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Abstract—Cognitive small cell networks have been envisioned
as a promising technique to meet the exponentially increas-
ing mobile traffic demand. Recently, many technological issues
pertaining to cognitive small cell networks have been studied,
including resource allocation and interference mitigation, but
most studies assume non-cooperative schemes or perfect channel
state information (CSI). Different from the existing works, we
investigate the joint uplink subchannel and power allocation
problem in cognitive small cells using cooperative Nash bargain-
ing game theory, where the cross-tier interference mitigation,
minimum outage probability requirement, imperfect CSI and
fairness in terms of minimum rate requirement are considered.
A unified analytical framework is proposed for the optimization
problem, where the near optimal cooperative bargaining resource
allocation strategy is derived based on Lagrangian dual decom-
position by introducing time-sharing variables and recalling the
Lambert-W function. The existence, uniqueness, and fairness
of the solution to this game model are proved. A cooperative
Nash bargaining resource allocation algorithm is developed, and
is shown to converge to a Pareto-optimal equilibrium for the
cooperative game. Simulation results are provided to verify
the effectiveness of the proposed cooperative game algorithm
for efficient and fair resource allocation in cognitive small cell
networks.
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I. INTRODUCTION

Driven by the rapid development of wireless terminal

equipments and wide usage of bandwidth-hungry applications

of mobile Internet, wireless data traffic is increasing in an

exponential manner. Traditional deployment of macrocell base

stations (MBS) suffers from poor quality of service (QoS)

and coverage for indoor and cell edge users, especially for

potential use of high carrier frequency in 5G [1]. Therefore,

off-loading the traffic from primary macrocells, improving the

capacity and enhancing the coverage of indoor and cell edge

scenarios are critically needed. In this context, deployment

of low-power, low-cost small access points (e.g., microcell,

picocell and femtocell) becomes a promising technique [2].

Small cells can significantly improve the efficiency of fre-

quency reuse and spectrum sharing. Heterogeneous networks,

comprised of small base stations (SBS) and MBSs, is also an

important candidate technique for 5G mobile communications.

Compared with the orthogonal deployment, spectrum sharing

between macrocells and small cells is more attractive due to

easy implementation and more efficient utilization of spec-

trum. In spectrum sharing, the macrocells can be considered

as the primary network and small cells can be regarded

as the secondary cognitive network [3]. However, cross-tier

interference could be severe in spectrum sharing cognitive

heterogeneous small cell networks. Therefore, the benefits

of cognitive small cell deployments come with a number of

fundamental challenges, which include resource management

and cross-tier interference mitigation.

Game theory based resource allocation and interference

mitigation in small cells have been widely investigated in

existing works [4]–[11]. In [4], non-cooperative power al-

location with signal-to-interference-plus-noise ratio (SINR)

adaptation is used to alleviate the interference from femtocells

to macrocells, while in [5] Stackelberg game based power

control is formulated to maximize femtocells’ capacity under

a cross-tier interference constraint. In [6], a non-cooperative

power and subchannel allocation scheme for co-channel de-

ployed femtocells is proposed, together with macrocell user

transmission protection. In [7], the authors consider a capacity

maximizing power allocation based on a Stackelberg game,

where the MBS is the leader and the FBSs are assumed

as followers. Subchannel allocation in femtocells is formu-

lated into a correlated equilibrium game-theoretic approach

to minimize their interference to the primary MBS in [8].
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A unique Nash equilibrium (NE) is achieved and a hybrid

access protocol is designed for the Stackelberg game in [10].

A non-cooperative game based power control algorithm is

proposed in [11] together with a base station association

scheme for heterogeneous networks. In our previous work

[12] [13], resource scheduling (based on uniform pricing and

differential pricing game) and power control were proposed

for small cell networks.

Moreover, game theory based energy efficient resource

allocation has also been investigated for small cells. In [9],

the energy efficiency aspect of spectrum sharing and power

allocation was studied using a Stackelberg game in hetero-

geneous cognitive radio networks with femtocells. While in

[14], NE of a power adaptation game was derived to reduce

power consumption and an admission control algorithm was

proposed. However, most of the aforementioned resource

allocation algorithms are based on non-cooperative game,

where the NEs are not always efficient, while cooperative

bargaining game modeling [15]–[18] is more suitable for

resource allocation in small cell networks. Moreover, most of

the existing works do not consider the fairness for users in

small cells.

Although some works have been done for fair resource

allocation in cognitive radio [20] and femtocell networks [19],

these papers mainly focus on the resource allocation with

the assumption of perfect channel state information (CSI).

However, in practice, it is difficult for cognitive small cell users

to have perfect knowledge of a dynamic radio environment due

to hardware limitations, short sensing durations and network

connectivity issues in cognitive small cell networks. To the

best of our knowledge, interference-aware resource allocation

for small cell networks considering fairness, imperfect CSI and

outage limitations has not been studied in previous works.

In this paper, we investigate the joint subchannel schedul-

ing and power allocation problem for orthogonal frequency

division multiple access (OFDMA) cognitive small cell net-

works based on a cooperative bargaining game model with

consideration of fairness for users in each small cell, cross-

tier interference limitation, QoS in terms of outage constraint,

imperfect CSI and maximum power constraints. The main

contributions of this paper are summarized as follows.

• We formulate the uplink subchannel and power allocation

problem in cognitive small cells as a cooperative Nash

bargaining game, where a cross-tier interference temper-

ature limit is imposed to protect the primary macrocell,

a minimum outage probability requirement is employed

to provide reliable transmission for cognitive small cell

users, a minimum rate requirement is considered to guar-

antee fairness for users in each small cell, and imperfect

CSI is considered.

• We present a unified analytical framework for the op-

timization problem in cognitive small cell networks,

where the near optimal cooperative bargaining resource

allocation strategy is derived by introducing time-sharing

variables and the Lambert-W function. The existence,

uniqueness, and fairness of the solution to this game

are proved analytically. Accordingly, a cooperative Nash

bargaining resource allocation algorithm is developed,

and is shown to converge to a Pareto-optimal equilibrium

for the cooperative game.

• Small cells are enabled with cognitive capabilities, thus

the spectrum sharing primary macrocell can be protected

by cross-tier interference temperature. Moreover, imper-

fect CSI results in outage in the small cells. In our

proposed joint power and subchannel allocation scheme,

the achievable sum rate is maximized subject to not only

the minimum data rate but also an acceptable outage

probability in the cognitive small cells.

• The proposed algorithm is evaluated by extensive simula-

tions, which show that the proposed cooperative bargain-

ing resource allocation algorithm outperforms the existing

centralized maximal rate (MR) approach, and round-robin

(RR) fairness, giving a good trade-off between throughput

and fairness.

The rest of the paper is organized as follows. Section

II presents the system model and the problem formulation.

Section III provides basics for the Nash bargaining solution

(NBS) of cooperative game theory and the utility design of

the cooperative game. Section IV provides the solutions and

algorithm implementation of the cooperative bargaining game

in small cell networks, while in Section V, performance of

the proposed algorithms is evaluated by simulations. Finally,

Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider an OFDMA cognitive small

cell network where K co-channel cognitive small base stations

(CSBSs) are overlaid on a primary macrocell. We focus on

resource allocation in the uplink of cognitive small cells. Let

M denotes the numbers of active primary macro users in the

macrocell. Each small cell contains the same F number of

users. The OFDMA system has a bandwidth of B, which

is divided into N subchannels. The channel fading of each

subcarrier is assumed the same within a subchannel, but may

vary across different subchannels. We denote gMS
k,i,n and gSk,i,n

as the channel power gains on subchannel n from cognitive

small cell user i in cognitive small cell k to the primary

MBS and CSBS k, respectively, where k ∈ {1, 2, ...,K},

i ∈ {1, 2, ..., F}, n ∈ {1, 2, ..., N}; denote gMS
k,j,n as the chan-

nel power gain on subchannel n from user j(j ∈ {1, 2, ...,M})
in the macrocell to CSBS k; denote pSk,i,n and pMj,n as cognitive

user i’s transmit power on subchannel n in cognitive small

cell k and primary macro user j’s power on subchannel n,

and P = [pSk,i,n]K×F×N is the power allocation matrix of

the K cognitive small cells. Denote A = [ak,i,n]K×F×N as

the subchannel allocation matrix, where ak,i,n = 1 means that

subchannel n is assigned to cognitive user i in cognitive cell

k, and ak,i,n = 0 otherwise.

Then, the received SINR at the kth CSBS for cognitive

small cell user i occupying the nth subchannel is given by,

γSk,i,n =
pSk,i,ng

S
k,i,n

pMj,ng
MS
k,j,n + σ2

(1)
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Fig. 1. System model of cognitive heterogeneous small cell networks.

where pMj,ng
MS
k,j,n is the is the cross-tier interference caused by

the primary macrocell, and σ2 is the additive white Gaussian

noise (AWGN) power. Note that in (1), co-channel interference

between small cells is assumed as part of the thermal noise

because of the severe wall penetration loss and low power of

CSBSs [21]. This is particularly the case for sparse deployment

of small cells in suburban environments [5], where co-tier

inter-small cell interference is negligible as compared with

cross-tier interference [22], [23].

Based on Shannon’s capacity formula, the achievable ca-

pacity of small cell user i on subchannel n in small cell k is

given by:

CS
k,i,n = log2

(

1 + γSk,i,n
)

(bps/Hz). (2)

The channel-to-interference-plus-noise ratio (CINR) is

hSk,i,n =
gSk,i,n

Ik,i,n + σ2
(3)

where Ik,i,n = pMj,ng
MS
k,j,n. Therefore, eq. (2) can be rewritten

as

CS
k,i,n = log2

(

1 + pSk,i,nh
S
k,i,n

)

(bps/Hz). (4)

The kth small cell allocates the radio resources based on an

imperfect estimation of the CINR ĥSk,i,n, where

hSk,i,n = ĥSk,i,n +∆k,i,n (5)

and where ∆k,i,n is the channel estimation error, which is

modeled as a zero-mean complex Gaussian random variable

with variance δk,i,n. ∆k,i,n are independent and identically

distributed (i.i.d.) for different subchannels, different users and

different cognitive small cells. Assuming a minimum mean

square error (MMSE) estimator, the CSI estimation error and

the actual CSI are mutually uncorrelated [25] [24].

The achievable rate of user i on subchannel n in small cell

k can be defined as [32]

rSk,i,n = log2

(

1 + pSk,i,nĥ
S
k,i,n

)

(bps/Hz). (6)

The outage probability [26] imposed by imperfect CSI for

user i on subchannel n is defined as

Poutagek,i,n
= Pr{rSk,i,n ≥ CS

k,i,n}. (7)

Due to the fundamental role of primary macrocells in

providing blanket cellular coverage, a macrocell users QoS

should not be affected by small cell deployments. Therefore,

to implement cross-tier interference protection, we impose

an interference temperature limit to constrain the cross-tier

interference suffered by primary MBS. Let Ithn denote the

maximum tolerable interference level on subchannel n for the

primary macrocell, we have,

K
∑

k=1

F
∑

i=1

ak,i,np
S
k,i,ng

MS
k,i,n ≤ Ithn , ∀n. (8)

B. Problem Formulation

In this paper, our target is to maximize the cognitive small

cells’ utilities while protecting primary macrocell users’ QoS.

We assume that the cross-tier interference temperature limit

is sent by a primary MBS periodically, which requires little

overhead in the primary macrocell. In this case, the subchannel

assignment and power control in primary macrocells are not

part of the optimization. Thus, the corresponding joint sub-

channel scheduling and power allocation problem for uplink

CSBS can be mathematically formulated as,

max
A,P

K
∑

k=1

Uk (9)

s.t. C1 :

N
∑

n=1

ak,i,np
S
k,i,n ≤ Pmax, ∀k, i

C2 : pSk,i,n ≥ 0, ∀k, i, n

C3 :

K
∑

k=1

F
∑

i=1

ak,i,np
S
k,i,ng

MS
k,i,n ≤ Ithn , ∀n

C4 :
F
∑

i=1

ak,i,n ≤ 1, ∀k, n

C5 : ak,i,n ∈ {0, 1}, ∀k, i, n

C6 : Poutagek,i,n
≤ ε, ∀k, i, n

(10)

where Uk is the objective function, which will be designed in

Section III.B. Constraint C1 limits the transmit power of each

cognitive small cell user to be below Pmax; C2 represents

the non-negative power constraint of the transmit power on

each subchannel; C3 sets the tolerable interference temperature

level on each subchannel of a primary macrocell; C4 and C5

are imposed to guarantee that each subchannel can only be

assigned to at most one user in each cognitive small cell. C6

expresses the outage probability constraint of each cognitive

user in cognitive small cells, where ε is the outage probability

limit for user i on subchannel n in small cell k.

III. GAME THEORETIC RESOURCE ALLOCATION IN

SMALL CELL NETWORKS

In this section, we briefly review the basic definition and

concepts of cooperative bargaining games and their application

in resource allocation problems. Then, the utility function is

designed based on the bargaining games.



4

A. Basics of Bargaining Games

Let K = {1, ..., k, ...,K} be the set of players, which are

the small cells in this paper. Let S be the resource allocation

strategy of the players, with An and Pn being the subchannel

assignment space and the power allocation strategy space,

respectively; Let Sk be the resource allocation strategy of the

player k; Let Uk be the utility/payoff function of player k,

and Umin
k is the minimum payoff that player k expects, where

Umin
k is defined as a minimum QoS requirement in terms of

data rate. In a cooperative game, if the minimal payoff Umin
k

is not achieved, player k would not cooperate.

In non-cooperative games, players do not collaborate with

one another. The stable solution for a non-cooperative game

is the NE, if the NE exists and it is unique. A NE in a non-

cooperative game is defined as,

Uk(S
NE
k ,SNE

−k ) ≥ Uk(Sk,S
NE
−k ), ∀Sk (11)

where SNE
k is the resource allocation strategy of player k in

NE, and SNE
−k is the strategy of the other K−1 players under

Nash Equilibrium except for player k. Nash Equilibrium is

defined as the fixed points where no player can improve its

utility by changing its strategy unilaterally [27].

1) Nash Bargaining Solutions: It is known that the NE

in a non-cooperative game is not always efficient, that is,

the strategy under NE may not be efficient. Therefore, we

resort to cooperative bargaining games [29]. Let U be a closed

and convex subset of RN that represents the set of feasible

payoff allocations that the players can get if they all cooperate.

Suppose {Uk ∈ U|Uk ≥ Umin
k , ∀k ∈ K} is a nonempty

bounded set. Define Umin = (Umin
1 , ..., Umin

K ), then the pair

of (U ,Umin) constructs a K-player bargaining game. Here,

we define the Pareto efficient point [27], where a player can

not find another point that improves the utility of all the players

at the same time.

Definition 1: (Pareto Optimality) A point is said to be Pareto

optimal if and only if there is no other allocation U
′

k such that

U
′

k ≥ Uk, ∀k ∈ K, and U
′

k > Uk, ∃k ∈ K, i.e., there exists no

other allocation that leads to superior performance for some

players without causing inferior performance for some other

players [27].

There may be an infinite number of Pareto optimal points

in a game of multi-players. Thus, we must address how to

select a Pareto point for a cooperative bargaining game. We

need a criterion to select the best Pareto point of the system.

A possible criterion is the fairness of resource allocation.

Specially, the fairness of bargaining games is NBS, which

can provide a unique and fair Pareto optimal point under the

following axioms.

Definition 2: ū is an NBS in U for Umin, that is, ū =
f(U ,Umin), if the following axioms are satisfied [27].

1) Individual Rationality: Ūk ≥ Umin
k , where Ūk ∈

u, ∀k ∈ K.

2) Feasibility: ū ∈ U .

3) Pareto Optimality: ū is Pareto optimal.

4) Independence of Irrelevant Alternatives: If ū ∈ U
′

⊂ U ,

ū = f(U ,Umin), then ū = f(U
′

,Umin).

5) Independence of Linear Transformations: For any linear

scale transformation ψ,

ψ(f(U ,Umin)) = f(ψ(U), ψ(Umin)).
6) Symmetry: If U is invariant under all exchanges of play-

ers (small cells), fi(U ,U
min) = fj(U ,U

min), ∀i, j.

Axioms 1), 2) and 3) define the bargaining set B. Hence,

the NBS locates in the bargaining set. Axioms 4), 5), and

6) are called axioms of fairness. Axiom 5) ensures that the

bargaining solution is scale invariant. The symmetry axiom 6)

ensures that if the feasible ranges for all players are completely

symmetric, then all users have the same solution. Axiom 6)

implies that if players have the same QoS requirements and

utility functions, they will have the same utility regardless of

their indices. This represents an important fairness criterion

for our cooperative game that gives incentives to players to

collaborate, as they can rely on the network to treat them

fairly when their utility-resource trade-offs vary over time.

B. Utility Design and Resource Allocation Game Formulation

The following theorem shows the existence and uniqueness

of the NBS that satisfies the axioms 1)-6).

Theorem 1: There is a unique and fair solution function

f(U ,Umin) that satisfies all the axioms in Definition 2, and

the solution can be obtained by

f(U ,Umin) ∈ arg max
U∈U ,U≥Umin

K
∏

k=1

(Uk − Umin
k ). (12)

Proof : The proof of the theorem is omitted due to space

limitations. A similar detailed proof can be found in [28]. �

Here, we relax ak,i,n to be a continuous real variable in

the range [0,1]. In this case, ak,i,n can be interpreted as the

fraction of time that subchannel n is assigned to user i in small

cell k during one transmission frame. We first introduce the

following Lemma,

Lemma 1: Define Uk =
F
∑

i=1

ln(Vk,i(Sk,i)) =
F
∑

i=1

ln
(

Rk,i−R
min
k,i

)

=

F
∑

i=1

ln

((

N
∑

n=1
ak,i,nr

S
k,i,n(p

S
k,i,n)

)

−Rmin
k,i

)

, where

Vk,i(Sk,i) = Rk,i −Rmin
k,i is the difference between user

i’ data rate and it’s required minimum data rate, and Rmin
k,i

is user i’s minimum data rate in small cell k. Sk,i is the

resource allocation strategy of user i in small cell k. If the

expression of Rk,i is concave over Sk,i, Uk will satisfy the

Nash axioms required in Theorem 1.

Proof : As can be seen as a given condition, Rk,i is concave

over Sk,i, then ln(Vk,i(Sk,i)) is concave, and thus Uk is also

concave in Sk. Therefore, Uk defined here can satisfy all the

axioms in Definition 2 and Theorem 1. �

Fig. 2 shows a simple example of a two-small-cell case,

where U1 and U2 are the with different utilities of the two

small cells [29]. Area S is the feasible region for U1 and U2.

When Umin = 0, the objective function in (12) is reduced

to
K
∏

k=1

(Uk − Umin
k )|Umin

k
=0,K=2 = U1U2 = C̃, where C̃ is

a constant. The optimal point of the NBS is B at (Ũ1, Ũ2).
The physical meaning of this is that “after the small cells are
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Fig. 2. An NBS example of the two small cells with two different utilities
[29].

assigned with the minimal rate, the remaining resources are

divided between the two small cells in a ratio equal to the

rate at which the utility can be transferred.” [29]. The optimal

point for the Max-Rate approach is at (U∗
1 , U

∗
2 ), which is the

tangent of line U1+U2 = C∗ and the feasible region S. As it

can be seen from Fig. 2, the sum rate of NBS solution, Ũ1 +
Ũ2 = CNBS , is smaller than the Max-Rate approach, because

of the tradeoff of sum rate and fairness in NBS. Moreover,

CNBS is much larger at (U
′

1, U
′

2), which induces the most

fair solution of U1 = U2. That is, the NBS solution can well

balance throughput and fairness.

According to Lemma 1 and Theorem 1, the unique Nash

bargaining equilibrium with fairness can be found over the

strategy space. By adopting the objective utility function in

Lemma 1, the optimization problem in (9) under the con-

straints (10) can be rewritten as,

max
A,P

K
∑

k=1

(

F
∑

i=1

ln

((

N
∑

n=1

ak,i,nr
S
k,i,n(p

S
k,i,n)

)

−Rmin
k,i

))

(13)

s.t. C1, C2, C3, C4, C5, C6 (14)

It can be seen that the problem defined in (13) under

the constraints of (14) is a non-convex mixed integer pro-

gramming problem because of the discrete characteristics

of the subchannel constraints in C4 and C5. The optimal

solution can be obtained by exhaustive search, which has

a high complexity. To reduce the complexity and meet the

requirements in Definition 2, the optimization problem above

should be transformed into a convex problem.

Before Lemma 1, we relax ak,i,n to be a continuous real

variable in the range [0,1]. This time-sharing relaxation was

first proposed in [30]. After introducing the time-sharing

method, the transformed optimization problem is regarded as a

low bound of the original problem [30]. Time-sharing method

has been widely used to transform non-convex combinato-

rial optimization problems into convex optimization problems

for multiuser subchannel allocation in multichannel OFDMA

systems [32]. According to [31], it is shown that the duality

gap for a nonconvex optimization problem approaches zero in

multichannel systems when the number of subchannels is large

enough. In the real systems, it’s a typical configuration of 50

resource blocks (RBs) for LTE/LTE-Advanced. Similarly, in

this paper, we assume there are 50 subchannels (N = 50) in

our considered system. It’s large enough for the dual problem

to have a near-zero-gap. For notational brevity, denote the

actual power allocated to user i in cognitive small cell k
on subchannel n as qk,i,n = ak,i,np

S
k,i,n. Similarly, denote

Ik,i,n = pMj,ng
MS
k,j,n + σ2 and r̃Sk,i,n = log2

(

1 +
qk,i,ng

S
k,i,n

ak,i,nIk,i,n

)

the received interference power and capacity of user i on

subchannel n in small cell k, respectively. Now, the problem

(13) subject to the constraints in (14) can be converted into

max
A,Q

K
∑

k=1

(

F
∑

i=1

ln

((

N
∑

n=1

ak,i,nr
S
k,i,n(qk,i,n)

)

−Rmin
k,i

))

(15)

s.t. C1 :
N
∑

n=1

qk,i,n ≤ Pmax, ∀k, i

C2 : pSk,i,n ≥ 0, ∀k, i, n

C3 :
K
∑

k=1

F
∑

i=1

qk,i,ng
MS
k,i,n ≤ Ithn , ∀n

C4 :
F
∑

i=1

ak,i,n ≤ 1, ∀k, n

C5 : 0 ≤ ak,i,n ≤ 1, ∀k, i, n

C6 : Poutagek,i,n
≤ ε, ∀k, i, n

(16)

where Q = [qk,i,n]K×F×N .

Theorem 2: The problem in (15) under the constraints (16)

is a convex optimization problem.

Proof : It can easily be proved that the Hessian matrix of

(15) over ak,i,n and qk,i,n is negative semidefinite, thus, the

objective function of (15) is concave. Moreover, the feasible

set of the objective function in (15) is convex, and the

corresponding optimization problem is a convex optimization

problem. �

Therefore, there is a unique optimal solution of problem

(15) under the constraints (16), because the problem and its

feasible set are convex.

Theorem 3: The utility function in (15) meets the Nash

bargaining axioms defined in Definition 2, and the NBS is

reduced into proportional fairness, when Rmin
k,i = 0 in the

utility function of (15).

Proof : Since the objective function in (15) is concave and

injective, it meets all the Nash Bargaining axioms defined in

Definition 2. When Rmin
k,i = 0, the utility function in (15) can

be written as
K
∏

k=1

ln(Rk,i −Rmin
k,i )|Rmin

k,i
=0 =

K
∏

k=1

ln(Rk,i).

When Rmin
k,i = 0, the NBS is the same as proportional fairness,

which requires that
K
∏

k=1

(Rk,i−Rmin
k,i )

Rk,i
≥ 0 for the interested



6

utility Rk,i, ∀i. �

IV. BARGAINING RESOURCE ALLOCATION SOLUTIONS

FOR SMALL CELL NETWORKS

We first substitute (4) and (7) into C6 and have,

Pr{rSk,i,n ≥ log2
(

1 + pSk,i,nh
S
k,i,n

)

} ≤ ε (17)

and (17) can be rewritten as

Pr

{

hSk,i,n ≤
2r

S
k,i,n − 1

pSk,i,n

}

≤ ε. (18)

Here, we assume that hSk,i,n is a non-central chi-squared

distributed random variable [33]; Following the simplification

used in many previous works on the effects of imperfect CSI

[25], we only consider the case of Poutage = ε, and have

FhS
k,i,n

(

2r
S
k,i,n − 1

pSk,i,n

)

= ε. (19)

where FhS
k,i,n

is the CDF of hSk,i,n. Therefore, the data rate

that satisfies the outage probability requirement can be given

as

rSk,i,n = log2

(

1 + pSk,i,nF
−1
hS
k,i,n

(ε)
)

. (20)

Substituting (20) into (15), we transform the optimization

problem in (15)-(16) into

max
A,Q

K
∑

k=1

(

F
∑

i=1

ln

((

N
∑

n=1

ak,i,nlog2

(

1+
qk,i,n
ak,i,n

F−1
hS
k,i,n

(ε)

)

)

−Rmin
k,i

))

.

(21)

s.t. C1, C2, C3, C4, C5 (22)

Since the optimization problem in (15)-(16) is convex, the

transformed problem in (21) and (22) is also convex.

A. Solution of the Cooperative Resource Allocation Game

The solution gap between the primal problem and its dual

problem can be considered zero for most engineering prob-

lems. Since the duality gap is zero, we can solve the problem

in the dual domain. Moreover, the system considered here

is a multi-subchannel network; therefore, dual decomposition

can be an effective method. The Lagrangian function of the

primal problem in (21)-(22) is given by (23) at the top

of next page. Where λ = [λk,i]K×F is the Lagrange

multipliers corresponding to the joint power constraint, and

µ = [µn]N×1 and η = [ηk,n]K×N are Lagrange multipliers

vectors associated with the cross-tier interference limit and

subchannel usage constraints, respectively.

Thus, the dual problem is given by

min
λ,µ,η≥0

Ξ(λ,µ,η) (24)

where the dual function Ξ(λ,µ,η) can be given as

Ξ(λ,µ,η) = max
A,Q

L(A,Q, λ, µ, η)

= Pmax

K
∑

k=1

F
∑

i=1

λk,i +
K
∑

k=1

N
∑

n=1

ηk,n

+
N
∑

n=1

µnI
th
n +Ψ(A,Q,λ,µ,η)

(25)

where Ψ(A,Q,λ,µ,η) for a fixed set of Lagrange multipliers

λ,µ,η is given by (26) at the top of next page.

Based on standard optimization techniques and the Karush-

Kuhn-Tucker (KKT) conditions [34], the power allocation for

user i in small cell k on subchannel n is obtained by taking

the first derivative of (26) with respect to qk,i,n, which can be

given as

∂Ψ(Q,λ,µ)
∂qk,i,n

=

F
−1

hS
k,i,n

(ε)

ln 2(1+
qk,i,n
ak,i,n

F
−1

hS
k,i,n

(ε))

log2

(

1+
qk,i,n

ak,i,n
F−1

hS
k,i,n

(ε)

)

−Rmin
k,i

− λk,i − µng
MS
k,i,n.

(27)

According to the KKT conditions,

F−1

hS
k,i,n

(ε)

ln 2(λk,i+µng
MS
k,i,n

)

= (1+
qk,i,n

ak,i,n
F−1
hS
k,i,n

(ε))(log2

(

1+
qk,i,n

ak,i,n
F−1
hS
k,i,n

(ε)
)

−Rmin
k,i ).

(28)

Note that (28) is a transcendental algebraic equation over

qk,i,n, which can be solved by recursive numerical methods.

The solution of (28) can be obtained as follows. Let

Λk,i,n = 1 +
qk,i,n
ak,i,n

F−1
hS
k,i,n

(ε), (29)

and

Γk,i,n =
F−1
hS
k,i,n

(ε)

ln 2(λk,i + µngMS
k,i,n)

. (30)

Substituting (29) and (30) into (28), we get,

Λk,i,n(log2(Λk,i,n)−Rmin
k,i ) =

Γk,i,n

ak,i,n
. (31)

Letting Υ = 2R
min
k,i , we have

Λk,i,nlog2(
Λk,i,n

Υ
) =

Γk,i,n

ak,i,n
. (32)

Multiplying both sides of (32) with 1
Υ , we have

log2(
Λk,i,n

Υ
)

Λk,i,n

Υ =
Γk,i,n

ak,i,nΥ
. (33)

Letting ϕ =
Λk,i,n

Υ , we can get

ϕϕ = 2
Γk,i,n

ak,i,nΥ . (34)

Using the Lambert-W function properties, ϕ can be given as

ϕ = exp

(

W

(

ln

(

2
(

Γk,i,n

ak,i,nΥ )
)))

(35)
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L(A,Q,λ,µ,η)

=
K
∑

k=1

F
∑

i=1

ln

((

N
∑

n=1
ak,i,nr

S
k,i,n(qk,i,n)log2

(

1 +
qk,i,n

ak,i,n
F−1
hS
k,i,n

(ε)
)

)

−Rmin
k,i

)

+

K
∑

k=1

F
∑

i=1

λk,i

(

Pmax−
N
∑

n=1
qk,i,n

)

+
N
∑

n=1
µn

(

Ithn−
K
∑

k=1

F
∑

i=1

qk,i,ng
MS
k,i,n

)

+
K
∑

k=1

N
∑

n=1
ηk,n

(

1−
F
∑

i=1

ak,i,n

)

(23)

Ψ(A,Q,λ,µ,η) = max
A,Q































K
∑

k=1

F
∑

i=1

ln

((

N
∑

n=1
ak,i,nlog2

(

1 +
qk,i,n

ak,i,n
F−1
hS
k,i,n

(ε)
)

)

−Rmin
k,i

)

−
K
∑

k=1

F
∑

i=1

λk,i

(

N
∑

n=1
qk,i,n

)

−
N
∑

n=1
µn

(

K
∑

k=1

F
∑

i=1

qk,i,ng
MS
k,i,n

)

−
K
∑

k=1

N
∑

n=1
ηk,n

(

F
∑

i=1

ak,i,n

)































= max
A,Q































K
∑

k=1

F
∑

i=1

ln

((

N
∑

n=1
ak,i,nlog2

(

1 +
qk,i,n

ak,i,n
F−1
hS
k,i,n

(ε)
)

)

−Rmin
k,i

)

−
K
∑

k=1

F
∑

i=1

N
∑

n=1
λk,iqk,i,n −

N
∑

n=1

K
∑

k=1

F
∑

i=1

µnqk,i,ng
MS
k,i,n

−
K
∑

k=1

N
∑

n=1

F
∑

i=1

ηk,nak,i,n































= max
A,Q

K
∑

k=1

F
∑

i=1































ln

((

N
∑

n=1
ak,i,nlog2

(

1 +
qk,i,n

ak,i,n
F−1
hS
k,i,n

(ε)
)

)

−Rmin
k,i

)

−
N
∑

n=1
λk,iqk,i,n −

N
∑

n=1
µnqk,i,ng

MS
k,i,n

−
N
∑

n=1
ηk,nak,i,n































.

(26)

where W (·) is the Lambert’s W function given by W (·) =
∑+∞

i=1 ((−i)
i−1/

i!)(·)
i. Substituting ϕ =

Λk,i,n

Υ and (29) into

(35), we can obtain

1 +
qk,i,n
ak,i,n

F−1
hS
k,i,n

(ε) = Υexp

(

W

(

ln

(

2
(

Γk,i,n

ak,i,nΥ )
)))

.

(36)

Therefore, given the optimal subchannel allocation âk,i,n,

the optimal power allocation p̂Sk,i,n can be obtained as

p̂Sk,i,n =
q̂k,i,n

âk,i,n

= 1
F−1

hS
k,i,n

(ε)

(

Υexp

(

W

(

ln

(

2
(

Γk,i,n

ak,i,nΥ )
)))

−1

)+

(37)

where (x)
+
= max(0, x).

Given the optimal power allocation, the first derivative of

(26) with respect to ak,i,n is given as

∂Ψ(A,λ,µ)

∂ak,i,n
= Hk,i,n − ηk,i,n (38)

where

Hk,i,n =
log2

(

1+p̂S
k,i,nF

−1

hS
k,i,n

(ε)

)

log2

(

1+p̂S
k,i,n

F−1

hS
k,i,n

(ε)

)

−Rmin
k,i

− λk,ip̂
S
k,i,n

− µnp̂
S
k,i,ng

MS
k,i,n.

(39)

Subchannel n is assigned to the user with the largest Hk,i,n

in small cell k [30] [32]; that is,

âk,i∗,n = 1|i∗=argmax
i

Hk,i,n
, ∀k, n. (40)

B. Update of the Dual Variables

Both the ellipsoid and subgradient method can be adopted

in the update of dual variables [34]. Here, we choose the

subgradient method to update the dual variables, as formulated

in Lemma 2

Lemma 2: The subgradient of λk,i and µn are respectively

given by

Pmax −

N
∑

n=1

p̂Sk,i,n (41)

Ithn −

K
∑

k=1

F
∑

i=1

p̂Sk,i,ng
MS
k,i,n. (42)

Proof : The proof is provided in Appendix A. �

According to Lemma 2, the dual variables can be updated

as

λ
(l+1)
k,i =

[

λ
(l)
k,i − β

(l)
1

(

Pmax −
N
∑

n=1

pSk,i,n

)]+

, ∀k, i (43)

µ(l+1)
n =

[

µ(l)
n − β

(l)
2

(

Ithn −
K
∑

k=1

F
∑

i=1

pSk,i,ng
MS
k,i,n

)]+

, ∀n

(44)
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where β
(l)
1 and β

(l)
2 are the step sizes of iteration l(l ∈

{1, 2, ..., Lmax}), Lmax is the maximum number of iterations,

and the step sizes should satisfy the condition,

∞
∑

l=1

β
(l)
l = ∞, lim

l→∞
β
(l)
l = 0, ∀l ∈ {1, 2}. (45)

C. Cooperative Bargaining Resource Scheduling Algorithm

Although (37), (40), (43)-(44) give a solution to the joint

subchannel scheduling and power allocation problem of (13)-

(14), it still remains to design an algorithm to provide the

execution structure and the executing entity for the equations.

Therefore, we propose Algorithm 1 as an implementation of

our cooperative bargaining resource scheduling solution. The

proposed iterative Algorithm 1 will guarantee convergence by

using the subgradient method.

Algorithm 1 Cooperative Bargaining Resource Scheduling

Algorithm

1: Initialize Imax and Lagrangian variables vectors λ,µ, set

i = 0
2: Initialize pk,i,n with an uniform power distribution among

all subchannels

3: Initialize ak,i,n with subchannel allocation method in [38],

∀k, i, n
4: repeat

5: for k = 1 to K do

6: for n = 1 to N do

7: for i = 1 to F do

8: a) Cognitive users update p̂Sk,i,n according to

(37);

9: b) Calculate Hk,i,n according to (39);

10: c) CSBS updates âk,i∗,n according to (40);

11: d) CSBS updates λ according to (43);

12: end for

13: end for

14: end for

15: MBS updates µ according to (44), and broadcasts those

values to all CSBSs via backhaul link, l = l + 1.

16: until Convergence or l = Lmax

Note that gMS
k,i,n required in Algorithm 1 can be estimated

at cognitive user i in small cell k by measuring the downlink

channel power gain of subchannel n from the macrocell and

utilizing the symmetry between uplink and downlink channels,

or by using site specific knowledge [35]. Furthermore, it can be

assumed that there is a direct wire connection between a CSBS

and the MBS for the CSBS to coordinate with the central MBS

[5], [36], according to a candidate scheme proposed for 3GPP

small cell mobility enhancement [37].

Algorithm 1 can be implemented by each CSBS utilizing

only local information and limited interaction with the MBS;

therefore, Algorithm 1 is distributed and the practicality is

ensured.

V. SIMULATION RESULTS AND DISCUSSION

In this section, simulation results are given to evaluate the

performance of the proposed algorithms. In the simulations,

spectrum-sharing CSBSs and primary users are randomly

distributed in the range of MBS, and cognitive small cell users

are uniformly distributed in the coverage area of their serving

small cell; the carrier frequency is 2 GHz, B = 10 MHz,

N = 50, M = 50, and σ2 = B
N
N0, where N0 = −174

dBm/Hz is the AWGN power spectral density. The CINR

hSk,i,n, is assumed as a non-central chi-squared distributed

random variable. The primary macro users’ maximum transmit

powers are set at 30 dBm. The coverage radius of the MBS

is 500 m, and that of a small cell is 10 m. We assume that all

small cell users have the same QoS requirement.
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Fig. 3. Convergence of the proposed Algorithm 1.

In Fig. 3, the convergence of Algorithm 1 is evaluated

with the outage probability constraint ε = 0.01, the cross-

tier interference limit Ithn = 7.5 × 10−14 W, minimum data

rate requirement Rmin
k,i = 0.5bps/Hz, the variance of channel

estimate error δk,i,n = 0.05, number of users per small

cell F = 4 and maximal transmit power of small cell user

Pmax = 20dBm. As can be seen from Fig. 3, the total

capacity of the small cells converges after 30 iterations. This

result, together with the previous analysis, indicates that the

proposed Algorithm 1 converges in heterogeneous networks.
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Fig. 4. Total capacity of small cells vs variance of estimation error.

Fig. 4 shows the total uplink capacity of K small cells
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when the variance of estimation error δk,i,n increases from

0.01 to 0.2 for all k, i, n with the user number per small cell

F = 2, 4, 6. The simulation parameters are set as K = 10 ,

Rmin
k,i = 0.5bps/Hz for all k, i, ε = 0.01, Pmax = 20 dBm

and Ithn = 7.5×10−14 W (-101.2 dBm) for all n. The capacity

of all small cells decreases with the increase of the variance of

estimation error, because of the imperfect estimation of CSI.

We also observe that a higher capacity is obtained with a larger

number of F because of the multi-user diversity.
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Perfect CSI

ε=0.01
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Fig. 5. Total capacity of small cells vs number of small cells.

Fig. 5 shows the total uplink capacity of K small cells

when the number of small cells K increases from 10 to 40,

for the outage probability constraint ε = 0.01, 0.05, 0.1. The

simulation parameters are set as F = 4 , Rmin
k,i = 0.5bps/Hz

for all k, i, δk,i,n = 0.05 for all k, i, n, Pmax = 20 dBm

and Ithn = 7.5 × 10−14 W (-101.2 dBm) for all n. The

total capacity of small cells increases with the increase of

the number of small cells. It also can be seen from Fig. 5

that a higher outage probability limit ε induces a higher total

capacity of small cells, because a larger value of ε enlarges the

feasible region of the variables in the original problem defined

in (13)-(14), etc.
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Perfect CSI

Fig. 6. Total capacity of small cells vs number of users in each small cell.

Fig. 6 shows the total uplink capacity of K small cells when

the number of users per small cells F increases from 2 to 6,

for the outage probability limit ε = 0.05, 0.1, 0.2. The other

simulation parameters are set as K = 10 , Rmin
k,i = 0.5bps/Hz

for all k, i, δk,i,n = 0.05 for all k, i, n, Pmax = 20 dBm and

Ithn = 7.5×10−14 W (-101.2 dBm) for all n. The capacity of

all small cells increases with the increase of F because of the

multi-user diversity. Similar to the results in Fig. 5, a higher

outage probability limit ε induces a higher total capacity of

small cells.
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Proposed, perfect CSI

ε=0.01,imperfect CSI

ε=0.05,imperfect CSI

ε=0.2,imperfect CSI

Existing, perfect CSI

Original, perfect CSI

Fig. 7. Total capacity of small cells vs minimum rate requirement of each
cognitive user.

Fig. 7 shows the total uplink capacity of K small cells

when the minimum rate requirement of each cognitive user

Rmin
k,i increases from 0.2 bps/Hz to 1 bps/Hz, for the outage

probability limit ε = 0.01, 0.05, 0.2. The other simulation

parameters are set as K = 10, δk,i,n = 0.05 for all k, i, n,

Pmax = 20 dBm and Ithn = 7.5×10−14 W (-101.2 dBm) for

all n. The capacity of all small cells increases with increasing

Rmin
k,i , because larger Rmin

k,i enlarges the feasible region of

the optimizing variable. Similar to the results in Fig. 5 and

Fig. 6, a higher outage probability limit ε induces a higher

total capacity of small cells. In this figure, we also compare

the proposed Algorithm 1 with existing cooperative resource

allocation methods when the CSI is perfectly known. The

existing scheme is composed of cooperative power allocation

in [39] and subchannel allocation in [38]. As can be seen from

Fig. 7, proposed Algorithm 1 has better performance in terms

of capacity than the existing schemes with the assumption

of perfect CSI. With the assumption of perfect CSI, Fig. 7

also showed about 1% 2% performance loss from the original

solution of (13) to the convex optimization solution of (15),

where the original solution is solved by exhaustive method

with high complexity.

Fig. 8 shows the total uplink capacity of K small cells when

the maximum transmit power per cognitive small cell user

Pmax increases from 25 dBm to 40 dBm, for the interference

temperature limit Ithn = 7.5×10−13 W, 7.5×10−14 W, 7.5×
10−15 W. The other simulation parameters are set as K = 10
, Rmin

k,i = 0.5bps/Hz for all k, i, ε = 0.01, δk,i,n = 0.05
for all k, i, n, and Pmax = 20 dBm. The total capacity of

the small cells increases with the increase of Pmax, because

higher Pmax enlarges the feasible region S. It also can be seen
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Fig. 8. Total capacity of small cells vs maximum transmit power of each
user.

from the figure that higher interference temperature limit Ithn
induces higher total capacity of the small cells.

In order to evaluate the fairness of users in small cells, we

use the fairness index (FI) [40], which is defined as

(

K
∑

k=1

F
∑

i=1

(

Rk,i

Rmin
k,i

))2/


KF





K
∑

k=1

F
∑

i=1

(

Rk,i

Rmin
k,i

)2






.

(46)

This fairness index is widely applied in the literature to

evaluate the level of fairness achieved by resource allocation

algorithms.
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Fig. 9. Fairness index vs number of small cells.

Fig. 9 shows the fairness among all the users in K small

cells when the number of small cells increases from 10 to 50,

with the outage probability limit ε = 0.01, Ithn = 7.5× 10−13

W, Rmin
k,i = 1bps/Hz, F = 4, δk,i,n = 0.05 for all k, i, n, and

Pmax = 30dBm. As can be seen from the figure, Algorithm

1 achieves a higher fairness index than the centralized MR

approach, while round-robin(RR) method has the highest fair-

ness index among the three schemes. Here, the centralized MR

approach is composed by exhaustive method of subchannel

allocation and waterfilling power allocation. RR method is

composed of round-robin subchannel and the proposed power

allocation proposed in this paper. Therefore, it’s verified that

the cooperative bargaining resource scheduling algorithm can

achieve higher fairness index with the cost of small reduction

in throughput, compared with the centralized MR approach.
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Fig. 10. Capacity vs number of small cells.

Fig. 10 shows the capacity of K small cells when the

number of small cells increases from 10 to 40, , with the

outage probability limit ε = 0.1, Ithn = 7.5 × 10−13 W,

Rmin
k,i = 1bps/Hz, F = 4, δk,i,n = 0.05 for all k, i, n,

and Pmax = 30dBm. As can be seen from the figure, the

Algorithm 1 achieves a lower capacity compared with the

centralized MR approach, and higher capacity than the RR

scheme. As one can conclude from Fig. 9 and Fig. 10, the

proposed Algorithm 1 achieves a better trade-off between

capacity and fairness than existing known algorithms. The

complexity of proposed Algorithm 1 is compared with the

existing MR and RR schemes. In Algorithm 1, the calculation

of (39) for every small cell user on each subchannel in

every small cell entails KFN operations, and a worst-case

complexity of solving (40) needs KFN operations in each

iteration. Suppose the subgradient method used in Algorithm

1 needs ∆ iterations to converge, updating λ and ν needs

O(KF ) operations each [31] [34], and the computation of µ

calls O(N) operations, therefore, ∆ is a polynomial function

of K2F 2N . The total complexity of Algorithm 1 is thus

O(K2F 2N2∆). The complexity of RR is O(N∆). MR ap-

proach use exhaustive search of subchannel allocation and

waterfilling power allocation with subgradient update [32].

Therefore, the complexity of central MR approach is extremely

high of O(KFN∆). Compared with the exhaustive search

for subchannel allocation, which has a worst-case complexity

of O(KFN ), the proposed Algorithm 1 has a much lower

complexity than MR approach and higher complexity than RR

approach. In other words, the proposed Algorithm 1 (NBS

approach) can also achieve a tradeoff between capacity and

complexity.
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Ξ(λ′,µ′) = max
A,Q
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
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VI. CONCLUSION

In this paper, we have investigated the joint subchannel and

power allocation problem in cognitive small cell networks. The

resource allocation problem was formulated as a cooperative

Nash bargaining game, where a cross-tier interference temper-

ature limit is imposed to protect the primary macrocell, a min-

imum outage probability requirement is employed to provide

reliable transmission for cognitive small cell users, a minimum

rate requirement is considered to guarantee intra-small cell

fairness, and imperfect CSI is considered in the analysis and

algorithm design. The near optimal cooperative bargaining re-

source allocation solutions are derived by relaxing subchannel

allocation variables and using the Lambert-W function. The

existence, uniqueness, and fairness of the solution to this game

model were proved analytically. Accordingly, a cooperative

Nash bargaining resource allocation algorithm was developed,

and was shown to converge to a Pareto-optimal equilibrium

for the cooperative game. Simulation results showed that the

proposed algorithms not only converge within a few iterations,

but also achieve a better trade-off between capacity and

fairness than the existing algorithms.

APPENDIX A

PROOF OF LEMMA 2

Based on (25), we can get (47) on the top of this page.

From (29), we get (48) on the top of this page.

Therefore, we have

Ξ(λ′, µ′) ≥
K
∑

k=1

F
∑

i=1

(

λk,i
′ − λk,i

)

(

Pmax −
N
∑

n=1
q̂k,i,n

)

+
N
∑

n=1
(µn

′ − µn)

(

Ithn −
K
∑

k=1

F
∑

i=1

q̂k,i,ng
MS
k,i,n

)

+ Ξ(λ, µ).
(49)

Eq. (49) verifies the definition of subgradient and completes

the proof. �
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