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Nanorod solar cells have been attracting a lot of attention recently, as they have been shown to exhibit a lower carrier multi-

plication onset and a higher quantum efficiency than quantum dots with similar bandgaps. The underpinning theory for this

phenomenon is not yet completely understood, and is still the subject of ongoing study. Here we conduct a theoretical investiga-

tion into CM efficiency in elongated semiconductor nanostructures with square cross section made of different materials (GaAs,

GaSb, InAs, InP, InSb, CdSe, Ge, Si and PbSe), using a single-band effective mass model. Following Luo, Franceschetti and

Zunger we adopt the CM figure of merit (the ratio between biexciton and single-exciton density of states) as a measure of CM

efficiency and investigate its dependence on the aspect ratio for both (a) constant cross section (i.e. varying the volume) and (b)

constant volume (i.e., varying the cross section), by decoupling electronic structure effects from surface-related effects, increased

absorption and Coulomb coupling effects. The results show that in both (a) and (b) cases elongation causes an increase in both

single- and bi-exciton density of states, with the latter, however, growing much faster with increasing energy. This leads to the

availability of more bi-exciton states than single-exciton states for photon energies just above the bi-exciton ground state and

therefore suggests a higher probability of CM at these energies for elongated structures. Our results therefore show that the ori-

gin of the observed decrease of the CM threshold in elongated structures can be attributed purely to electronic structure effects,

paving the way to the implementation of CM-efficiency-boosting strategies in nanostructures based on the lowering of the CM

onset.

1 Introduction

In conventional photovoltaic devices, the absorption of a pho-

ton always creates a single pair of oppositely charged particles

(electrons and holes), regardless of the photon energy. In a

semiconductor nanocrystal (NC) of a suitable material, multi-

ple electron-hole pairs can be generated upon the absorption

of a single high-energy photon, their number depending only

on the photon energy1. Thanks to this process, called carrier

multiplication (CM), or multiple exciton generation (MEG),

a more efficient and complete conversion of solar energy into

electric current could be achieved in a NC-based solar cell2

and at the same time the detrimental heat generation that ac-

companies conventional conversion could be reduced.

Unfortunately, despite experimental confirmation of CM in

a wide range of materials3–7 , CM-based solar cells are still far

from yielding multiplication factors even close to 2 (i.e., the

best recorded internal quantum efficiencies are still far from

200%)8,9. What is more, the mechanism behind CM itself

is still unclear and many aspects of it remain controversial.

In particular it has been observed experimentally that elon-

gated nanostructures exhibit higher CM efficiencies which are

associated with lower CM onsets. The origins of this effect

are however not clear. Multiple factors could be responsi-

ble for it: (i) the larger volume of the rod, when compared

with a spherical structure with the same band gap, leading

to a larger absorption cross section, (ii) a larger surface-to-

volume ratio, leading to an increase in surface-related effects

(such as ligand- or trap-mediated processes or other environ-

mental effects), (iii) a different electronic structure leading to

an increased (biexcitonic) density of states (DOS), (iv) the en-

hanced Coulomb coupling that binds electrons and holes into

well defined 1D excitons , leading to bimolecular (i.e., two-

body) Auger interactions between the two excitons in rods10,

compared to the three-body interactions between free carriers

in spherical NCs11, or some other unknown cause. Here we

investigate the possible origins of the observed lowering of the

CM onset by decoupling electronic structure effects (iii) from

surface-related effects (ii), absorption effects (i), and effects

due to enhanced Coulomb interaction (iv). By using a single-

band effective mass model with an infinite potential barrier,

we prevent the carriers wave functions from sampling the sur-

face, effectively removing surface effects (ii) from the calcu-

lation. At the same time this approach allows us to investigate

a range of elongations otherwise inaccessible to more accurate

atomistic approaches, due to the prohibitively large number of

atoms involved. By describing excitons in the single-particle

picture, where E(X) = E(ei) + E(h j) + Ebulk
g (see (2)), we
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neglect enhancement effects of the Coulomb interactions be-

tween electrons and holes due to confinement, excluding (iv).

We then consider the single- and bi-exciton DOS following the

absorption of a single high-energy photon, thereby excluding

possible effects due to variations in the absorption cross sec-

tion (i). We finally compare the effect of elongations at con-

stant cross section with that of elongation at constant volume.

We find that as the aspect ratio (i.e., the elongation) of the

structure increases, so does the single-particle DOS in both the

valence and the conduction bands. This leads to an increase

in both single- and bi-exciton densities of states, with the lat-

ter increasing at a faster rate, though, causing a decrease in

the energy E0 at which the two curves cross (which is closely

related to the energy position of the CM onset). This effect

is important as a lowering of the CM onset is associated with

increased CM efficiency12,13 and enhanced solar energy con-

version14,15.
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Fig. 1 (a) Schematics of CM via impact ionisation. (b) Density of

single exciton (blue) and bi-exciton (red) states versus energy for

cubic GaAs NCs with sides of 10 lattice constants. (c) Ratio of red

and blue curves in (b) plotted on a logarithmic scale to show a figure

of merit characteristic.

In 0D confined structures, CM is typically described in

terms of impact ionisation (II)1,3,16–18, a term originally used

to describe this process in bulk materials: the photon energy

in excess of the bandgap, rather than being lost to the lattice

in the form of phonons, can be transferred by one of the two

photogenerated carriers to an electron in the valence band, ex-

citing it to the conduction band, and creating a further exciton

(for a total of two excitons generated per absorbed photon,

see Fig. 1a). For CM to take place the photon energy must

be at least twice the bandgap (i.e., the excess energy of the

carrier at least equal to Eg), the minimum energy required to

create a ground state bi-exciton (the minimum energy to excite

a second valence electron across the band gap). The inverse

process, where a bi-exciton (XX) recombines to form an exci-

ton (X) is referred to as Auger recombination (AR). Both pro-

cesses are governed by the same transition matrix elements.

This identity is indeed the reason why impact-ionisation had

been previously dismissed19,20 as the source of CM in NCs,

based on the then perceived incompatibility between the ∼ 10

ps AR lifetimes and the observed < 400 fs CM decay. The

crucial difference between the two processes, however, is that

the initial states in the former represent the final states in the

latter and vice versa.

It has been shown that the II rate is proportional to the num-

ber of available final (i.e., XX) states16–18 and the AR rate to

the number of final X states21: CM can therefore be much

faster than AR when the density of bi-exciton states ρXX (E)
is greater than the density of single exciton states ρX (E) (see

Fig. 1b). The ratio R(E) = ρXX (E)/ρX (E), referred to as the

CM figure of merit (FoM)22, is therefore an important param-

eter in the determination of the efficiency of CM in NCs. Ide-

ally, for photovoltaic applications, this ratio should be greater

than one, implying a higher rate of II than AR. At the same

time, smaller values of ρX (E) could be indicative of a reduc-

tion in the efficiency of phonon-assisted relaxation, the main

mechanism competing with II. Indeed, tight-binding calcu-

lations18 have shown that at high energies impact ionisation

rates are comparable in bulk and nanostructured PbSe, which

may suggest that the increase in efficiency caused by the re-

laxation of momentum conservation rule in the latter may be

compensated by a reduced efficiency in phonon-assisted de-

cay, due to a sparser density of electronic levels.

The importance of R(E) has also been confirmed by the re-

sults of recent ab-initio time-dependent density functional the-

ory calculations combined with non-adiabatic molecular dy-

namics23, which interestingly also showed that multiple ex-

citon recombination (AR) is only possible for energies in the

window 2Eg ≤ E < 3Eg, i.e., close to the crossing point be-

tween ρXX (E) and ρX (E). An alternative model proposed by

Klimov explains CM in terms of direct generation of multiex-

citons via Coulomb coupling to virtual single-exciton states19.

In this model the CM efficiency depends on the ratio of the

biexciton and single exciton generation rates, and therefore on

R(E).

Following the convention,17,18,22 we define the CM criti-

cal energy E0 as the energy at which R(E) = 1 (Fig. 1c).

Above this energy CM rates are larger than AR rates, i.e., bi-

exciton generation becomes faster, leading to more efficient

carrier multiplication. The CM onset Eonset is defined as17

max(E0,Eopt), where Eopt is the minimum photon energy such

that either of the photogenerated carriers has sufficient energy

to initiate CM. In this work we will be concerned with possible

strategies to engineer the critical energy E0. In particular, we

will show that experimental observations of lower CM onsets
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in elongated nanostructures correlate with theoretical predic-

tions of reduced values for E0, thereby establishing a close

correspondence between critical energy and CM efficiency.

While the size-tunability of the band-gap is well established

in NCs, a model for the tunability of the CM onset requires a

careful consideration of the band-structure and in particular of

the distribution of states just above the bi-exciton ground state

energy 2Eg. A theoretical study on the effects of the band

structure on CM efficiency was conducted by Luo et al.22 us-

ing the infinite-barrier truncated-crystal approximation (TCA)

within the semi-empirical pseudopotential method. They cal-

culated the CM FoM for cubic NCs of different sizes (l=6a0,

8a0 and 10a0, where a0 is the lattice constant), made of differ-

ent materials, and found that it was larger for PbSe, Si, GaAs,

CdSe, and InP, suggesting a lower CM onset and therefore

higher efficiency for these materials. They concluded that high

CM efficiency requires high degeneracy in the bulk band-edge

states. As a consequence of its peculiar electronic structure24,

where both CBM and VBM are located at the 4-fold degen-

erate L-point, PbSe was shown to have the highest CM FoM.

Conversely, InAs was found to have one of the lowest effi-

ciencies, from this point of view, given its large Γ-L and Γ-X

spacings in the bulk, which prevent any confinement-induced

Γ-to-L and Γ-to-X electronic transitions in small NCs. In other

materials (such as GaAs, InSb, and GaSb), small Γ-L spacings

in the bulk cause the electron states to derive from the L-point

Bloch state, in sufficiently small NCs, leading to larger CM

efficiencies.

Since the publication of Luo’s work, advances in colloidal

synthesis techniques have paved the way for the manufac-

ture of cubic nanostructures (cubic quantum dots and square-

sectional quantum rods) for a variety of semiconductors of dif-

ferent sizes25–28 using self assembly techniques. Interestingly,

cubic structures have been shown to have a higher packing

density than spherical dots29. This could lead to more highly

efficient devices sitting on the same substrate, and therefore

harnessing even more energy from sunlight. Furthermore, al-

though experimentally the CM onset has been shown to be

independent of the NC size, for spherical NCs of a specific

material14,30, it has recently been found to depend on the NC

shape31–35. Therefore further theoretical and experimental

work is required on this subject36 to shed light on these ex-

perimental findings.

One interesting line of enquiry would be an investigation

into the effects of elongation. Unlike in spherical or cu-

bic structures, where electrons and holes experience equal

quantum confinement in all three spatial dimensions, in an

elongated structure the confinement is relaxed along one di-

mension, creating a quasi one dimensional system where the

bandgap is largely determined by the smaller dimensions.

However, as the elongation increases, the decrease in the con-

finement energy along that direction reduces the energy spac-

ing between neighbouring states, increasing the DOS in both

valence and conduction bands.

Klimov’s group was the first to show experimental evidence

to support the claim that the CM onset is a useful parame-

ter in determining the CM efficiency for PbSe NCs12, further

emphasizing the importance of the former being as close to

2Eg as possible36. More recent experimental studies inves-

tigating the behaviour of this characteristic in quantum rods

have observed a general reduction in the CM onset for PbSe

quantum rods compared to their dot-like siblings with similar

bandgaps. However, the energy value to which the onset con-

verges with elongation and the aspect ratio at which conver-

gence is achieved are still controversial32–34. Cunningham et

al.32 measured an increase of CM efficiency and a concomi-

tant reduction of Eonset from 2.9 to 2.33 for aspect ratios in-

creasing from 1 to 4-5 in cylindrical structures with a diameter

of 4.4 nm, while Sandberg et al.33 observed a decrease from

3.2 to 2.6 in the electron-hole pair creation energy for aspect

ratios reaching up to 7-8, albeit in narrower structures, with

typical diameters of 3-3.6 nm.

This strong interest in PbSe nanostructures originates from

a number of reasons. Firstly the bandgap is small enough to

allow CM for low energy photons corresponding to the in-

frared region of the electromagnetic spectrum. Secondly, the

unique band structure gives an extra 4-fold degeneracy in both

conduction and valence band edges24. Also, the relatively

large dielectric constant causes a reduction in carrier-carrier

interactions, leading to an increase in the exciton Bohr radius,

which can, in theory, be up to the length of the rod10. How-

ever nanostructures made of a number of other materials may

offer alternative advantages: e.g., ease of integration with ex-

isting Si-based technology (Si and Ge), more ideally placed

bandgap for solar absorption (InAs, InSb), more mature col-

loidal technology (CdSe, CdS), etc. We therefore decided to

screen a large sample of different materials.

We aim to first validate our method by comparing its results

for non-elongated structures with the CM critical energies cal-

culated by Luo et al.22. We will therefore consider cubic NCs

with the same dimensions as those used in reference22, which,

as mentioned above, are now experimentally accessible in a

variety of semiconductor materials and in different sizes.25–28

2 Methods

The electronic structure in both the conduction (CB) and va-

lence band (VB) is calculated using the eigenvalues solutions

of the Schrödinger equation for a quantum box with an infinite

confining potential (the charge distribution of the 6 lowermost

states is shown in Fig. 2a):
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(1)

Fig. 2 (a) The charge density of the 6 states closest to the band edge

(111, 112, 113, 121, 211, 114) for a nanorod with aspect ratio 2. (b)

Possible single-exciton configurations and (c) their corresponding

charge distributions.

where the effective mass parameters listed in table 1 were

used. In order to make sure that all energy levels within a

specific energy window [Emin,Emax] are included in the calcu-

lated DOS, a maximum quantum number nmax (n = i, j,k) is

pre-calculated, defined as the highest quantum number yield-

ing an energy within the window while the other two (m, l 6= n)

are set to one. e.g. E1,1,kmax < Emax and E1,1,kmax+1 > Emax.

The single-exciton energies EX are then obtained as

EX
i, j,k = ECB

i, j,k +EV B
i, j,k +Ebulk

g (2)

where Ebulk
g is the bulk band gap for the given semicon-

ductor material (possible single-exciton configurations are

schematically shown in Fig. 2b in the single-particle picture,

together with their charge density - Fig. 2c). In our approach

we therefore neglect (a) higher energy bands (such as the L

valleys in GaAs, GaSb and InSb), (b) band anisotropies, and

(c) excitonic effects, the most important of which is the red

shift of the band edge due to electron-hole Coulomb attrac-

tion. Furthermore, the infinite potential is known to overes-

timate the confinement energy, as in reality there is a finite

probability of the carriers to exist in the barrier. One possi-

ble strategy to compensate for this, is to model the structure

as being slightly larger than its actual dimensions. Bryant et

al.37 showed that a better agreement with the measured opti-

cal gaps could be achieved by assuming L′ = 1.3L, where L′

is the overestimated cross sectional width of the dot. Here we

choose not to follow this route and let the reader decide which

size to use in the comparison with experiment (indeed the ra-

tio between two consecutive sizes considered in this work -

6a0, 8a0 and 10a0 - is nearly 1.3). It has been suggested22 that

the inclusion of higher valleys [point (a) above] is important

in the calculation of the DOS. However, here we are mainly

concerned with the determination of the energy E0 at which

the ratio between the DOS is equal to 1. This quantity may be

less sensitive to the details of the band structure at high energy.

Indeed our calculated values for E0 show a reasonable agree-

ment with the results of the TCA (see Fig. 8 below), where the

effects of higher bands are properly taken into account22.

This result therefore provides a validation a posteriori of

our simple approach.

me mh Eg(eV )

GaAs 0.067 0.45 1.52

GaSb 0.041 0.4 0.81

InAs 0.023 0.41 0.42

InP 0.43 0.6 1.43

InSb 0.25 0.41 0.24

CdSe 0.13 0.43 1.75

Si 0.328 0.49 1.13

Ge 0.2194 0.33 0.74

PbSe 0.058 0.054 0.28

Table 1 Parameters used in the present calculations. For highly

anisotropic semiconductors such as Si, Ge and PbSe the reported

value is the average between longitudinal (ml) and transverse (mt )

masses, according to the following expression m∗ = 3

√

m2
l
mt .

The electronic structure of semiconductor nanocrystals has

been previously investigated using a variety of theoretical ap-

proaches: (i) effective mass models and k · p methods38–41,

often provide analytical solutions which are easier and more

intuitive to understand than the numerical results of atomistic

methods, such as (ii) the tight-binding method42–47, (iii) the

semi-empirical pseudo-potential method,48,49, and (iv) fully

self-consistent ab-initio methods, based on density functional

theory50–57.

One advantage of the continuum single-band effective mass

approach over atomistic methods is computational simplicity:

the latter can become expensive when simulating very large

structures such as nanorods, containing tens of thousands of

atoms. Another attractive aspect of this choice is the possi-

bility of completely decoupling the NC core from its surface

in the calculations and therefore isolating electronic structure

effects from possible environmental effects (such as interac-

tions at the surface with ligands, unsaturated bonds, and the

solvent), by using infinite potential barriers which prevent the

carriers’ wave functions from sampling the nanostructure’s

surface.

We are interested in the densities of exciton and bi-exciton
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states within the energy range 2Eg<E<3Eg, i.e., just above

the energy threshold for biexciton generation, but excluding

higher order multi-excitons. In their determination, it is im-

portant to consider Pauli’s exclusion principle for each exciton

and bi-exciton state. For example, while determining the de-

generacy of a single exciton Xα,β = |eα ;hβ 〉 [where eα (hβ ) is

the electron (hole) state α = i, j,k (β = h, l,m), solution of (1)]

is simple (it is always four, including pseudo-spin), the case of

a bi-exciton XXα,β ,γ,δ = |eα ,eβ ;hγ ,hδ 〉 is slightly more com-

plicated and depends on whether the two electrons in the CB

and the two holes in the VB are in the same state or not (i.e,

whether or not α = β and/or γ = δ ).

Once the energies and degeneracies of exciton and bi-

exciton states have been calculated for both cubic and elon-

gated structures, the FoM R(E) is obtained as the ratio of their

DOS (Fig. 1c). The energy at which R(E)= 1 (the point where

the curves ρXX (E) and ρX (E) intersect, see Fig. 1b) is then ob-

tained for several values of the aspect ratio, keeping either a

constant cross section (and varying the volume) or a constant

volume (and varying the cross section).

Luo et al.22 pointed out that, since the Coulomb operator

in the Auger matrix elements only couples states that differ

by no more than two particles, one should consider the ratio

ρXX (ε,E)/ρX (ε,E), between the biexciton and exciton DOS,

where one carrier is fixed in the single-particle level at energy

ε . This led them to introduce the quantity

R2(E) =
1

N(E)

∫ εmax(E)

εmin(E)

ρ(E)
ρXX (ε,E)

ρX(ε,E)
dε (3)

as CM figure of merit. The results of their calculations, how-

ever, show little difference between the curves R(E) (which

neglects the Coulomb selection rule) and R2(E) for most ma-

terials, especially regarding the energy E0 at which they are

equal to 1. As the determination of such an energy is the main

focus of our investigation, for the sake of simplicity we will

therefore neglect Coulomb selection rules and consider R.

The single-particle DOS calculated for VB and CB are

shown in Fig. 3. Most of the simulated semiconductor NC

structures have a larger DOS in the VB than in the CB. Due

to the very small electron effective mass in InAs, the DOS

in the CB of nanocubes made of this material is very low,

whereas the symmetric band structure we obtain for PbSe is a

consequence of the roughly similar electron and hole effective

masses used in the calculation (see Table 1). InP NCs appear

to have the highest DOS in both bands, while at the same time

having a relatively large band gap.

Compared to the cubic NCs shown in Fig. 3, a fourfold in-

crease in volume (aspect ratio) yields, for most materials, a

decrease in the bandgap similar to (or smaller than) that ob-

tained with a 25% increase in the cube size, with, however,

a much larger increase in the corresponding density of states
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Fig. 3 The single-particle density of states for cubic NCs of

different materials (GaAs, GaSb, InAs, InP, InSb, CdSe, Ge, Si and

PbSe) for three different dot sizes (red L = 10a0, blue L = 8a0, and

green L = 6a0, where a0 is the lattice constant and L is the length of

the cube).

in the elongated structures, particularly significant at the band

edges.

Starting from these single-particle DOS we then calculated

the single- and bi-exciton DOS, and finally the CM FoM.

Before presenting the effects of elongation on the CM crit-

ical energy, we will validate our method by comparing its re-

sults for cubic structures (i.e. aspect ratio = 1) with those ob-

tained with the truncated crystal approximation22. Our calcu-

lated CM FoM are displayed in Fig. 5 (solid lines) for all ma-

terials considered, as a function of the excitation energy: our

results show a clear size dependence in most of the cases, ex-

cept for InAs and PbSe, in good agreement with observations

in these two systems15,30. This lack of size dependence is

due in InAs to the extremely sparse conduction band: a much

larger increase in size than what we consider here would be

required to access higher energy levels in this band.

The results of TCA are presented in Fig. 5 as dashed lines.

The two approaches predict similar trends for the CM FoM

as a function of photon energy in most of the materials con-

sidered (with some quantitative differences at the boundaries

of the energy region of interest), except in the case of InAs,

where TCA predicts a more marked size dependence, in con-

trast with experiment15. On the other hand our calculations

predict a clear size dependence for CdSe NCs, in contrast with

TCA and experiment5.

The FOM for PbSe shown in Fig. 5 was obtained using the

solutions of (1), i.e., without accounting for the extra degener-

acy of the bulk band edges in this material. The effect of this

degeneracy is illustrated in Fig. 6, where 3 extra states were
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nanorods of different materials (GaAs, GaSb, InAs, InP, InSb, CdSe,

Ge, Si and PbSe) for three different aspect ratios (1, blue line; 2,

orange line; and 4, black line) with a constant cross section of 8a2
0,

where a0 is the lattice constant. Compared to the cubic NCs shown

in Fig. 3, a fourfold increase in volume (aspect ratio) yields, for

most materials, a decrease in the bandgap similar to (or smaller

than) that obtained with a 25% increase in the cube size, with,

however, a much larger increase in the corresponding density of

states, particularly significant at the band edges.

added by hand at the band edges, to simulate the 4-fold degen-

erate L states in bulk PbSe (for consistency with our method

(1), the results presented below were all obtained without in-

cluding this “artificial” degeneracy). Our calculated CM crit-

ical energy in Fig. 5 shows better agreement with the exper-

imentally determined CM onset3, compared to that obtained

using TCA, whereas the value of E0 presented in Fig. 6 shows

a closer comparison to the TCA results.

Most of the FoM characteristics shown in figure 5 compare

reasonably well with the TCA, in particular for energies close

to 2Eg. We find that for most semiconductors the CM criti-

cal energy is closer to 2Eg for larger structures and shifts to

increasingly larger values with decreasing size, following the

expected decrease in the single-particle DOS.

However, an inverse size dependence can also occur, i.e.

larger dots can exhibit a reduced E0 with an increase in size.

This can happen in strongly confined systems, when the de-

crease in bandgap has a greater effect than the increase in the

DOS, causing an overall reduction of the number of states in

the window of opportunity 2Eg < E < 3Eg. For the work

presented here only PbSe,(exciton Bohr radius in the bulk

RBohr = 46 nm), shows this inverse size dependence, while the

CM critical energy calculated for InAs is size-independent. In

10
0

10
1

10
2

GaAs GaSb InAs

10
0

10
1

10
2

InP InSb CdSe

2 2.5 3

10
0

10
1

10
2

Si

2 2.5 3

Ge

2 2.5 3

PbSe

 

 

TCA 6a
0

TCA 8a
0

TCA 6a
0

EMA 10a
0

EMA 8a
0

EMA 10a
0

F
o
M
 

hν/εg 

0

EMA 6a
0

EMA 8a
0

EMA 10a
0

Fig. 5 Figure of Merit characteristics for cubic NCs of different

materials (GaAs, GaSb, InAs, InP, InSb, CdSe, Ge, Si and PbSe) for

three different dot sizes (L = 10a0, red lines; L = 8a0, blue lines;

and L = 6a0, green lines. a0 is the lattice constant and L is the

length of the cube). Solid lines: present work; dashed lines TCA22.

the work reported by Luo et al.22, instead, this inverse size

dependence was found in InP and to a lesser extent also in

PbSe and InAs (in both of which complete inversion occurred

only after intersection with the R(E) = 1 line, see Fig. 5) and

InSb (where only the two curves relative to the largest sizes

were found in reverse order). If strong confinement were the

only origin of this effect, then, using the value of the bulk ex-

citon Bohr radius as an estimate of it, we would expect InSb

(which has the largest value of RBohr among the materials con-

sidered), to exhibit the most marked inverse size dependence,

followed (with decreasing values of RBohr
58) by PbSe, InAs,

GaSb, InP and so on. However, as this is not the order found

in neither our calculations nor in those performed by Luo et

al.22, we speculate that other properties (such as the value of

electron and hole effective masses and their ratio) play an im-

portant role in determining the actual size dependence. To

confirm this we re-calculated the FoM for: (a) InAs using

two different hole effective mass values about one order of

magnitude smaller than the actual ones and similar to that of

the electron (mh = 0.02m0 . me and mh = 0.04m0 > me); (b)

GaSb with mh = 0.04m0 (i.e., 10 times smaller than the cor-

rect value and ∼ me); and (c) PbSe using mh = 0.54m0 (i.e.,

10 times larger than the correct value and than me). We find

(see Fig. 7) (a1) a complete inverse size dependence for InAs

if mh ∼ me and me/mh & 1; (a2) a photon-energy-dependent
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degeneracy at the band edges included.

behavior if mh ∼ me and me/mh < 1, where smaller sizes have

larger FoM (i.e., an inverse size dependence) for hν . 2.7Eg

and then the dependence on size is reversed, becoming ”nor-

mal” for photon energies above 3Eg; (b) a partial inversion

in GaSb for mh ∼ me and me/mh & 1; and (c) a normal size

dependence for PbSe when mh ≫ me and me/mh ≪ 1. As ex-

pected the CM critical energy approaches 3Eg as the effective

mass ratio approaches 1.

The most important question is, however: how well can

EMA approximate the results of TCA regarding the position

of the CM critical energy? This is, in fact, the quantity we

will focus on in elongated structures. A detailed comparison

of the CM critical energies obtained with the two methods is

presented in Fig. 8, where for PbSe we report the results from

Fig. 5 (i.e., without the additional 4-fold degeneracy of the

band edges used in Fig. 6), as this is the set we will use in our

elongated structures calculations. The agreement is generally

quite good for all materials and NC sizes, except for InAs and

PbSe (and, to some extent, InSb) which are also the materials

that exhibit the weakest agreement for the calculated bandgaps

(not shown).

Having established the reliability of our calculated CM crit-

ical energies for cubic structures, we can now proceed to in-

vestigate the effects of increasing nanocrystal elongation. The

variation of E0 as a function of aspect ratio is presented in

Fig. 9 for elongations at constant cross section, and in Fig. 10

for elongation at constant volume. The former case reflects the

experimental conditions in which preferential growth along

one direction is achieved, maintaining the cross section un-

altered and resulting in an almost constant band gap, whereas

the latter case allows us to remove all possible volume-scaling

effects, by keeping the volume constant and therefore varying

both cross section and band gap. The general trend looks qual-

itatively similar in the two cases, the CM critical energy de-
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Fig. 7 Recalculated FoMs for InAs, GaSb and PbSe using the same

parameters as in figure 5, with the exception of the value of the hole

effective mass (reported in the plots).

creasing with elongation, but exhibiting a faster convergence

at constant cross section, for most materials. A closer in-

spection of Fig. 9 reveals, however, a remarkable material-

dependent behavior: GaAs, GaSb, InP, CdSe, Si and Ge ex-

hibit a marked size-dependence of the aspect ratio σmin at

which E0 converges to the minimum value of the CM onset

(theoretically 2Eg). In these materials, σmin ranges from about

2 (in InP) to 5 (in Ge and GaSb) for the largest structures, and

from about 6 (in CdSe) to ∼ 10 (in Ge), and even > 10 (see

below), for the smallest rods, and is always inversely propor-

tional to the rod size. For InAs, InSb and PbSe, σmin is in-

stead size-independent. In the case of PbSe rods with L = 8a0

(4.9 nm) we predict a decrease of the CM critical energy from

∼ 3.0Eg to ∼ 2.25Eg for an increase of σ from 1 to 4, in

good agreement with the experimental results of Cunningham

et al.32 who observed a reduction of Eonset from 2.9 to 2.33 for

aspect ratios increasing from 1 to 4-5 in nanorods with typical

diameters of 4.4 nm. Furthermore, our predicted size inde-

pendence for σmin is consistent with the recent findings of a

diameter-independent maximum for the CM yields observed

at aspect ratios of about 835. Indeed, according to our results,

the CM threshold does not exhibit any further decrease (hence

the CM efficiency is not expected to further increase) with

increasing values of σ beyond about 9 (which value is also

in fair agreement with experiment). Our predicted value for

the CM critical energy of a L = 6a0 (3.7 nm) rod with σ = 8

(∼ 2Eg) is, instead, in disagreement with the data reported by

Sandberg et al.33, who find a reduction of the electron-hole
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Fig. 8 A comparison of the CM critical energies E0 (with

R(E0) = 1) obtained from Fig. 5 for effective mass vs TCA. The

color coding follows the same convention as Fig. 5, i.e., light and

dark green: 6a0, light and dark blue: 8a0, and light and dark red:

10a0.

pair creation energy from ∼ 3.2Eg to ∼ 2.6Eg with elongation

to σ = 7÷8.4 for rods with average radii of 3 and 3.6 nm.

Interestingly we also find that in some materials (InP and

Si) the value of E0 for the smallest structure does not converge

to the theoretically expected value of 2Eg for any value of the

aspect ratio considered (up to 10), requiring structures longer

than 60a0 (37 nm) to reach it.

In the case of elongation at constant volume (Fig. 10), we

find that for all materials (except PbSe) the CM critical energy

converges at much higher values of σ , compared to the case of

elongation at constant cross section, with σmin generally larger

than 6 for all rod sizes considered. In this case only InP shows

a size-dependent σmin and E0 does not converge to 2Eg for a

larger number of materials (InP, CdSe, Si and Ge). These dif-

ferent features observed in Fig. 10 compared with Fig. 9 can

be explained in terms of the competition between the opposite

effects on the DOS caused by increased elongation (i.e., de-

confinement) along one direction (which leads to an increase

in the DOS), and increased confinement in the perpendicular

plane (which decreases the DOS), combined with the behavior

of the bandgap as a function of aspect ratio in the two cases.

For elongation at constant volume (i.e., when the cross section

is reduced), the increase in confinement along the two shorter

axes would lead to a decrease in the DOS, which is balanced

by the large increase of both bandgap and elongation. For

elongations at constant cross section, instead, there is no in-

crease in confinement, and the decreased confinement along

the structure long axis leaves the bandgap largely unchanged,

after an initial small drop (materials with large bulk bandgaps,
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Fig. 9 Variation of (normalized) CM critical energies as a function

of aspect ratio at constant cross section calculated for three different

widths 6a0, 8a0 and 10a0.

such as CdSe, exhibit the smallest decrease). In the latter case,

therefore, the CM critical energy converges at lower aspect ra-

tios than in the former.

3 Conclusions

A continuum approach was used to model the band structure

of cubic NCs of different materials and sizes, using effective

mass parameters. From the calculated single- and bi-excitonic

DOS, the CM critical energies E0 were obtained for all the

structures considered. The results were found to be in good

agreement with the estimates obtained with more detailed the-

oretical approaches. Furthermore, the level of confinement

(strong vs weak) and both the absolute value of electron and

hole effective masses and their ratio were found to play an

important role in determining the size dependence of the CM

FoM in different materials. This method was then used to ex-

plore the effect on the CM critical energies of elongation, up to

sizes inaccessible to atomistic approaches. In all cases consid-

ered E0 tends towards the theoretical absolute minimum of the

CM onset of two bandgaps for sufficiently long rods. Elonga-

tion at constant cross section leads to an increase in the single-

particle DOS, while keeping the bandgap nearly unchanged,
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making more states available in a given energy window. In

structures elongated at constant volume the bandgap increases

sharply due to the large decrease of the shorter axes, creating

a larger energy window, and the resulting DOS is a conse-

quence of the competition between the effects of decreased

confinement along the elongation axis and of increased con-

finement across it. As a consequence, in the case of elonga-

tion at constant cross section (the case reflecting experimen-

tal growth conditions) the CM critical energy converges for

smaller values of the aspect ratio, and, in many materials, ex-

hibits a marked size dependence of the aspect ratio σmin at

which this convergence is achieved.

In summary, our results show that the origin of the de-

crease of the CM onset observed experimentally in elon-

gated structures can be attributed purely to electronic struc-

ture effects, as surface-related effects, and effects due to both

increased absorption and enhanced Coulomb coupling have

been accurately filtered out in our investigation. This conclu-

sion paves the way to the implementation of CM-efficiency-

boosting strategies in nanostructures based on the lowering of

the CM onset.
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