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Abstract

Significance:

The multifaceted functions of reduced glutathione (gamma-glutamyl-cysteinyl-glycine;

GSH) continue to fascinate plants and animal scientists, not least because of the dynamic

relationships between GSH and reactive oxygen species (ROS) that underpin

reduction/oxidation (redox) regulation and signalling. Here we consider the respective

roles of ROS and GSH in the regulation of plant growth, with a particular focus on

regulation of the plant cell cycle. Glutathione is discussed not only as a crucial low

molecular weight redox buffer that shields nuclear processes against oxidative challenge

but also a flexible regulator of genetic and epigenetic functions.

Recent Advances:

The intracellular compartmentalization of GSH during the cell cycle is remarkably

consistent in plants and animals. Moreover, measurements of in vivo glutathione redox

potentials reveal that the cellular environment is much more reducing than predicted from

GSH/GSSG ratios measured in tissue extracts. The redox potential of the cytosol and

nuclei of non-dividing plant cells is about -300 mV. This relatively low redox potential is

maintained even in cells experiencing oxidative stress by a number of mechanisms

including vacuolar sequestration of GSSG. We propose that regulated ROS production

linked to glutathione-mediated signalling events are the hallmark of viable cells within a

changing and challenging environment.

Critical Issues: The concept that the cell cycle in animals is subject to redox controls is

well established but little is known about how ROS and GSH regulate this process in

plants. However, it is increasingly likely that similar redox controls exist in plants,
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although possibly through different pathways. Moreover, redox-regulated proteins that

function in cell cycle checkpoints remain to be identified in plants. While GSH-

responsive genes have now been identified, the mechanisms that mediate and regulate

protein glutathionylation in plants remain poorly defined.

Future Directions: The nuclear GSH pool provides an appropriate redox environment

for essential nuclear functions. Future work will function on how this essential thiol

interacts with the nuclear thioredoxin system and nitric oxide to regulate genetic and

epigenetic mechanisms. The characterization of redox-regulated cell cycle proteins in

plants, and the elucidation of mechanisms that facilitate GSH accumulation in the nucleus

are keep steps to unravelling the complexities of nuclear redox controls.
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Introduction

Glutathione (GSH) is a ubiquitous low molecular weight thiol in eukaryotes. The

2GSH/glutathione disulphide (GSSG) redox couple is crucial in the regulation of cellular

redox homeostasis. High GSH/GSSG ratios are maintained by the activity of glutathione

reductase (GR), which ensures that the 2GSH/ GSSG and NADP/NADPH redox couples

are in thermodynamic equilibrium and hence at the same redox potential.

Considerations of antioxidant functions in the prevention of oxidative stress still

overshadow much of our current philosophy and understanding of the importance of GSH

in animals and plants. However, accumulating evidence demonstrates that GSH is

required for the operation of a diverse range of processes that include growth, stress

tolerance and cell suicide programs (1,2). Within this context, the requirement for GSH is

undoubtedly linked to signalling function, particularly interactions with nitric oxide (NO)

and participation in thiol-dependent post-translational protein modifications, which

modulate activities, sub-cellular localization, stability or their interactions with partner

proteins in plants and animals.

Plant growth is driven initially by cell proliferation and primary morphogenesis,

followed by cell expansion, secondary morphogenesis and endoreduplication (3).While

the requirement for GSH biosynthesis for mitosis and root formation is well established

in plants, the broader functions of GSH-regulation in the orchestration of plant organ

formation is poorly understood, not least because of the diverse range of potential target

genes and proteins that are involved in the promotion or inhibition of component

pathways or processes.
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GSH is abundant in the plant cell cytosol, chloroplasts, mitochondria and nucleus

(Figure 1). Like other small molecules, GSH diffuses freely between the cytosol and

nucleus through the nuclear pore complex (4). It is rather surprising therefore that the

nuclear GSH pool is much more resistant to depletion than the cytosolic pool, a property

that is particularly important during cell proliferation (5-8). Although relatively little is

known about the nuclear thioredoxins (TRX) and glutaredoxins (GRXs) or their

functions in plants (9) it is probable that these redox proteins participate in the plethora

of thiol-dependent redox regulation mechanisms and post-translational modifications that

are required for plant growth and development, particularly through functions in the

nuclei.The many important roles of glutathione in plants have been well documented in

recent reviews (1,2, 10) and hence the following discussion will focus on how GSH

functions as a regulator of plant development, with a particular focus on the nuclear GSH

and the regulation of mitosis.

GSH and redox signalling

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) act as

signalling molecules to transfer extracellular or intracellular information to the nucleus to

elicit specific and appropriate responses. In its classic function as an antioxidant, GSH

serves to remove ROS and hence limit the lifetime of the oxidative signal. However,

accumulating molecular genetic evidence suggests that GSH is also important in

potentiating ROS signals in plants, particularly through interactions with plant stress

hormones such as salicylic acid (SA) and jamonic acid (11-13).
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Redox-sensitive cysteines, which can undergo a diverse spectrum of thiol

modifications, play a central role in coupling changes in intracellular redox state to

metabolic and molecular responses through the ROS- and RNS-dependent signalling

pathways. The reactivity of any protein thiol group is largely determined by the structural

environment of the cysteine, together with its pKa value. Most protein thiols have pKa

values greater than 8.0, which means that the thiol group is predominantly protonated and

largely nonreactive at cellular pH values. However, the thiol groups of redox-sensitive

cysteines have much lower pKa values ranging from 3 to 6. Acidic thiols therefore exist

as highly reactive thiolate anions (-S
-
) under physiological pH conditions. In contrast to

their protonated forms, acidic thiols are highly susceptible to oxidation by ROS and RNS.

Reactive cysteines can be oxidized by ROS into sulfenic (-SOH), sulfinic (-SO2H) or

sulfonic (-SO3H) acids. Whereas cysteine oxidation to sulfenic acid is reversible,

oxidation to sulfinic and sulfonic acids is generally considered to be irreversible.

However, this is not the case for 2-cys peroxiredoxins, in which the sulfinic form of the

catalytic cysteine can be reduced to the sulfenic acid form by proteins such as

sulfiredoxin or sestrin (14-16).

The oxidation of the cysteine residues is catalyzed by cysteine oxidases that confer

specificity to the reaction. These enzymes introduce two oxygen groups into an N-

terminal thiol to produce cysteine sulfinic acid groups, a reaction that promotes protein

degradation in the oxygen-dependent branch of the N-end rule pathway of targeted

proteolysis (17) In the N-end rule pathway, the removal of the relatively stabilizing N-

terminal methionine in certain transcription factors reveals a cysteine residue that is

sensitive to S-nitrosylation as well as oxidation to sulfenic and sulfonic acid groups (18).
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This process enhances the susceptibility of the transcription factor to proteolytic

degradation, keeping levels low and preventing activation of gene expression. At the low

oxygen concentrations that occur for example in seeds this continuous stimulation of

degradation is prevented and appropriate gene expression is triggered (18). However, it is

not as yet clear what determines whether a given cysteine in these circumstances will

react with NO, oxygen, hydrogen peroxide or GSH, although each post-translational

modification is likely to have a different effect on protein function.

Oxidative modifications of protein cysteines can involve formation of mixed

disulphides with other protein thiol groups (intra- orintermolecular protein disulfide

bonds) or with low molecular weight thiols such as GSH (S-glutathionylation). cysteine

(S-cysteinylation) or cysteamine (S-cysteaminylation). In the presence of RNS, cysteines

can be modified by either S-nitrosylation or S-glutathionylation. Most, if not all, of these

processes provide routes of redox-regulated post-translational protein modification that

can facilitate regulation of function, stability or interaction. Moreover, NO readily reacts

with GSH to form S-nitrosoglutathione (GSNO), which functions as a natural NO donor

for protein nitrosylation. The addition of the NO moiety to form an S- nitrosothiol (SNO)

is a key mechanism for the transfer of NO bioactivity. This NO adduct has been proposed

to be a significant player in NO regulatory mechanisms, particularly in S-nitrosylation of

proteins. The role of GSNO in transferring NO to protein thiols has impacts on many

regulatory processes in plants and other organisms, with increasing numbers of proteins

reported to be reversibly nitrosylated The size of the GSNO pool in plants is regulated in

plants by GSNO reductase 1, which reduces GSNO to oxidized glutathione (GSSG) and

ammonium (19). Most redox-regulated post-translational protein modifications are
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reversible, in a manner that is controlled by TRXs and GRXs, both of which play

important roles in redox signalling.

Protein glutathionylation, in which a mixed disulfide bridge is formed between an

accessible free protein thiol and the cysteine thiol of GSH, provides a potential

mechanism for metabolic regulation and cell signalling (20). This process is relatively

well characterised in relation to function in animals but remains poorly characterised in

plants, often because of technological challenges (21). Since GSH is the most abundant

low molecular weight thiol in plant cells (22, 23), glutathionylation has the potential to be

a major form of S-thiolation-dependent regulation (21).

Glutathionylation is also possible through enzyme-independent thiol-disulphide

exchange reactions between GSSG and cysteine thiolates on proteins, a process that is

considered to be favoured under conditions of oxidative or nitrosative stress. In such

situations, glutathionylation is considered to play a protective role against irreversible

oxidation of sensitive cysteine residues. The proteins that promote protein

glutathionylation in vivo in plant cells are unknown but the reverse reaction (de-

glutathionylation) is thought to be catalysed by GRXs, which are reduced by GSH. Many

important enzymes of photosynthetic carbon assimilationin the Benson-Calvincycle in

chloroplasts and associated pathways are regulated by TRX in a redox-dependent manner

(24). Chloroplast TRX and the enzymes of the Benson-Calvin cycle in chloroplasts are

major targets of glutathionylation (25-27). To date however, this process has only been

relatively well documented for only one enzyme NADP-glyceraldehyde-3-phosphate

dehydrogenase (GAPDH), which is also a key enzyme in glycolysis in both plastids and

the cytosol. The activities of the chloroplast GAPDH form and its activating f-type TRX
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are inhibited by glutathionylation (25-27). Glutathionylation of cytosolic GAPDH form is

reversed by both GRX and TRX (28). Few studies have attempted to measure

glutathionylated proteins in other cellular compartments. For example, while the presence

of the cell cycle inhibitor ophiobolin A altered the profile of glutathionylated proteins,

these changes were not characterized in detail (29).

The pKa of GSH (about 9) in cells limits facile oxidation to sulfenic acid (GSOH).

The pKa therefore has to be decreased to allow de-protonation at physiological pH values

and so allow nucleophilic attack. This is achieved by the action of glutathione S-

transferases (GSTs), which decrease the pKaof GSH to about 6 and so catalyze the

conjugation of GSH with a range of reactive electrophilic compounds, particularly

xenobiotics (30, 31). Interestingly, the rate of GST-catalyzedconjugation reactions of

thiols with electrophiles is only slightly faster than the non-enzymatic reaction under

physiological conditions. Although the reaction is not kinetically favorable, GSTs can

also catalyze the glutathionylation of protein cysteine residues.

GSH synthesis and its role in plant development

The pathway of GSH synthesis from its component amino acids (glutamate,

cysteine, and glycine) in plants is catalyzed by two ATP-dependent enzymes, as in

animals. The first enzyme of this pathway, gamma-glutamylcysteine synthetase (Ȗ-ECS), 

which is now often called glutamate-cysteine ligase, catalyzes the formation of

glutamylcysteine in chloroplasts and other types of plastid (32-35).  In contrast to Ȗ-ECS, 

which is localized only in plastids, the second enzymes of the pathway GSH synthetase is

found in both the plastids and cytosol (36).
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Gamma-glutamylcysteine and GSH are transported across the bounding envelope

membranes of the chloroplasts by a small family of transporters called

CHLOROQUINERESISTANCE TRANSPORTER-LIKE TRANSPORTER (CLT:37).

Thereafter, GSH is transported to all of the intracellular compartments including the

nucleus (Figure 1). GSH synthesis in plants is regulated at the level of gene transcription.

However, in stress situations flux through the pathway is largely regulated at level of

regulation of Ȗ-ECS activity, which is subject to thiol-based oxidative activation as well 

as feedback inhibition by GSH (38).  The modifier (Ȗ-ECS M) subunitof Ȗ-ECS that is 

found in animals (39) has never been identified in plants.

Molecular genetic studies provided unequivocal evidence that GSH is an essential

metabolite in plants. Null mutants in the GSH1 gene, which encodes Ȗ-ECS, fail to 

survive beyond the embryo stage (40,41). While null mutants in the GSH2 gene, which

encodes GSH synthetase, are able to grow to the seedling stage, they are unable to

develop further. Hence, it appears that gamma-glutamylcysteine can compensate for

GSH at the earliest stages of seedling development but not thereafter (41).

The specific requirement for GSH in root development has been revealed through

the characterization of a number of A. thaliana GSH1 mutants that have partially

impaired Ȗ-ECS activity but are still able to support a low level of GSH synthesis and 

accumulation. The rootmeristemless1 (rml1) mutants were originally identified on the

basis of their inability to maintain cell division following germination because the cell

cycle arrests in the primary root at an early stage (42,43). The factor required to activate

and maintain the cell division in the root apical cells was shown to be GSH (43). The

rml1 mutants have only between 2-5% of the wild type GSH levels (44) and the cytosolic
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redox potential is decreased by about 40 mV to about -260mV (45). Similar decreases in

GSH caused by the presence of the GSH synthesis inhibitor, buthiomine sulfoxamine

(BSO) caused the arrest of root, but not shoot, development in wild type seedlings (44,

46).

Other A. thaliana GSH1 mutants that have less severe effects on GSH synthesis

than rml1 are able to support primary root development but they show altered root

architecture (44; 47). For example, the cadmium-sensitive 2 (cad2-1) mutants, which

have about 20-30% of the wild type GSH contents and exhibit hypersensitivity to

cadmium are largely aphenotypic in terms of shoot growth in the absence of stress

(48,49). However, cad2-1, like other similar GSH1 mutants, such as pad2-1 and rax1-1,

produces fewer lateral roots and hence have lower root densities than the wild type (44).

Such studies have shown that GSH participates in the interactions between auxin and

strigolactones, which are two of the major plant hormones that control of root

architecture (44, 47).

In contrast to roots, TRX able to replace GSH functions in the control shoot

development (50,51). Studies on Arabidopsis cad2-1 ntra ntrb triple mutants that lack

both functional cytosolic NADPH-THIOREDOXIN REDUCTASES (ntra,ntrbmutants)

and have a decreased capacity for GSH synthesis (cad2-1) were found to grow in a

similar manner to the wild type throughout vegetative development(51). However, they

were unable to sustain normal floral meristem development, producing instead a PIN-

FORMED (PIN) structure that is characteristic of impaired auxin transport (51). Auxin

transport is regulated by efflux (PIN) and influx (AUX1, LAX1–LAX3) transporters, as

well as by B type ATP binding cassette subfamily G (ABCG) transporters (51). The PIN-
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proteins are asymmetrically localized such that their polarity determines the directional

flow of auxin. The regulated distribution of PIN activity is a crucial control point for

auxin movement and for the regulation of plant development. The cad2-1 ntra ntrb triple

mutants showed decreased polar auxin transport, together with lower auxin levels (51).

Moreover, the BSO-triggered inhibition of root growth is accompanied by a decreased

expression of PIN proteins (46). These results demonstrate that thiol-mediated redox

pathways are linked to the signalling of auxin, which is the key regulator plant growth

and development. (52-54). While there is interplay between the TRX and GSH/GRX

systems in the regulation of auxin transport, the GSH/GRX system has specific effects.

Further evidence in support of this conclusion comes from the characterisation of

knockout mutants in the gene encoding GRXS17. The grxs17 mutants exhibit decreased

polar auxin transport and they have a weaker auxin response, as well as showing a

temperature-dependent inhibition of root growth and agravitropism (55).

The differential distribution of auxin within and between tissues and organs

governs a wide spectrum of plant growth and developmental responses (54). Indole-3-

acetic acid (IAA) is the main form of auxin in many plant species including Arabidopsis.

IAA is synthesized largely in meristems and nodes and is transported throughout the

plant to activate cell-specific effects in response to developmental or environmental

triggers. Auxin gradients control the growth and architecture of plant organs such as

roots (52-54). Auxin accumulates in stem cells and at sites of cell division and is

important in the production of lateral roots, adventitious roots and root hairs, as well as in

the control of apical dominance and stem elongation (52-54). IAA is removed by

http://cshperspectives.cshlp.org/content/2/3/a001552.full#ref-5
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conjugation or catabolism when downstream responses have reached their optima (56)

Oxidation of IAA to 2-oxindole-3-acid acid (oxIAA) attenuates the auxin signal.

Auxin-mediated responses are linked to localized ROS production byNAD(P)H

oxidases/respiratory burst oxidase homologs (Rboh).This process requires the activation

of phosphatidylinositol 3-kinase (PtdIns 3-kinase), which produces PtdIns(3)P, a

metabolite that regulates endocytosis and vesicle trafficking (57). In this way,

phospholipid signalling and redox pathways cooperate in the regulation of auxin transport

(57).Arabidopsis mutants that are deficient in various Rboh forms show developmental

changes that are similar to defects in auxin-responses (58). The Arabidopsis genome has

ten AtRboh genes (AtRbohA-AtRbohJ) that encode NADPH oxidases (59). The activity of

NADPH oxidases is required for root growth and for root hair development (60).Auxin-

induced ROS production is mediated at least in part by the activation of RbohD (58, 60-

63) but RbohC is involved in the control of root hair tip growth(64), a process that also

involves the transcriptional Mediator subunits, PFT1/MED25 by activating a subset of

hydrogen peroxide-producing class III peroxidases (65). As discussed below, the

regulated activities of both NADPH oxidases and peroxidases are required for the

orchestration of root development.

The interaction between auxin and redox signalling pathways facilitates a flexible

regulatory hub that is highly responsive of cell metabolism. There appears to be a highly

regulated zonal distribution of apoplastic superoxide and hydrogen peroxide

accumulation that governs root growth and differentiation. This spatial distribution of

different ROS forms in the apoplast appears to delineate the zone of cell proliferation

from the zone of cell elongation and differentiation. Superoxide is localized
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predominantly in the apoplast of cells in the elongation zone of the A. thalianaroot, while

hydrogen peroxide is found predominantly in the differentiation zone and in root hairs

(66). This spatial distribution is perturbed in the A. thaliana upbeat 1. Loss of UPBEAT 1

functions led to meristem enlargement, increased cell elongation and generally increased

root growth (67). UPBEAT 1 functions as a negative regulator of peroxidase gene

expression in the elongation zone. The UPBEAT 1 transcription factor was shown to

modulate the balance between cellular proliferation and differentiation in root growth by

regulating the expression of a sub-set of peroxidases (67). The expression of these

peroxidases exerted a strong influence on the balance between the zones of superoxide

and hydrogen peroxide accumulation in the apoplast.

It appears therefore that opposing apoplastic gradients of superoxide and hydrogen

peroxide in the root apoplastic environment are linked to the onset of root cell

differentiation. UPBEAT 1is controlled independently of auxin or cytokinin, which is

another hormonal regulator of root growth (67).. This zonal control of hydrogen peroxide

and superoxide accumulation appears to occur largely in the apoplast, and as yet there is

no information concerning the functions of intra-cellular antioxidants or thiol signalling

that distinguish the zone of cell proliferation from the zone of cell elongation and

differentiation. While the levels of ascorbate and glutathione are high in both zones, these

antioxidants are more abundant in the cell proliferation zone than other zones in the root

(Figure 2; Table 1). Similarly, the abundance of -ECS and GR proteins is high in the

zone of cell division (Figure 2).

It is important to note that the levels of ascorbate and glutathione are negligible in

the cells of quiescent centre of the primary root meristem. The cells in the quiescent
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centre, which sits at auxin maxima, have an arrested (G0) or an extended G1 phase of the

cycle (68). These cells are considered to be equivalent to stem cells and a sink for IAA

because the highly oxidized state in the stem cell niche will favour auxin oxidation (68-

70) . While quiescent centre cells are physiologically indistinguishable from the adjacent,

actively dividing cells, they have altered mitochondrial function (71). The addition of

GSH or ascorbate stimulates the cells in the quiescent centre to progress from the G1 to

the S phase of the cell cycle (68). Conversely, the addition of GSSG or oxidized

ascorbate (dehydroascorbate, DHA) to proliferating cells causes an arrest the cell cycle in

G1 (72,73)

The importance of high GSH/GSSG ratios for plant development

The above discussion has emphasized the importance of the abundance of GSH in

controlling plant growth and development. Other studies using Arabidopsis mutants that

are defective in GR have demonstrated that the ability to maintain high cellular

GSH/GSSG ratios is an essential determinant of plant organ growth and vigour. Most

plants contain two GR genes (GR1 and GR2). GR1 encodes the cytosolic/peroxisomal

localized form of the enzyme, while GR2 encodes a dual-targeted chloroplast and

mitochondrial GR form. Although the knockout mutants in GR1 give rise to a lower

GSH: GSSG ratio they are able to undergo normal plant development (74). However,

GR2 knockout mutants produce a lethal phenotype and show growth arrest at the stage of

embryo development (74). Hence, the activity of the cytosolic GR form is insufficient to

compensate for loss of the chloroplast and mitochondrial enzymes. These findings
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demonstrate that the GSH/GSSG ratios in the chloroplasts and mitochondria are crucial

determinants of plant cell viability.

Further studies have shown that GR2 fulfils a key role in the maintenance of the

root apical meristem (75). A GR2 mutant called miao (a weak mutation in GR2) displays

major defects in the root apical meristem, together with an inhibition of root growth. The

miao mutants have only about half the wild type GR activity and hence accumulate

GSSG and have low GSH/GSSG ratios (75). Hence high GSH/GSSG ratios in root

plastids are essential for the maintenance of the root apical meristem. It is not clear how

GSH/GSSG ratios alter the viability of the cells in the root meristem but GSH is required

for downstream effectors of PLETHORA (PLT), which is an auxin-inducible master

regulator of root development. However, the altered plastid GSH/GSSG ratios also

appear to have effects on root development through other auxin/PLT-independent redox

signalling pathways (75).

In contrast to GR2, the cytosolic/peroxisomal GR1 form is not crucial for plant

development (74).GR1 accounts for over 60% of the total cellular GR activity. While the

knockout gr1 mutants do not show a growth or development phenotype even under stress

conditions, and the glutathione redox potential of the cytosol is significantly shifted

towards enhanced oxidation in the absence of cytosolic/peroxisomal GR activity. The

NADPH-dependent TRX system can reduce GSSG in the cytosol and so act as a backup

system for GR1 activity (74). Such a functional redundancy might have additional

physiological important because the cytosolic glutathione pool is direct contact with the

nuclear glutathione pool.
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The gr1 mutants show enhanced susceptibility to pathogens suggesting that GR1 is

essential for redox signalling through the plant hormone-mediated defence pathways (11-

13, 76). Characterization of mutants such as the clt mutants that are deficient in the

cytosolic GSH (37) and gr1cat2 double mutants that lack both GR1 and the major form

of leaf catalase (cat2; 76) have shown that the cytosolic GSH pool per se plays a crucial

role in linking ROS signalling to downstream pathogen responses and associated

hormone-dependent pathways (11-13, 37).

As mentioned above GSH is required flower development (50, 51). GSH is

important in pollen germination and pollen tube growth (77). The Arabidopsis ntra ntrb

mutants have decreased pollen fertility (50). Moreover, the pollen in gr1ntra ntrb triple

mutants are sterile suggesting that TRX and GSH are required for optimal pollen

production (74)

GSH is required for the cell cycle in roots

The mitotic cell cycle is the main driving force for plant growth (78). The basic

underlying mechanisms of cell proliferation are conserved among all eukaryotes, with

heterodimeric cyclin-dependent kinase (CDK)-cyclin complexes at the G1-to-S boundary

in Arabidopsis cells that activate the E2F–DP pathway by phosphorylation of the

retinoblastoma-related (RBR) repressor, a process that induces genes involved in

nucleotide synthesis, DNA replication, and DNA repair (79). Interactome analysis

revealed that all E2Fs, including E2Fc, and DP proteins interact with RBR (79) with

E2F–DP–RBR network activity associated with both the G1-to-S and G2-to-M

transitions, as in mammalian cells (80).
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Cell cycle progression in animals is considered to be driven by an intrinsic redox

cycle consisting of reductive and oxidative phases (81-85). The binding of growth

factors, such as epidermal growth factor (EGF) to their receptors (such as EGFR) is

facilitated by ROS generation leading to oxidation and activation of signaling pathways

that trigger cell proliferation (85). While the concept that ROS promote proliferation in

various animal cell types S (83), little is known about the mechanisms that govern cell

cycle entry in plants. The G0-to-G1 transition, which is not governed by cyclin-

dependent kinases, is activated by a redox-dependent signal transduction pathway that

results in cyclin D1 activation. D-type cyclins are also important regulators of the G0/G1-

to-S transition in plants, preceding the activation of the core cell cycle machinery

(78).The redox-dependent expression of D-type cyclin genes has not been established in

plants, although NO was found to activate the cell cycle though effects on CycD3;1

transcription and effects on cyclin-dependent CDKA1 protein kinase (86). The auxin-

dependent activation of cell proliferation in the root meristem is associated with oxidation

which is maximal in the quiescent centre cells, suggesting that cell proliferation is

influenced by cellular redox state (69, 70). Redox controls also play a key part in the

regulation of cell cycle progression (87, 88). In particular, the G1 and G2 checkpoints

that regulate the cell cycle are highly responsive to oxidation (89). While the mechanisms

than underpin these responses and the pathways of oxidative activation of the cell cycle

are not as clearly defined in plants as they are in animals, antioxidants play a crucial role

in providing an appropriate redox environment for cell cycle progression. Low GSH-

dependent cell cycle arrest in rml1 roots is accompanied by a decreased abundance of

transcripts encoding many core cell cycle components such as cyclins and CDKs that are
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necessary for the G2 to M transition (44), confirming that in the absence of adequate

GSH the cell cycle arrests at an early stage (G1/S, 43).

The redox environment of the cytosol and nuclei

Changes in intracellular GSH compartmentation are a key component of many

stress responses (90, 91). The distribution of GSH between different cellular

compartments is important because it establishes and supports the redox environment in

which metabolism and signalling events occur. The GSH redox potential of the cytosol of

plant cells in vivo has been extensively monitored using redox-sensitive green fluorescent

protein (roGFP) probes (92-94). Parallel analyses of the redox state of nucleus and

cytosol using a yellow fluorescent protein-based redox sensor (rxYFP) in the yeast S.

cerevisiae showed that nuclear GSH redox environment is highly reducing and similar to

that of the cytosol (95), a situation that is also observed in plant cells (Figure 3; 44; 96).

The average glutathione redox potential of the cytosol was about -288 mV while that of

the nuclei was -294 mV in the cell division zone of A. thaliana root mersiem (Figure3;

96). However, cell division is asynchronous in the root meristem and so these data reveal

nothing with regard to variations in the glutathione redox potential that might occur

during the different phases of the cell cycle.

These values confirm that the GSH:GSSG and NADPH:NADP
+
redox couples are

close to redox equilibrium in the cytosol and the nuclei, conferring a high sensitivity to

the signaling functions of the glutathione redox potential, which is mediated through

relevant pathways such as GRX-dependent changes in protein thiol-disulfide status. For

example, a change in cytosolic redox potential of about 50 mV is sufficient to
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significantly alter the balance between oxidized and reduced forms of TRX-regulated

proteins (97). As discussed previously (1), an increase in redox potential from -350 to -

300 mV converts the TRX-regulated chloroplast glucose-6-phosphate dehydrogenase 1

from almost completely inactive to active (98).Small changes in cellular NADP:NADPH

ratiosmay be sufficient to allow significant changes in the glutathione redox potential,

and hence facilitate signal amplification in vivo. Given the low KM of GR for NADPH

(99, 100) compared to likely cytosolic NADPH concentrations (around 150 µM; 101),

this could occur through adjustment of relative concentrations in the NADP-glutathione

equilibrium rather than kinetic limitation of GR activity by NADPH.

Assuming that the 2GSH/ GSSG and NADP/NADPH redox couples are in

thermodynamic equilibrium, then at NADP
+
/NADPH = 1 (representing a redox potential

of -320 mV), there should be very little GSSG in the cytosol or the nuclei. Such negative

redox potentials are achieved through continuous GSSG reduction by GR and also by

GSSG transport into the vacuole (102). In this regard, it is worth noting that the tissue

GSH/GSSG ratios of many organisms are often cited as being in the range of 10
2
to 10

3

(1, 2). However, given the values of the glutathione redox potentials obtained in vivo by

roGFP measurements, it is clear that the measurements of GSH and GSSG levels in tissue

extracts, while a useful indicator of redox perturbation, do not precisely reflect the

GSH/GSSG ratios in intracellular compartments. The GSH/GSSG ratios measured in

tissue extracts, such as those shown in Table 1, generally suggest that in the absence of

stress between 90- 95% of the glutathione pool is present as GSH with about 5-10%

present as GSSG. These GSH/GSSG ratios give much higher redox potentials than those

obtained in compartments such as the cytosol using roGFP. It is likely therefore that the
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GSSG measured in tissue extracts is either generated as an artefact during extraction or

that a large proportion of the detected GSSG is not located in the cytosol. While it is

inevitable that some oxidation of GSH will occur during extraction, the other possibility

is that GSSG is continuously removed from the cytosol in order to stabilize the cytosolic

redox potential, particularly in situations of oxidative stress (102). Evidence in support

of this hypothesis was obtained from studies on the A. thaliana cat2 mutants that lack the

major form of leaf catalase. These mutants do not show significant increases in leaf H2O2

levels but they accumulate both GSH and GSSG (76; 102). These mutants accumulate

GSSG to such high levels (55) that in theory, the glutathione redox potential of the leaf

cells would collapse if this metabolite in the cytosol. However, while the cat2 mutants

grow more slowly than the wild type under ambient atmospheric conditions, they remain

viable and only show lesions in a day-length and salicylic acid-dependent manner (103).

This apparent anomaly was resolved by evidence concerning where the GSSG was

localised in cat2 mutant leaves (104). In this case of severe oxidative stress, GSSG was

largely sequestered in the vacuole (104). Vacuolar sequestration therefore serves to limit

the accumulation of GSSG in the cytosol, as illustrated in Figure 1.

GSH/GSSG ratios measured in tissue extracts are often used as a marker of

oxidative stress. Removal of GSSG from the cytosol may reconcile the large

discrepancies in redox potentials calculated from measured GSH/GSSG ratios to the

modest adjustments in redox potential measured using roGFP probes in plants exposed to

stress (92-94; 105). In this regard, it may interest to re-investigate the concept of a

reductive limit that defines the relationship between redox regulation and the cell cycle in

cancerous cells (106). While animal cells do not have vacuoles, it could be the other
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mechanisms of GSSG sequestration exist that mean that the GSH/GSSG ratios measured

in animal tissue extracts might not provide an accurate estimate of in vivo glutathione

redox potentials.

The nuclear glutathione pool

As in animals (34), glutathione is abundant in the nucleus of plant cells (Figures 3

and 4). Data such as that shown in Figure 4 demonstrates that the nuclear GSH pool is in

equilibrium with that of the cytosol. However, studies on animal and plant cells have

demonstrated GSH is compartmentalized in the nucleus during the cell cycle (5-8, 107).

Data showing that the nuclear GSH pool is more resistant to depletion than the cytosolic

pool (108) suggest that mechanisms exist that facilitate GSH sequestration in the nucleus.

For example, the addition of BSO to 3T3 fibroblasts significantly decreased the total

cellular GSH pool (108). However, only the cytosolic GSH pool was rapidly depleted in

the presence of BSO and the nuclear GSH pool was less depleted (108). Similarly, the

addition of the sesterpenoid inhibitor Ophiobolin A to tobacco cells blocked the cell cycle

at the S/G2 phases, trapping GSH in the nucleus (29).

GSH co-localizes with nuclear DNA during cell proliferation in animals (8) and

plants (5, 6, 96, 107). In such studies, the nuclear GSH pool has been monitored largely

by cconfocal microscopy using a double staining procedure involving Hoechst 33342

(Hoechst; blue stain) to localize nuclear DNA and CellTracker green 5-

chloromethylfluorescein diacetate (CMFDA; green stain) to detect GSH (5, 6, 86, 107).

Using such procedures, the nuclear localization of GSH can be visualized, for example, in

synchronously dividing A. thaliana cells, as illustrated in Figure 4A-H (96). GSH was
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also observed in the nuclei of the dividing pericycle cells following activation to form the

lateral root meristem (5). These results suggest a dynamic regulation of the nuclear GSH

pool during the cell cycle (6, 107). While in vivo staining procedures undoubtedly have

their limitations, these results are sufficiently compelling to merit further investigation

using other techniques. Moreover, the question of how GSH might be sequestered in the

nucleus is less easily answered in plants than animals, where Bcl-2 proteins bind GSH to

the Bcl-2 homology-3 domain groove and facilitate GSH transport and sequestration in

the nucleus (110; 111). Plants do not have Bcl-2 proteins and GSH like any other

molecule smaller than 40 KDa should move freely across the nuclear pore complex (4). It

is tempting to speculate that auxin or auxin-mediated oxidation might regulate GSH

transport and sequestration in the nucleus. The composition of the nuclear pore complex

has an important influence auxin signalling because certain nuclear pore mutants show

auxin hypersensitivity (4).

The functions of nuclear GSH pool including maintaining genome integrity

were discussed in detail in a recent review (107). Nuclear GSH is likely to be involved in

the redox modulation of genetic and epigenetic mechanisms that control gene expression

(107, 112, 113). For example, the S-glutathionylation of Cys110 in histone H3was shown

to alter the stability of the nucleosomes and chromatin structure in proliferating

mammalian cells (107; 112). Moreover, genes encoding GSH-requiring enzymes such as

GSTs are likely to be regulated by S-glutathionylation in plants in a similar manner to

that observed in animals (114). In addition, similar GSH - and glutaredoxin-dependent

mechanisms for the reductive activation of methionine sulfoxide reductases are found in

animals and plants. These systems facilitate the reduction of methionine sulfoxide to
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methionine, as well as preventing the oxidative generation of methyl radicals that can

methylate cytosine residues (113). In addition, GSH fulfils essential functions in the

regulation of mitosis in the root apical meristem. These effects could be mediated by

GSH alone or through changes in the GSH/GSSG ratios in response to hormone-mediated

oxidation. Since our recent review (107) little new information has become available

concerning the specific interactions of GSH with nuclear proteins, although the scope for

thiol-mediated post-translational modifications that alter nuclear protein functions is vast.

Studies on the effects of low GSH in ǻgsh1 yeast cells have shown that although

cells lacking GSH grow like the wild type, they are very sensitive to oxidative stress

(115). Moreover, proteins in the GSH-depleted ǻgsh1yeast cells were found to be highly

oxidized and translational activity was impaired in yeast, where the YAP1/GPx3-

regulated system is responsible for augmentation of antioxidant potential (115).

Moreover, oxidative stress generated a high level of genome instability in GSH-depleted

yeast cells, despite the presence of Yap1 in the nuclei (111). Thus, the role of GSH in

maintaining nuclear functions during exposure to a mild oxidative stress is crucial to the

survival of yeast cells.

Glutathione depletion in the rml1 mutants, where the cytosolic redox potential is

decreased from -300 to -260mV (45) alters the expression of specific suites of genes,

associated with the signaling of auxin and other plant hormones (44). A comparison of

the transcript profiles of Arabidopsis cell at stages in the cell cycle where GSH was

predominantly localised in the nuclei compared to when GSH was compartmentalised

evenly between the cytosol and nucleus revealed that defence-related transcripts were

less abundant at times when the nuclear GSH pool was larger than that of the cytosol (9,
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10). This finding is in agreement with the results of other studies showing that cytosolic

GSH pool is important in transducing oxidative signals linked to hormone-dependent

defences against biotic and abiotic stresses (11-13; 37, 116).

Conclusions and perspectives

ROS are vital life signals in plants and animals that are required for the accurate

orchestration of numerous processes in biology, many of which are mediated through

thiol-dependent post-translational mechanisms. While the TRX and GRX systems can

have overlapping functions in this type of regulation with numerous points of reciprocal

control, each thiol modulator has unique and specialised roles, particularly in the

regulation of cell proliferation and differentiation. The specific requirement for GSH and

high GSH/GSSG ratios in the control of cell fate is manifest in the development of the

root apical meristem, where a change in the glutathione redox potential of only 40 mV is

sufficient to cause an arrest of the cell cycle. The GSH pool in the nucleus ensures that

the nuclear machinery resides in a highly reducing environment (about -300 mV). An

increase in the glutathione redox potential to -260mV, as measured for example in the

roots of the rml1 mutants is sufficient to prevent the G1/S transition, and causes large

changes in the transcript profiles of roots and shoots (44). These findings show that there

is a GSH-regulated cell cycle molecular master-switch in the root meristem and probably

in other related meristems such as in flowers and pollen. However, redox regulation in

these tissues in less well described than the root system, where gradients of superoxide

and hydrogen peroxide in the apoplast are required for the transition from cell

proliferation to differentiation. While the role of GSH in the control of these gradients
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has not been explored to date, this elegant mechanism indicates how the redox regulation

of the genetic regulatory network links environmental signals that are often perceived

first in the apoplast and plasma membrane to developmental programs.

The identification of this GSH-regulated molecular master-switch that is the

remains to be determined, but its characterization will lead to a step change in our

understanding of cell cycle regulation Moreover, GSH-regulated steps are important in

the regulators of the hormone-dependent control of cell proliferation and differentiation.

This requirement has been partially characterised with regard to auxin and its functions in

the elaboration of postembryonic root meristem development but few studies to date have

explored the GSH-dependent post-translational mechanisms that regulate plant growth

and development.

ROS and GSH-dependent thiol-dependent post-translational mechanisms are not

only a key to monitoring metabolic flux by cells in order to regulate responses to biotic

and abiotic stresses but are also key regulators of the cell cycle in plants, as they are in

animals. The high abundance of reactive but relatively short-lived interacting molecules

that can either directly or indirectly alter protein structure or function through thiol/NO

intermediates via at least partially reversible mechanisms is a prerequisite to successful

signalling cascades.

Plants have mastered the art of redox control using ROS and RNS as secondary

messengers to regulate a diverse range of protein functions through redox-based, post-

translational modifications that act as regulators of molecular master-switches. Much

current focus concerns the impact of this regulation on local and systemic signaling

pathways but the interpretation of data on S-modified proteins remains problematic. The



Diaz Vivancos et al., 2015

27

accurate identification of the modifications occurring in vivo is not trivial, nor is

quantification in terms of the proportion of the protein cysteines that undergo any given

modification.

GSH is recruited into the nucleus at the G1 phase of the cell cycle, an

event that is linked to the oxidative activation of cell proliferation. Very little is known

about the mechanisms that might enable GSH sequestration in the nucleus of plants that

do not have Bcl-2 proteins that bind GSH. A key question that is still outstanding

therefore concerns the mechanisms that facilitate this type of control in plants. Moreover,

GSH depletion causes large changes in gene expression but the functional significance of

of these GSH responsive genes remains poorly characterised. Thus, unravelling the

biology of nuclear GSH and its functions in genetic and epigenetic controls that underpin

plant growth and defence responses represents a new frontier in plant and animal science.

Given the tremendous progress has been made over the last decade; it is likely that

exciting new developments are on the horizon. Finally, it is worth remembering that in

nature plants are often exposed to multiple stresses simultaneously. Regular exposures to

changing mild stresses results molecular and physiological adjustments that include

increased resistance to oxidative stress, which translate into plant growth and

development that are optimised to prevailing environmental conditions. Without regular

stress exposures that entrain genetic and epigenetic cross tolerance responses, it is likely

that sustainability and vigour in natural environments. Understanding the mechanisms

that create short and long-lasting molecular memories of stress, together with GSH

functions in the central regulatory hub that controls cell proliferation and fate within an
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environmental and developmental context will be key advances and help to resolve many

of the outstanding issues discussed in this review.
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Legends to Figures

Figure 1. Intracellular compartmentation of glutathione in plants. CHl, chloroplast; MIT,

mitochondria; ETC, electron transport chain.

Figure 2 Immunoblot analysis showing the relative abundance of glutathione reductase

(A) and g-glutamylcysteine synthetase (B) proteins in whole roots (1) and in different

regions that can be divided loosely into regions of cell proliferation (4) and expansion

and differentiation (2/3) of 4-day old corn (Zea mays) seedlings (C ). Zone 4 comprises of

the root cap, the quiescent centre and meristematic cells, zone 3 is largely elongating cells

and zone 2 contains mature cells. (see Ref 117 for experimental details).

Figure 3.Nuclear GSH localisation in plant cells. Confocal microscopy images showing

GSH localization in the nuclei of Arabidopsis cells at the G1 (A, B, C, D) and G2 (E, F,

G, H) phases of the cell cycle. Localization of GSH in the root tipsof A. thaliana wild

type (I, K) and rml1mutant (J, L) plants. 5-chloromethylfluorescein diacetate(green)

staining was used to detect GSH; Hoechst 33342 (blue) was used to stain chromatin and

hence localize nuclei. Images B, D, F, H, J and L show the over-laid blue and green

images. Synchronized proliferation in A-H was achieved by growing the cells in sucrose-

free media supplemented with aphidicolin.

Figure 4.The glutathione redox potentials of nuclei and cytosol in the dividing cells of

Arabidopsis roots measured using roGFP (A). The roGFP measurements used to produce
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the data shown in (A) were performed in the zone indicated by the white square in the

schematic model of root structure (B).



Figure 1. Intracellular compartmentation of glutathione in plants. CHL, chloroplast;

ETC, electron transport chain; GR, glutathione reductase; MIT, mitochondria;.
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Figure 2 Immunoblot analysis showing the relative abundance of glutathione reductase (A) and g-glutamylcysteine synthetase (B)

proteins in whole roots (1) and in different regions that can be divided loosely into regions of cell proliferation (4) and expansion and

differentiation (2/3) of 4-day old corn (Zea mays) seedlings (C ). Zone 4 comprises of the root cap, the quiescent centre and

meristematic cells, zone 3 is largely elongating cells and zone 2 contains mature cells. (see Ref 117 for experimental details).

A
C

B



Nuclei Cytosol

R
e
d

o
x

p
o

te
n
ti
a

l
(-

m
V

)

-320

-300

-280

-260

-240

-220

-200

Figure 3. Redox potentials of the nuclei and cytosol of developing Arabidopsis radicles

measured by roGFP (A). Asterisk indicate significant difference according to paired t-

test (P<0,001). Redox potentials were measured as previously described by Schnaubelt

et al. (2015) in the zone indicated by a white square in the root structure picture (B).
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Figure 4 Confocal microscopy images showing GSH localization in Arabidopsis cells at

the G1 (A, B, C, D) and G2 (E, F, G, H) phases of the cell cycle. Localization of GSH in

rml1 root tip (I, J, K, L). CellTracker green 5-chloromethylfluorescein diacetate

(CMFDA, green) staining was used to detect GSH; Hoechst 33342 (blue) staining was

used to localize nuclei. Images B, D, F, H, J and L show the over-laid blue and green

images. Confocal microscopy approach was performed as previously described by

Diaz-Vivancos et al. (2010a). Synchronized proliferation was achieved by growing the

cells in sucrose-free media supplemented with aphidicolin.
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