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Abstract

As the amount of architectural data collected in sedimentological studies, and typically rendered available in published form, has increased
over time, so afundamental issue has become ever more important: the need to ensure that different datasets collected in different ways by
different geologists (e.g. 2D architectural panels, 3D seismic surveys) are stored in aformat such that analysis or synthesis of fundamentally
different types of data can be made in a sensible and informative manner, without requiring extensive literature search and re-processing.
Database systems are here proposed as a means for achieving the convergence of datasets in a common medium. The proposed database
approach permits the digital reproduction of sedimentary architecture in tabulated form: hard and soft data referring to depositional products
are assigned to standardized genetic units belonging to different scales of observation, which are themsel ves contained within stratigraphic
volumes classified on deposystem parameters (e.g. subsidence rate, physiographic setting). Although the approach has general applicability,
two different databases have been independently developed to capture the peculiarities associated with fluvial and deep-marine depositional
systems. Through interrogation, the two database systems return output that — being in quantitative form and referring to standardized
sedimentary units — is suitable for both synthesis and analysis. Deposystem classification permits data to be filtered on the parameters on which
the systems are classified, allowing the exclusive selection of data associated with systems deemed to be analogous to a given subsurface
succession in terms of deposystem boundary conditions and environmental setting. Alternatively, the quantification of architectural properties
permits users to identify analogy in terms of sedimentary architecture. Outputs from the two databases are here presented in forms suitable for
highlighting differencesin the way fluvial and deep-water architecture is conceptualized and implemented, and for presenting ways in which
analog information can be employed for the characterization and prediction of fluvial and deep-water reservoirs. Specific example applications
include the use of database output to (i) generate quantitative facies models with which to guide core interpretation, (ii) to constrain stochastic
reservoir models, and (iii) to guide well correlation of fluvia or deep-marine sandstones.
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ABSTRACT

As the amount of architectural data collected in sedimentological studies, and
typically made available in published form, has increased over time, so a
fundamental issue has become ever more important: the need to ensure that
different datasets collected in different ways by different geologists (e.g. 2D
architectural panels, 3D seismic surveys) are stored in a format such that analysis
or synthesis of fundamentally different types of data can be made in a sensible and
informative manner, without requiring extensive literature search and re-
processing.

Database systems are here proposed as a means for achieving the

Through interrogation, the two database systems return output that — being in
quantitative form and referring to standardized sedimentary units — is suitable for
both synthesis and analysis. Deposystem classification permits data to be filtered
on the parameters on which the systems are classified, allowing the exclusive
selection of data associated with systems deemed to be analogous to a given
subsurface succession in terms of deposystem boundary conditions and
environmental setting. Otherwise, the quantification of architectural properties
permits users to identify analogy in terms of sedimentary architecture.

Output from the two databases is presented with the aims of illustrating the

FAKTS GENETIC-UNIT HIERARCHY

Each case study is subdivided into a series of stratigraphic volumes (subsets) characterized by having the
same system attributes. Each subset is broken down into sedimentary units, belonging to the different scales
considered, recognizable as lithosomes in ancient successions —in both outcrop and subsurface datasets —
and as geomorphic elements in modern river systems. The tables associated with these genetic units
contain a combination of interpreted soft data (e.g. object type) and measured hard data (e.g. thickness and
other dimensional properties).

Every single object is assigned a numeric index that works as its unique identifier; these indices are used to
relate the tables (as primary and foreign keys) reproducing the nested containment of each object type within
the higher scale parent object (depositional elements within subsets, architectural elements within
depositional elements, facies units within architectural elements).

FAKTS GENETIC UNITS

Depositional elements are classified as channel-complex or floodplain elements. Channel-complexes
represent channel-bodies defined on the basis of flexible but unambiguous geometrical criteria, and
are not related to any particular genetic significance or spatial or temporal scale; they range from the
infills of individual channels, to compound, multi-storey valley-fills. This definition facilitates the
inclusion of datasets that are poorly characterized in terms of the geological meaning of these objects
and their bounding surfaces (mainly subsurface datasets).

Floodplain segmentation into depositional elements is subsequent to channel-complex definition, as
floodplain deposits are subdivided according to the lateral arrangement of channel-complexes.

DEPOSITIONAL ELEMENTS

Thickness

B
Wlhickness

FAKTS can be interrogated through SQL queries in order to generate

BASIC FAKTS OUTPUT
GENETIC-UNIT DIMENSIONS

quantitative information on fluvial architecture; this information can be

exported to spreadsheets, analysed and represented in a variety of

forms.

GENETIC-UNIT PROPORTIONS

The internal organization of genetic packages can be characterized in

terms of the objects belonging to lower-order scales.

FAKTS permits the derivation of dimensional parameters of genetic-unit types; from
this output it is possible to readily derive descriptive statistics or probability density
functions of given geometrical parameters or cross-plots of aspect ratios (e.g.
width/thickness, width/length), choosing whether to include or not underestimated
(partial and unlimited) and overestimated (apparent) dimensions. It is also possible to

0-6000 m close-up

Channel-complex width/thickness cross plot

obtain output for relative dimensional parameters of adjacent genetic units (e.g.
channel-fill thickness/levee thickness ratio), belonging to the same hierarchical scale
or to different scales, as genetic unit sizes, juxtaposition (in form of transitions) and
scale-nesting are all digitized.
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Digital reproduction of clastic sedimentary architecture by means of relational databases:

characterization and prediction of fluvial and deep-marine reservoirs
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from a suite of depositional individually retrieved for = e — 2708 F10'14.FI0.14/00.05,510.41 S5/0.04 5p/0.05,5-0.16 Non penetrated L ! i % - = / INDICATOR CROSS-VARIOGRAMS IN-CHANNEL ARCHITECTURAL-ELEMENT SPATIAL RELATIONSHIPS
systems that share architectural comparison (¢f. example on the / ANY SYSTEM [27123 F[HD]OZ‘GV/DOB‘Gh/OOLGpIDOZ,GI/DOA‘SV/OOZ,Ss/ODZSr/O07.5!/061‘5;)/0OS,SmIO02,5I/002,Sh/001F—/002 - - N : : H 2 06 = Gonsity function % 0.6 cross-stream direction upstream direction
characteristics or system right), thereby providing a more Z Facies-unit-scale architecture : : u : ] § 05 .g / .
parameters with the reservoir, and  flexible benchmark for reference of LA architectural elements Model facies association ] ] [ ] a 205 : | CH|DA|DLA|HO | LA | CH | DA [DLA| HO | LA |
whose quantified architectural  than traditional facies models. This H H H L =mi2 0 S 04 o / RELATYE DI ERE AL FARAAIETERS Tpoe\lidFe/:};LZode_](tjael;szs : .‘;'I i o ToarT o Toms| Imdependent g: Soot o TosoToo o
properties are distilled into a  type of database syste(n can H H H H [ 2 IDEAL EXAMPLE: ;’ 04 / X ¢ ipnput to objegct- and - DLA [0429]0270] 0 | 0 |o0302 tnztu.s DLA [0617[0234| 0 |0021]0.28
database-informed facies model,  therefore reconcile the ‘facies Code[Legend | I ' ! ' d Z 03 ~ norma distribution of channel-complex £ 93 GENETIC-/MATERIAL-UNIT TRANSITIONS pixel-based methods for - HO 03600227 [0.160] 0 [0253 matrix HO [05000190]0207] 0 [0.103
which can effectively be employed model’ and the ‘reservoir analog’ g H H H ] © 8 / / \ stochastic modeling of * LA |0482[0304]0214] 0 | 0 LA |0547 [0.208]0.226 [0.019] 0
as a synthetic reservoir analog.  schools of thought. - 5 ] Penetrated § 02 = S-spaced well aray 202 fluvial sedimentgar :
The process of standardization of Such individual or synthetic ] Penetrated ! ! and potentially a 5_9 / architecture v
sedimentary architecture —through ~ analogues can then be employed and correlatable correlatable 01 " Wdde channal<ompiex betwean 0.1 ) CcH | DA [DLA] HO [ LA CcH | DA [DLA] HO [ LA
Haorous dofimition of genelioamt 10 guide subsurface intarprelations ' : i oo B N | Gl o Jumloml o fows| g e [GHl o Jososel o foms
hi h | ificati d d dicti b isti 1 1 L : denslty function 0.0 DA [0571] o [o286] 0 |0.143 ™ DA [0875] o [0063[0.063] 0
lerarchy, classification and - and predictions by assisting core - 0 s _ ey twmamnats 0 5 CONDITIONING OBJECT-BASED SIMULATIONS _ _ i ol o Toms|  Probabiity  GRAREH OB L
attributes — permits the synthesis interpretation, quality-checking average flow direction W = channel-complex width random channel-complex In 8 population _ h aggradational channel-fill o o T oo matrix o T T o T o1 o
of architectural data, such that  well-to-well correlation panels of following pdf between tuo & apaced wells W = channel-complex width To condition object-based stochastic reservoir architectural element :ﬂ o T T :ﬂ se om0 To T
ingful inf ti b ir-qualit; dst , and - .
reaningiu’ informa don _can be resenoir-qualy sanceiones, an models, FAKTS output on both absolute and relative  s¢_order ch | belt
obtain by merging different  conditioning pixel- or object-based TOTAL PROBABILITY OF PENETRATION TOTAL PROBABILITY OF CORRELATION Assuming orthogonal density functions of channel-  total probability of penetration can dimensional parameters (see poster 1) can be order channel b channel-complex '
datasets in quantitative facies  stochastic reservoir models, as Colombera et al. (2013) N=1029 T T penetration of a well array with  complex width to obtain total then be plotted as a function of ied for different hierarchical orders of fi depositional element 1 CH [ DA [DLA[ HO | LA CH [ DA [DLA[ HO | LA
models. illustrated in some examples here. Proportions based on f it thick ° i i i i i queried for dilteret, hisrarchica’ orders of genetic 5th-order channel belt ! [cu] o [©003] o [ o [o0s CH | 0 [-001]0040]-003] 0
roportions based on facies-unit thicknesses g, - b constant spacing S into channel  probabilities of channel-complex  correlation distance (in the units (e.g. channel fill, 5"-order channel belt, channel ! - 2 i 01 104
L 0.5 (a) 2,05 ( ) complexes, it is possible to  penetration and correlation, which  example on the left, figure c): this complex), to match with the scale of simulation. ; [ DA 0406 0 007 0 018 Difference DA 0271} 0 | -019 |0.042]-013
20 \ L % ] combine analytical expressions can be integrated and expressed  function quantifies the proportion ,' ZL: :::; Eii 0016 g gi; matrix quL: :;2:; oosﬁ: ,oozw 0002 g?i
. 0204 33% £204 for the conditional probability of as functions of well-spacing and  of penetrated channel complexes 500 2 1 a0 006 (0231
o E J oc th 1 LA |0.518]-0.30 | -0.21 0 0 LA [0.310]-0.06 | -0.23 | -0.02 0
. w8 o g penetration and correlation of a  correlation distance respectively. that are likely to be correlatable as All channel complexes m 5 -zrder-?urfacel based 200 Channel-fill H
. . . . . - 203 %5 60.3 channel complex with width W The ratio between the total  a function of correlation distance, 500 10 channel complexes architectural elements H HO—064 031 DLA
 The generation of database-informed facies models is  developed under appropriate boundary conditions to ARCHITECTURAL-ELEMENT-SCALE ARCHITECTURAL-ELEMENT]| ARCHITECTURAL-ELEMENT _5 2 c ; with database-derived probability ~ probability of correlation and the  on the basis of database-derived o (el ccalo = 1.09) N = 2933 . Lognormal pdf N=a1 H _j 027 =
illustrated here by e;mploylng the FAKTS databqse to build contribute to any particular model. ' ) FACIES MODEL PROPORTIONS VERTICAL TRANSITIONS £E 2 S2p2 analog experience. This curve is 3 98 By (Iocation = 2.64, scale = 0.87) 5™ Lognormal pa N =839 H ot 0.03 Architectural _——CH
some example fluvial facies models. These facies models Secondly, the database output on genetic-unit ge 5 £ % ) dubbed ‘correlability moder’, and S 1o S, 5 (location =2.71, scale = 0.69) 1 DA CHae=——, o element DA 0.3
consist in sets of quantitative information relating to selected proportions, geometries and spatial relationships derived 56 ﬂ” ’fc . o° 0.1 I~ o.c 0.1 E% IDEAL EXAMPLE' represents the model adainst g g g0 H 026 052 transition 0.04 LA
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EXAMPLE D-MAKS 2 OUTPUT  INTERNAL ORGANIZATION OF GENETIC UNITS

D-MAKS 2 GENETIC-UNIT SPATIAL RELATIONSHIPS D-MAKS 2 LARGE-SCALE DEPOSITIONAL-ELEMENT

. Justlike for FAKTS, the internal organization elements (as shown in the pie-charts below) s
. . . . . o AND GRAIN-SIZE PROPORTION
DEEP-MARINE CASE-STUDY CLASSIFICATION e o o ot rostonsnpe veeen . CLASSIFICATION APILOT CASE STUDY: THE PLEISTOCENE GOLO SYSTEM (CORSICA) et o e rraiadn oo o epesorat oo o | (SADCRANIZE POPORTION
Example system or Subset ‘physiographic Transition axis | Conventional direction Contact type anetic units are digitized as 3 To guarantee that genetic units from - terms of the objects belonging to lower-order ~ shown in the bar chart on the right) can be
Systems are defined as segments of slope to  that the data are suitable for different purposes | subset attributes setting’ attribute classes Vertical U d sh ional g’ansitions n additié’n the type of (® [or0 weoaizs oy cramma a7 }— W (@) [e sk chamel oms e merted | different datasets are consistently . A few pilot case studies need to be added to the : scalesthatcomposethem. quantified in terms of proportions of facies-
basin plain deep-water environment connected to (e.g. W/T plot of architectural-element geometries . slope settin ertica pwards arp non-erosiona contact across which the transition 25 sontained (o are demenstrably contaned) | defined, such that database output Published dataset database as a preliminarily test of the consistency of : Information on their composition is given by unit grain-size classes. Again, volumetric | Master levee
the same feeder system. D-MAKS 2 stores  suitable for dimensional output and lithofacies- tectonic setting P! g Strike Right-hand when facina downflow | | Gradational o leasifiod o tho Y N ] i< larger han the sigs of he subset. can ultimately be compared or G is et al. 2006 Standardizationion genetic-unit defining criteria and the robustness of the  + the relative volumetric proportions of their  proportions can be estimated from variably
systems and their component subsets (i.e.  scale log suitable for facies-proportion output, for | dominant grain size 9 9 basis of a threefold classification Adoposiiona dementspaming e enive | merged, in-house standards are - &Gervais et al. a L /sedimentary architecture [ ) A devised data-entry practice; also, this provides a . building blocks. For example, the internal ~ combining genetic-unit occurrence
stratigraphic volumes with given suitability); the  the same outcrop), data must be included inmore | feeder-system type Dip Upstream Erosional of bounding surfaces lrgr st crannl .1 domanswalyor | verorderunts nopees | referred to for genetic-unit hierarchy - Gervais et al. 2006b ry possibility to determine the feasibility of database I composition of frontal-sheet architectural  frequencies with dimensional parameters. Sheet
same system or subset may be the subject of  than one subset. Two different tables, referring to aggradation rate o ' el e e e e n? Tfl;verelsnom(erprelalicnastowhemer(cr assignmentand classification. : and data entry interrogation as a way to obtain the expected output, in
dlffgfent stud}es, which are included as different systems and subsets, are .used to se_parately basin confinement Y—{ Whats the naturs of the deposits observations suggesting that) the channel The sequential checking of the - Deptuck et a|_ 2008 view of the differences in database design with respect GRAIN-SIZE PROPORTIONS IN INDIVIDUAL GRAIN-SIZE PROPORTIONS
? forms are contained within a larger channel. . . . .
entities only in a separate table that records the classify systems and subsets; each table includes dient encasing the channel form i criteria outlined here aims to ensure interrogation to FAKTS. FRONTAL SHEET ARCHITECTURAL ELEMENTS IN MODEL FRONTAL SHEET Channel
contnbutlop of different works to every subset. attrlputgs describing both metlad.ata (e.g. data gradien Qcies unit 1 facies unit2  facies unit 3 facies unit4 facies unit 5 o Sl o e oy s NO. element type s assigned. | consistency in data definition and iny one case study is currently included in I;)—MAKS 2: ARCHITECTURAL ELEMENT |
However, if the same stratigraphic volume has quality index) and context-descriptive parameters [.] Ideal by the genetically-related deposits of larger-| [ entry at the largest scale; element- it consists in a dataset composed of 2D seismic lines Element 4 Element 5 0% 20% 40% 60% B80% 100%
been described in different source works in a way or depositional-system controls. architectural-panel scale sheets. curalclements wihi sheet @ type attribution is not carried out | ificati ¢ o tv t and cores from the Pleistocene of the Golo Basin, on = Very fine ® Fine = Medium = Coarse
...................................................................................................................................... data e o e ey . oS Pelement-types are loft . . ] dEasiicEiion @ utpu the easter Corsican margin. All the papers containing
D-MAKS 2 GENETIC-UNIT - e e ] et ooy Undefined) whenever the required Additional literature depositional system L o o e e oy e (Gemvais D-MAKS 2 permits deriving this type of
Smallest scale — outcrop or combined andlorlevee deposits olbser\{able (::. rl]ntt:r[ér?_talslve etal & »Deplucketal. ) information for either individual genetic
HIERARCHY MARGIN OFF-AXIS AXIS OFF-AXIS MARGIN welllseismic dataset e craporoms ey oo Thochamnel frms e o een;en sdon which the definitions |+ v v vt e units, or for models of given genetic-unit
only by ihe genelicalyelated deposits o are based are missing. types, which are based on the synthesis
In D-MAKS 2 three different orders of genetic units are The standard adopted for GENETIC-UNIT HIERARCHY AND DIMENSIONAL PARAMETERS ofinformation from several units.

; . = un ¢ depositional elements is D-MAKS 2 effectively reconciles the
considered; however, some geometric units can be i . Definition of MASTER LEVEES and CHANNEL summarized in the flow-chart on the ) ) facies model and analog approaches
multiply nested to span any order of physical scale facies unit 11 facies unit 21 D T T e left, which is referred to for the SHEET DEPOSITIONAL-ELEMENT Similarly to FAKTS, D-MAKS 2 allows for the derivation of  blue, together with data from two orders of genetic units that are = Silty clay mSilt = Sand :
actually observed: these geometrically-classified units pase by anerosve surfac (f mied o) ateraly Defnion of CHANNEL DEPOSITIONAL sequential application of the criteria DIMENSIONAL PARAMETERS dimensional parameters associated with various hierarchical ~ contained within sheet depositional elements and that & 0. st st s e e e e e e e e e e e e e e e T T T
can be multiply nested within each other, potentially Ideal log data aposits sesling the éntie chamnal leves complo e e e durin orders and classes of genetic units, readily permitting the ~ sometimes also contain frontal-sheet architectural elements.

1 b | . . are bounded at the base by an erosive g the data-entry process. 12000 N > 9 O o ’ Y P 9 N "
defining a hierarchy of their own, and may contain _ Surtace, and attop by abandorment The instructions in the chart are . . investigation of relationships between geometrical parameters ~ These ‘fractal-type’ geometric units are also lobe-shaped and FACIES VARIABILITY WITHIN AND ACROSS GEN ETIC UNITS
genetically-classified units (or be contained in . I : meant to be applied afresh and 10000 . with which, for example, to aid subsurface predictions of  compensational butoccupy intermediate hierarchical orders.
genetically-classified units), which would therefore Interpretative types OUtCJOtp ortwe - @ """""""""""""""""""""""""""""""""""""""""" independently for every subset sandstone lateral extent . As in FAKTS. database
anchor the scale of the geometric units to th — P atasef : Do you recagrize any channelmouth [~ N —— Do you recogrize any mass-transport complox and/or i p 8000 Importantly, D-MAKS 2 allows users to simultaneously tput can be derived t PROPORTIONS OF FACIES-UNIT GRAIN-SIZE CLASSES IN ADJACENT
scale of units with better-constraine S H chamnelfil | o L eecomped I e ohould be evident hat, because of E consider information referring to both scale-dependent and DIMENSIONAL PARAMETERS OF GENETIC e el ARCHITECTURAL ELEMENTS DISTINGUISHED BY IN-ELEMENT POSITION

tic signifi FACIES UNITS MARGIN |8 AXis |8 architectural element : v _phy g < . . : UNITS WITH SHEET GEOMETRIES quantify !
genetic significance. =l =] N Y N which these units correspond, £ 6000 scale-independent elements. To give a flavor of how this can be organization of spatially- . )
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controlling factors and context-descriptive characteristics.
Upon interrogation, these databases return output consisting of
user-defined sets of quantitative information on particular

predict the likely heterogeneity of geophysically-imaged
geobodies;
inform interpretation of lithologies observed in core.

size classes can be tailored on the types of 3
depositional elements in which they occur.

quantitatively (e.g. statistics on thickness of mudstone
sandwiched between two sandstones, see below).
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