dosing the alkali activator when 57 

producing alkali-activated binders. This is a critical factor controlling the properties of 58 

these materials, and in the case of blended activated systems it is essential to consider 59 

the differences in chemistry of slag and aluminosilicate precursors, and to control the 60 

kinetics of dissolution and promote the reaction of each component of the blended 61 

activated binder. Typically, when a new precursor or blend is going to be activated, 62 

preliminary studies are carried out to identify the amount of activator that allows the 63 

production of a workable binder, with moderate initial setting time, that develops 64 

compressive strengths within a desirable range, as specified by the needs of the 65 
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application of the final product. This means that the activator dose varies from study to 66 

study, and therefore there is not a good understanding of the role of the concentration of 67 

activation in the microstructural development or durability of alkali-activated materials.  68 

 69 

Carbonation of cementitious materials is understood as the chemical reaction taking 70 

place between the hydration products composing the binders and the CO2 from the 71 

atmosphere, leading to the formation of carbonates. This has been identified as one of the 72 

potential disadvantages of alkali-activated binders, compared with Portland cement, as 73 

the earlier studies assessing the susceptibility of degradation of these cements, via 74 

acceleration carbonation tests, showed higher potential to develop carbonation problems 75 

than conventional Portland cement [17-19]. Recent studies have demonstrated that the 76 

mechanism of carbonation in alkali-activated binders is strongly dependent on the type 77 

of the precursor used (aluminosilicates or granulated blast furnace slag) [9, 20, 21], the 78 

nature of the activator [17] and the accelerated carbonation testing conditions such as 79 

relative humidity [22], and CO2 concentration [23]. Therefore, the general statement that 80 

alkali-activated materials will carbonate more than Portland cement is inaccurate, as 81 

there are too many variables controlling how and when carbonation of these binders is 82 

going to occur, and limited correlation has been identified between natural and 83 

accelerated carbonation results for alkali-activated slag materials [23]. 84 

 85 

In order to gain a better understanding of the effect of the alkali concentration on the 86 

fresh paste properties of alkali-activated slag/metakaolin blends, Vicat testing and 87 

isothermal calorimetry were carried out in this study. Compressive strength evolution of 88 

the pastes was also tested. Mortars were produced with selected paste formulations, and 89 

their resistance to accelerated carbonation was evaluated after 28 days of curing.  90 

 91 

2. Experimental programme 92 

 93 

2.1. Materials 94 

The primary raw material used in this study was a granulated blast furnace slag (GBFS; 95 

Table 1) with a basicity coefficient (Kb=CaO+MgO/SiO2+Al2O3) and quality coefficient 96 

(CaO+MgO+Al2O3/SiO2+TiO2) of 1.01 and 1.92, respectively. Its specific gravity was 2900 97 
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kg/m3 and Blaine fineness 399 m2/kg. The particle size range, determined through laser 98 

granulometry, was 0.1 Ȃ 74 m, with a d50 of 15 m.  99 

 100 

Table 1. Composition of the GBFS and MK used, from X-ray fluorescence analysis. LOI is 101 

loss on ignition at 1000°C. 102 

Precursor 
Component (mass % as oxide) 

SiO2 Al2O3 CaO Fe2O3 MgO Other LOI 

GBFS 32.3 16.3 42.5 2.4 2.9 1.7 1.9 

MK 50.7 44.6 2.7 - - 1.0 1.0 

 103 

The metakaolin (MK) used was generated in the laboratory by calcination of a kaolin 104 

containing minor quartz and dickite impurities. Calcination was carried out at 700°C in 105 

an air atmosphere, for 2 hours. The particle size range of the metakaolin was 1.8 Ȃ 100 106 

µm, with a d50 of 13.2 µm and d10 of 4 µm, and Blaine fineness 391 m2/kg. Alkaline 107 

activating solutions were formulated by blending a commercial sodium silicate solution 108 

with 32.4 wt.% SiO2, 13.5 wt.%  Na2O and 54.1 wt.% H2O, together with 50 wt.% NaOH 109 

solution, to reach overall desired molar ratios (SiO2/Al2O3 (S/A) and Na2O/Al2O3). 110 

 111 

2.2. Sample synthesis and test procedures  112 

 113 

2.2.1. Pastes 114 

Pastes formulated with an overall (solid fraction in the activator + solid precursor) 115 

SiO2/Al2O3 (S/A) molar ratios of 3.6, 4.0 and 4.4, GBFS/(GBFS+MK) ratios of 0.8 (20 wt.% 116 

MK), 0.9 (10 wt.% MK) and 1.0 (0 wt.% MK), with a constant water/(GBFS + MK + solid 117 

fraction in the activator) ratio of 0.23, were produced in accordance with the standard 118 

procedure ASTM C305-06 [24]. The water/solid ratio of these pastes was determined 119 

accordingly to the procedure ASTM C187 [25]. The relationship between the overall oxide 120 

ratios and the concentration of the activator (expressed as Na2O wt.% relative to the 121 

amount of precursor to activate), is presented in Table 2. The modulus of solution (Ms = 122 

molar ratio SiO2/Na2O) of the activators used is between 0.9 Ȃ 1.5. 123 

 124 

These activation concentrations are considered high for the sole activation of slag, taking 125 

into account that the conventional concentrations of activation of slag with sodium 126 
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silicate solution are usually between 3 Ȃ 7% Na2O [26]; however, production of concretes 127 

with these formulations has been achieved [27, 28], which motivates the detailed 128 

understanding of the structure developed in these materials.  129 

 130 

In fresh pastes, setting time was determined using the Vicat apparatus by following the 131 

standard procedure ASTM C191-08 [29]. The setting process of these mixes was also 132 

assessed by isothermal calorimetry (JAF calorimeter) at 25°C, over the first 40 hours of 133 

reaction. Fresh paste was mixed externally (40g of total mix), weighed into polystyrene 134 

vessels, and immediately placed in the calorimeter. 135 

 136 

Table 2. Equivalence between overall oxide ratios (precursor+activator) and activation 137 

concentration (% Na2O by mass of GBFS + MK) used for the preparation of the pastes 138 

assessed 139 

GBFS/ (GBFS+MK) 
Overall 

SiO2/Al2O3 ratio 

Activation concentration 

(wt.%Na2O) 

1.0 

4.4 10.6 

4.0 9.9 

3.6 9.1 

0.9 

4.4 12.5 

4.0 11.6 

3.6 10.5 

0.8 

4.4 14.5 

4.0 13.0 

3.6 12.0 

 140 

For compressive strength testing, five specimens were cast in a cylindrical mould (40 mm 141 

height and 20 mm diameter) and stored in hermetic containers at a relative humidity of 142 

90% and a temperature of 27 ± 2 °C for 1, 7, 28, 56 and 180 days.  143 

 144 

2.2.2. Mortars 145 

Mortars were produced with similar formulations to the pastes (Table 2), following the 146 

standard procedure ASTM C305-06 [24]. River sand with a specific gravity, absorption 147 
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and fineness modulus of 2450 kg/m3, 3.75% and 2.57 was used as fine aggregate. All 148 

samples were formulated with a constant water/(slag + metakaolin + solid fraction in the 149 

activator) ratio of 0.47 and a binder/sand ratio of 1:2.75. This water/solids ratio is 150 

significantly higher than the used for producing pastes, however, it was selected in order 151 

to replicate the content of water used for producing concretes with similar binder 152 

formulations [27]. The specimens were cast in cubic moulds with dimensions of 50.8 x 153 

50.8 mm, and stored under controlled humidity (relative humidity (RH) 85%) and 154 

ambient temperature (~25°C) for 24 h. Samples were then demoulded and cured under 155 

RH of 90% and a temperature of 27 ± 2 °C for 28 days.  156 

 157 

2.3. Accelerated Carbonation  158 

After 28 days of curing the mortar specimens were removed from the humidity chamber, 159 

dried at 60C for 24 h, and then the top ends of the specimens were covered using an 160 

acrylic resin (Acronal ®), applying a minimum of 4 layers, to direct the ingress of CO2 161 

through the selected faces of the cubes during testing. Samples were then transferred to 162 

the carbonation chamber for CO2 exposure, without application of an intermediate drying 163 

or conditioning step. This was done to minimise the potential microcracking and 164 

differences in sample maturity, which would be observed if they were conditioned for 165 

extended periods at the testing relative humidity [22], a step which is specified in many 166 

testing protocols. The conditions used were a CO2 concentration of 1.0 ± 0.2%, a 167 

temperature of 20 ± 2ºC, and RH = 65 ± 5 %.  168 

 169 

Specimens were removed from the chamber after 340 or 540 h of exposure, and the depth 170 

of carbonation was measured by treating the surface of a freshly cleaved specimen with 171 

a 1% solution of phenolphthalein in alcohol. In the uncarbonated part of the specimen, 172 

where the mortar was still highly alkaline, purple-red colouration was obtained, while no 173 

there was no colour change observed in the carbonated region. Each result is reported as 174 

the average depth of carbonation measured at eight points, using two replicate samples 175 

(four points per sample; the standard deviation of each carbonation depth measurement 176 

is similar to or smaller than the size of the points on the graphs where plotted).  177 

 178 

Compressive strength of carbonated and uncarbonated mortars was tested following the 179 

standard procedure ASTM C 109. Capillary sorptivity, applying the standard procedure 180 
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SIA 162/1 [30], was also determined after the different times of CO2 exposure (240h and 181 

540h). The properties of uncarbonated samples after 28 days of curing are used as 182 

reference values, indicated as zero hours of exposure. 183 

 184 

 185 

3. Results and discussion 186 

 187 

3.1. Characterisation of pastes 188 

3.1.1. Setting time 189 

All the pastes (Table 3) show shorter setting times compared with the expected for 190 

conventional Portland cements [31]. Binders solely based on slag (GBFS/(GBFS+MK) = 191 

1.0) formulated with increased S/A ratios (linked to higher concentrations of activation), 192 

exhibit substantial increments in the initial setting time (up to 18 min), when compared 193 

with pastes formulated with reduced concentrations of activation; however, the total 194 

setting time reported for the samples activated with a concentration of activation ~11 195 

wt.% Na2O (S/A = 4.4) is lower than obtained when activating at reduced concentrations 196 

of activator.  197 

 198 

This behaviour differs from that which is observed in alkali-activated slag binders 199 

activated under conventional activation conditions, where increased concentrations of 200 

activators up to 5 wt.%Na2O promoted reduced initial setting time. This is likely 201 

associated with an increased dissolutionȂprecipitation rate of the Ca-rich components of 202 

the slag under moderate activation conditions [15, 32-34]. This indicates that the high 203 

activator doses used in this study are likely hindering the solubility of Ca from the 204 

dissolved slag, as it has been also identified in other studies [35, 36]  where the delayed 205 

Ca2+ precipitating in the system is prone to react with the excessive OH- in the pore 206 

solution forming Ca(OH)2 instead of C-S-H type phases at early stages of reaction.  207 

 208 

 209 

 210 

 211 

 212 
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Table 3. Setting time of alkali silicate-activated GBFS/MK blends formulated as a 213 

function of overall molar ratios 214 

GBFS/(GBFS+MK) 

ratio 
S/A ratio 

Initial 

setting 

time (min) 

Final 

setting 

time (min) 

Final - 

Initial 

setting 

time (min) 

1.0 

4.4 23 35 11 

4.0 11 30 19 

3.6 5 21 16 

0.9 

4.4 27 54 27 

4.0 46 70 24 

3.6 17 30 12 

0.8 

4.4 38 63 25 

4.0 34 66 32 

3.6 14 27 12 

 215 

A substantial increment in the difference between initial and final setting times is 216 

observed in pastes formulated with a GBFS/(GBFS+MK) ratio of 0.9 (10 wt.% MK) (Table 217 

3). Specifically, samples with an S/A ratio of 4.0 (~11 wt.%Na2O) exhibited an initial 218 

setting time twice that of pastes formulated under the same conditions solely based on 219 

slag. This high concentration of activation is expected to favour the dissolution of 220 

metakaolin over the slag, which extends the setting time of the blended binders. In the 221 

activation process of metakaolin it has been identified [37] that an increased alkalinity 222 

leads to increased setting times as a consequence of the favoured dissolution of Al and Si 223 

species.  224 

 225 

In the blended systems, a higher content of metakaolin leads to longer setting times, 226 

which is consistent with delayed dissolution of the Ca species from the slag in the early 227 

stages of reaction. The fact that comparable total setting times are identified under the 228 

different activation conditions assessed indicate that once the dissolution and 229 

polycondensation of the Al and Si species from the metakaolin take place, the Si and Al 230 

present in the pore solution shift the speciation equilibrium and drive the dissolution of 231 

Ca by complexing with it, forming calcium silicate hydrate type gels and forcing more Ca 232 
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to dissolve. A similar effect is identified in pastes with a GBFS/(GBFS+MK) ratio of 0.8 (20 233 

wt.% MK), exhibiting increased setting times when activated at higher concentrations of 234 

activation.  235 

 236 

3.1.2. Isothermal calorimetry  237 

Alkali activation of slag at highly alkaline concentrations induces changes in the evolution 238 

of heat release (Figure 1), compared with the heat release curves reported for 239 

comparable binders activated under more moderate alkaline conditions [15], which is 240 

associated with modifications in the mechanism of reaction. The heat evolution curves of 241 

slag-based pastes activated with an S/A ratio of 3.6 (~9 wt.% Na2O, Figure 1A) present a 242 

sharp and high intensity initial peak at the early stage of reaction, which is assigned to 243 

the dissolution of slag particles and simultaneous formation of initially dissolved silicate 244 

and aluminate units, as dissolution of calcium species is likely hindered under such 245 

alkaline conditions.  246 
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247 

 248 

 249 

Figure 1. Heat release of alkali-activated GBFS/MK blends with GBFS/(GBFS + MK) 250 

ratios of (A) 1.0 (0 wt.%MK), (B) 0.9 (10 wt.% MK) and (C) 0.8 (20 wt.% MK) 251 

 252 
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After 1 h of reaction, a second peak presenting lower intensity over an extended period 253 

of time (4 h) is observed, and attributed to the formation and subsequent precipitation 254 

of the reaction products. This is consistent with the reduced initial setting times identified 255 

in the pastes activated under these activation conditions, which suggests that at early 256 

stages of the reaction the activation of slag under extremely high alkaline conditions 257 

promotes the fast dissolution of Si-rich species, and their condensation over the surface 258 

of the partially dissolved slag particles leads to the hardening of the paste. Consequently, 259 

it can be suggested that the very short setting times obtained from the Vicat test may 260 

correspond to early stiffening and an increased yield stress rather than true setting, and 261 

thus cannot be associated with the formation of complex reaction products in the binder, 262 

which takes place later in the reaction process.  263 

 264 

At the early stage of the reaction, the slag-based paste formulated with increased 265 

concentration of activation (9.9 wt.% Na2O) presents a low intensity initial peak, which 266 

is assigned to the pre-induction period of the reaction when the start of dissolution of the 267 

slag particles is taking place. With the progress of the reaction, this peak shows a gradual 268 

decrease in its intensity until reaching a constant value, consistent with the partial 269 

initiation of an induction period. A second peak is observed after four hours of testing, 270 

consistent with the accelerationȂdeceleration period where the precipitation of a large 271 

amount of reaction products occurs.  272 

 273 

Binders with a GBFS/(GBFS+MK) ratio of 0.9 (Figure 1B) present a single peak of heat 274 

release associated with the acceleration period. An increased intensity of this peak is 275 

identified at higher concentrations of activation. When samples are activated at ~11 276 

wt.%Na2O (S/A = 4.0), an increment in the total maximum heat release is identified after 277 

28h of testing compared with mixes activated with lower concentrations of activation, 278 

which indicates the delayed precipitation of reaction products at early age. This is 279 

associated with the hindrance of the activation reaction by the excessive concentration 280 

of alkalis. After the concentration of ionic species in the systems is stabilised, the reaction 281 

continues to progress.  282 

 283 

An increased concentration of activation associated with an S/A ratio of 4.4 (12.5 wt.% 284 

Na2O) promotes similar behaviour to the binders solely based on slag with S/A = 3.6, 285 
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consistent with the precipitation of reaction products during the first minutes of reaction, 286 

followed by a sudden reduction of the heat release. For this paste two distinctive peaks 287 

are observed, one between 0-1.5 h and the second between 1.5- 6 h, which suggests that 288 

the precipitation of different reaction type of products is occurring as the reaction 289 

proceed, consistent with the fact that an increased concentration of activation can affect 290 

the dissolution of the slag in these blended systems. The greater degree of dissolution of 291 

the precursors which is achieved thus enables the progressive precipitation of a higher 292 

amount of reaction products than what can be expected in these systems when activated 293 

under lower alkaline conditions. Significant differences in the reaction heat are not 294 

identified between pastes formulated with S/A 4.0 and S/A 4.4 (Figure 1B), consistent 295 

with the fact that both pastes presented similar setting times (Table 3). Those 296 

formulation conditions promote the release of higher amounts of heat, when compared 297 

with pastes produced at lower concentrations of activation (S/A = 3.6), associated with 298 

the formation of an increased amount of reaction products.  299 

 300 

The curves of heat release of pastes formulated with increased contents of MK in the 301 

binder (20 wt.% MK, Figure 1C) present a sole asymmetric peak, attributed to the 302 

acceleration period of the reaction, whose higher intensity is identified in binders 303 

formulated with S/A = 3.6. This specific paste exhibit a delayed precipitation of reaction 304 

products, which was not identified in binders formulated with higher concentrations of 305 

activation.  306 

 307 

With increased contents of MK (GBFS/(GBFS+MK) = 0.8), higher reaction heats are 308 

released, indicating that increased alkalinity is favouring the enhanced dissolution of MK 309 

and the consequent formation of a larger amount of reaction products. This elucidates 310 

that although the MK contents in the blended systems assessed are relatively low, the 311 

kinetics of reaction are strongly affected by the inclusion of this material, especially at 312 

increased concentrations of activation, as consequence of the favoured dissolution and 313 

polycondensation of metakaolin under these conditions [38, 39]. 314 

 315 

3.1.3. Compressive strength development 316 

The compressive strengths of alkali-activated slag/metakaolin pastes cured for 180 days 317 

are shown in Figure 2. Pastes based solely on slag (GBFS/(GBFS+MK) = 1.0) show reduced 318 
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compressive strength at early times of curing when formulated with an S/A ratio of 3.6; 319 

however, after 180 days of curing, similar compressive strengths to those obtained in 320 

activated slag pastes formulated with higher S/A are achieved. Higher S/A ratios (4.4) 321 

promote the development of higher mechanical strength, especially at longer times of 322 

curing. Specimens with a GBFS/(GBFS+MK) ratio of 0.9 (Figure 2) have slightly higher 323 

mechanical strength at early times of curing than the slag-only pastes at all of the S/A 324 

ratios assessed. This indicates that the metakaolin included in the binder is effectively 325 

reacting, as observed in the calorimetry results (Figure 1), and it is contributing to the 326 

enhancement of the mechanical strength of the blended binder. The microstructural 327 

characterisation of pastes with similar formulations to the used in this study showed [40] 328 

that formation of strength giving phases such as C-(N)-A-S-H along with the zeolites 329 

gismondine and garronite is taking place in these systems since early times of reaction, 330 

despite the high concentration of activation used, and its potential effect in the 331 

dissolution of Ca from the slag.  These reaction products slightly differ from those 332 

typically identified in alkali-activated slag systems produced with lower contents of 333 

activator [1], but they are clearly contributing to the strength development of these 334 

binders.   335 

 336 

 337 

 338 

Figure 2. Compressive strength of alkali-activated GBFS/MK blends with              339 

GBFS/(GBFS + MK) ratios as shown in each image, as a function of the activation 340 

conditions (S/A ratios listed in legend) 341 

 342 

For pastes formulated with S/A = 3.6 the mechanical development seems to be slightly 343 

delayed compared with the specimens with higher S/A ratios, as the compressive 344 
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strength exhibited by these samples is slightly lower until 90 days of curing, and 345 

comparable to the other pastes after 180 days of curing when metakaolin is included in 346 

the formulations. Under high alkalinity conditions and with metakaolin present, values 347 

close to the ultimate strengths are obtained after just 28 days of curing, indicating that 348 

these activating conditions accelerate the structural development at early times of curing. 349 

 350 

Reduced S/A ratios, associated with increased concentrations of activation, favour the 351 

development of higher mechanical strengths in pastes with a GBFS/(GBFS+MK) ratio of 352 

0.8. Those specimens exhibited substantial increments in the mechanical strength during 353 

the first days of curing, being higher in the case of pastes activated with S/A ratio of 3.6 354 

and 4.0. The mechanical development seems to be delayed when specimens are produced 355 

with increased S/A ratio (4.4); however, comparable compressive strength values are 356 

obtained for these mixes at the three activation conditions assessed after 180 days of 357 

curing.  358 

 359 

These results are consistent with the kinetics of reaction identified through the 360 

calorimetry study (Figure 1), indicating that increased concentrations of activation, 361 

associated with higher S/A ratio, favour the dissolution and precipitation of a higher 362 

amount of reaction products in specimens including MK as these conditions favour the 363 

dissolution and consequent polycondensation of binding gels. The mechanical strengths 364 

obtained for pastes solely based on slag are lower than those presented in previous 365 

reports assessing the same slag under less-alkaline activation conditions [15]. Those 366 

obtained for pastes with GBFS/(GBFS+MK) ratios of 0.9 and 0.8 are somehow consistent 367 

with the hindering of the Ca2+ dissolution from the slag under the activation conditions 368 

used, potentially delaying the formation of binding phases, and consequently promoting 369 

reduced mechanical strengths at early times of curing. These results suggest that even 370 

though the reaction of the slag is hindered using the activation conditions adopted in 371 

study, the effective activation of the metakaolin included is achieved, and the later 372 

strengths (70 Ȃ 80 MPa) at 180 days of curing are characteristic of high performance 373 

materials. 374 

 375 

 376 

 377 
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3.2. Accelerated carbonation performance of mortars 378 

 379 

3.2.1. Carbonation depth 380 

In Figure 3A it can be seen that there is a reduction in the carbonation depth in mortars 381 

of alkali-activated slag, as the concentration of activation increases. Specimens 382 

formulated with an S/A ratio of 4.4 exhibited a carbonation depth of 21%, after 340h of 383 

exposure to 1% CO2, while samples formulated with S/A ratios of 4.0 and 3.6 present 384 

carbonation depths of 42% and 37% respectively. After 540h of CO2 exposure, the 385 

mortars produced with S/A ratio of 4.4 exhibited a carbonation depth of 51%, conversely 386 

the mortars formulated with reduced concentrations of activation, where the 50.8 mm 387 

mortar cube samples were fully carbonated after 540h of CO2 exposure.  388 

 389 

In mortars produced with a GBFS/(GBFS+MK) of 0.9 (Figure 3B) a similar trend is 390 

identified, so that a higher concentration of activation promotes reduced carbonation 391 

depths in the mortars. After 340h of CO2 exposure the blended slag/metakaolin mortars 392 

formulated with S/A = 3.6 exhibited a carbonation depth 8% higher than was observed 393 

in activated slag-only mortars produced with a similar concentration of activation (S/A = 394 

4.4). In these blended binders formulated with S/A = 4.4, carbonation depth reductions 395 

of up to 65% are identified when compared with the carbonation values identified in 396 

samples formulated with lower S/A ratios. After 540h of CO2 exposure, unlike the slag-397 

only binders, these samples did not reach full carbonation. 398 

 399 
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Figure 3. Carbonation depth of mortars based on activated slag/metakaolin blended 400 

binders as a function of the GBFS/(GBFS+MK) ratio and activation concentration 401 

 402 

In mortars formulated with a GBFS/ (GBFS+MK) ratio of 0.8 no significant differences in 403 

the carbonation depth are identified for the different activation conditions adopted in this 404 

study, especially after 340h of CO2 exposure. However, after 540h of CO2 exposure it is 405 

possible to identify (Figure 3C) that higher concentrations of activation (associated with 406 

higher S/A ratios) lead to a reduced progress of carbonation. It is worth noting that 407 

carbonation depths of these activated blended mortars are significantly lower than those 408 

identified in mortars with lower contents of metakaolin, independent of the 409 

concentration of activation used.  410 

 411 

It is important to note that these results differ from the identified by Burciaga-Diaz et al. 412 

[41] who reported that increased concentrations of activation and addition of metakaolin 413 

in alkali activated slag binders led to severe carbonation damage of the specimens. In 414 

order to elucidate why different results have been identified, it is important to consider 415 

the differences in the chemistry of the slag used by Burciaga-Diaz [41] and the slag used 416 

in this study (Table 1). The slag used in that study is richer in MgO (8.9 wt%) and has 417 

reduced CaO (37.8 wt.%), compared to that used in the present study. The role of the 418 

composition of the slag in the determining carbonation resistance of alkali-activated 419 

binders has recently been elucidated [21], so that higher contents of MgO in the slag 420 

favour the formation of hydrotalcite type reaction products, which can absorb CO2, 421 

enhancing the carbonation resistance of alkali-activated slag binders. Therefore, it might 422 

be expected that the binders produced by Burciaga-Diaz et al. [41] will perform better 423 
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under accelerated carbonation conditions, than those produced in this study with lower 424 

MgO content. 425 

 426 

However, the kinetics of reaction of these two slags are completely different. In slags with 427 

a higher MgO content than the one used in the present study (2.87 wt.%), such as the slag 428 

used by Fernández-Jiménez et al. [42], an increased concentration of activation (5 wt.% 429 

Na2O) reduces the degree of reaction of the slag. Similar results have been identified by 430 

the author (unpublished data) where a threshold value of concentration of activation is 431 

typically identified, and increased concentrations of activation reduce the slag reactivity 432 

as the MgO content in the slag increases. Conversely, in the low MgO content slag used in 433 

this study it has been identified [15] that a higher concentration of alkalis in the system 434 

favours a higher degree of reaction of the slag. 435 

 436 

Therefore, there is no single factor that can explain the carbonation results identified the 437 

activated slag/metakaolin binders assessed in the present study, as there are several 438 

important parameters playing a significant role in how carbonation progresses in these 439 

systems, including: 440 

 the evolution of the alkalinity of the pore solution upon carbonation, as the pore 441 

water can act as a CO2 sorbent in presence of high CO2 concentrations [23], 442 

 the chemistry and microstructure of the reaction products formed, as the nature 443 

and Ca/Si ratios of the C-A-S-H forming in these systems will influence the 444 

decalcification process taking place in these binders , and  445 

 the changes in permeability of these materials during accelerated carbonation, at 446 

the different concentrations of activation and contents of metakaolin added to the 447 

system, as this controls the diffusivity of CO2 within the samples. This will be 448 

addressed in detail below, as sorptivity data for the mortars assessed will be 449 

reported in Section 3.2.3. 450 

Consequently, detailed microstructural characterisation of these binders after 451 

carbonation is required to elucidate the role of the chemistry of the reaction products 452 

forming in the carbonation reaction. 453 
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 454 

3.2.2. Residual compressive strength 455 

Mortars based solely on activated slag (Figure 4A) developed comparable compressive 456 

strength than the corresponding paste specimens (Figure 2) at 28 days of curing, with no 457 

significant changes when using different concentrations of activation. Upon carbonation 458 

for 340 h, the specimens retained their original compressive strength, despite the 459 

observation (Figure 3) that significant carbonation is taking place in these specimens. A 460 

longer time of CO2 exposure does not generally seem to impact the compressive strength 461 

of the samples, although a slight reduction (14%) is solely observed in the mortar 462 

formulated with S/A = 4.0.  463 

 464 

In carbonated plain Portland cement systems, increments in the compressive strength 465 

with carbonation are typically identified [43, 44], which has been associated with the 466 

precipitation of a large amount of calcium carbonate as carbonation products, which 467 

provides more contribution to strength than the portlandite it replaces. Conversely, in 468 

alkali-activated slag materials, carbonation typically leads to a substantial decrease in the 469 

compressive strength [45], associated with the decalcification of the main binding phase, 470 

C-A-S-H type gel, along with an increase in permeability. Considering that in alkali-471 

activated slags produced at high [40] and moderate alkalinity [15], formation of 472 

comparable reaction products has been identified, it is therefore likely suggest that the 473 

hyperalkaline pore solution generated in the binders produced in this study is instead 474 

determining the kinetics and impacts of carbonation. In particular, it seems that in this 475 

instance carbonation of the pore solution and precipitation of carbonation products 476 

contributes to the blockage of the pores, reducing the permeability of the system. 477 

 478 
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Figure 4. Residual compressive strength of carbonated mortars based on 479 

slag/metakaolin activated blends as function of the time of exposure to 1% CO2 480 

 481 

Under the activation conditions used here, a significant increase in the compressive 482 

strength is identified with the inclusion of higher contents of metakaolin, consistent with 483 

a larger extent of reaction of the metakaolin as the concentration of activation increases, 484 

as identified by isothermal calorimetry (Figure 1). Mortars formulated with a 485 

GBFS/(GBFS+MK) ratio of 0.9 exposed to CO2 for 340 h exhibited an increase in the 486 

compressive strength by up to 35% when the samples were formulated with S/A = 3.6, 487 

which is entirely contrary to previous reports [45] of strength losses in alkali-activated 488 

binders upon carbonation. No significant differences in strength as a function of 489 

carbonation duration were identified in the carbonated specimens formulated with S/A 490 

ratios of 4.0 and 4.4. This might be a combined effect of the initial carbonation of the pore 491 

solution followed by the gradual progress of carbonation of the reaction products of these 492 

samples (less than 10 mm between 340h and 540h of CO2 exposure), and the progressive 493 

activation reaction taking place in the uncarbonated cores of the specimens generating 494 
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additional strength. The addition of 20 wt.% MK in these binders does not induce any 495 

significant changes in the strength of the mortars upon CO2 exposure for 340 h. However, 496 

after 540 h of CO2 exposure, the mortars formulated with a S/A ratio of 3.6 exhibited a 497 

compressive strength loss of up to 27%. Conversely, in mortars formulated with lower 498 

S/A ratios, significant increases in the compressive strength are identified.  499 

 500 

There does not seem to be a correlation between the carbonation depth identified for 501 

these mortars and the compressive strength determined at the different times of 502 

exposure, especially in the case of alkali-activated slag mortars, where the samples were 503 

fully carbonated after 540h of CO2 exposure, but still retained compressive strengths of 504 

up to 50 MPa. It has been discussed [45] that the phenolphthalein method is not a reliable 505 

test for measuring the carbonation of alkali-activated materials, as this is a measurement 506 

of the alkalinity of the system, and it does not give any information regarding any 507 

structural changes taking place in these binders upon CO2 exposure. The reaction 508 

products forming in alkali-activated materials are not themselves alkaline, as it is the case 509 

of portlandite in hydrated Portland cement, and all of the alkalinity is held in the pore 510 

solution. Therefore, the phenolphthalein measurement, reported in this study as 511 

carbonation depth, might be solely showing the regions where carbonation of the pore 512 

solution has taken place, rather than potential decay of the main binding phases.  513 

 514 

3.2.3. Capillary sorptivity  515 

Sorptivity curves of the mortars assessed are shown in Figure 5. In all specimens reduced 516 

water absorption is observed in the partially carbonated samples, particularly at 517 

extended times of CO2 exposure. This indicates that the retention of compressive strength 518 

of the activated slag/metakaolin mortars can be at least partially explained by refinement 519 

of the pore structure, due to precipitation of large amounts of carbonation products. This 520 

observation differs from what has been obtained in carbonated specimens with similar 521 

contents of metakaolin but activated with reduced activator concentrations [20], in 522 

alkali-activated slag specimens [19, 46] and even in concrete specimens with similar 523 

binder formulations [22], where accelerated carbonation induced an increase in capillary 524 

permeability and water absorption of the material. It is likely that the large fraction of 525 

paste in the mortars, compared with the concretes produced with a similar binder 526 
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formulation in [22], favours formation of a higher amount of carbonation products, 527 

hindering the ingress of CO2 in the specimens. 528 

 529 

 530 

Figure 5.  Capillary sorptivity curves of uncarbonated (0 hours) and carbonated (340 531 

and 540 hours) alkali-activated slag/metakaolin mortars, as a function of the MK 532 

content: GBFS/(GBFS+MK) = (A) 1.0, (B) 0.9, (C) 0.8 533 

 534 

Regardless of the concentration of activation and the content of metakaolin in the binder, 535 

after 340h of CO2 exposure, all the mortars showed (Table 4) a decrease in the capillary 536 

coefficient (k, the initial slopes of the sorptivity plots in Figure 5) of up to 40%, when 537 

compared with non-carbonated samples. Similar results are observed in specimens 538 
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exposed to CO2 for 540h. Lower k values are associated with a reduced capillary 539 

sorptivity, indicating a decrease in the total porosity of the specimens. In all the mortars 540 

assessed, the exposure to CO2 induced an increment in the resistance to water 541 

penetration (m) (Figure 6), consistent with the reduction in the capillary coefficient (k). 542 

Carbonated mortars solely based on slag and activated with the lower concentration of 543 

activation (S/A Ȃ 3.6) report resistance to water penetration values three times higher 544 

than observed in non-carbonated reference samples. A similar trend was in observed in 545 

mortars including 10 wt% of MK (GBFS/(GBFS+MK) Ȃ 0.9) when activated at a similar 546 

concentration of activation. In the other specimens, the increments in the resistance of 547 

water penetration coefficient were up to 40%. 548 

 549 

Table 3. Capillary sorptivity coefficients of alkali-activated slag/metakaolin mortars as 550 

function of the time of CO2 exposure 551 

GBFS/(GBFS+MK) 

ratio 
SiO2/Al2O3 

k (kg/m2.s1/2) 

0 h 340 h 540 h 

1.0 3.6 0.052 0.038 0.033 

4.0 0.061 0.031 0.026 

4.4 0.039 0.021 0.021 

0.9 3.6 0.051 0.024 0.024 

4.0 0.048 0.030 0.027 

4.4 - 0.029 0.027 

0.8 3.6 0.029 0.016 0.018 

4.0 0.036 0.020 0.023 

4.4 0.043 0.021 0.025 

 552 
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 553 

Figure 6. Resistance to water penetration of alkali-activated slag/metakaolin mortars, 554 

as function of the activation conditions and time of exposure to CO2 555 

556 

4. Conclusions 557 

 558 

The high alkalinity conditions adopted in this study to produce activated slag/metakaolin 559 

blended binders affects the kinetics of reaction of the slag used, so that a higher 560 

concentration of activation increased the initial setting times of the pastes, however the 561 

time between initial and final setting of the activated slag binders was shortened as the 562 

concentration of activation increased. The inclusion of metakaolin increases the total 563 

setting time of the pastes produced from this unusually low-MgO slag, independent of the 564 

amount incorporated and the concentration of activation used. This might be a 565 

consequence of the combined effect of reduced dissolution of Ca from the slag, along with 566 

a high dissolution of Al and Si species from metakaolin, which are favoured under the 567 

highly alkaline conditions adopted. As the alkalinity in the binders is increased at higher 568 

activator concentrations, the reaction of the system is governed by the dissolution and 569 

polycondensation of the species from the metakaolin.  The alkali-activated slag binders 570 

tested here, at high activator concentrations, developed lower compressive strengths 571 

than have been achieved when activating this slag under milder concentrations. Under 572 

the activation conditions adopted here, the inclusion of metakaolin led to a significant 573 

increase in the compressive strength, associated with the simultaneous reaction of slag 574 

and metakaolin.  575 

 576 
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A reduced rate of carbonation was identified in these materials with the addition of 577 

metakaolin, and also with increasing the concentration of the activator. Little or no loss 578 

of compressive strength, and significant reductions in the water permeability, were 579 

observed at longer times of CO2 exposure. This suggest that under the activation 580 

conditions used, precipitation of a large amount of carbonation products might be taking 581 

place as a result of interactions between the highly alkaline pore solution and the 582 

incoming CO2, refining the pore network of the mortars. This hindered the ingress of CO2 583 

within the samples and therefore reduced the carbonation progress. It is important to 584 

note that no correlation could be identified between the carbonation front determined 585 

using a phenolphthalein indicator, and the compressive strength and water sorption of 586 

the test samples. The phenolphthalein indicator is revealing the regions where reductions 587 

of the pH are taking place as a consequence of the carbonation of the pore solution, rather 588 

than regions where damage to the strength-giving binder products is occurring. 589 

Therefore, the methods used for measurement of carbonation depth in alkali-activated 590 

materials requires reassessment, as the standard approach using a phenolphthalein 591 

indicator may not be providing accurate information. 592 

 593 
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