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Abstract

A stochastic model for the spread of an SIS epidemic among a population
consisting of N individuals, each having heterogeneous infectiousness and/or
susceptibility, is considered and its behavior is analyzed under the practically
relevant situation when N is small. The model is formulated as a finite time-
homogeneous continuous-time Markov chain X . Based on an appropriate label-
ing of states, we first construct its infinitesimal rate matrix by using an iterative
argument, and we then present an algorithmic procedure for computing steady-
state measures, such as the number of infected individuals, the length of an
outbreak, the maximum number of infectives, and the number of infections suf-
fered by a marked individual during an outbreak. The time till the epidemic
extinction is characterized as a phase-type random variable when there is no ex-
ternal source of infection, and its Laplace-Stieljtes transform and moments are
derived in terms of a forward elimination backward substitution solution. The
inverse iteration method is applied to the quasi-stationary distribution of X ,
which provides a good approximation of the process X at a certain time, condi-
tional on non-extinction, after a suitable waiting time. The basic reproduction
number R0 is defined here as a random variable, rather than an expected value.
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1. Introduction

The SIS model, also known as the contact process, is a simple epidemiologi-
cal model which has been studied extensively from deterministic and stochastic
perspectives under a variety of assumptions; see e.g. the book by Allen [1]. The
standard SIS model is a model for the spread of an epidemic among a homo-
geneously mixed population of N individuals, in which an infective individual
becomes susceptible again as soon as its infectious period terminates. Then, in
the stochastic version, the standard SIS model is formulated in terms of a finite
continuous-time Markov chain (CTMC) X = {X(t) : t ≥ 0} where X(t) denotes
the number of infectives at time t, and its infinitesimal transition probabilities
are specified as

P (X(t+ ∆t) = y |X(t) = x ) =







β
N x(N − x)∆t+ o(∆t), if y = x+ 1,
γx∆t+ o(∆t), if y = x− 1,
0, otherwise,

where o(∆t)/∆t → 0 as ∆t → 0. This means that a typical infective makes
infectious contacts at the points of a Poisson process with rate β during an
infectious period, which follows an exponentially distributed recovery time with
mean γ−1, and the individuals contacted at successive contacts are selected
independently and uniformly from the N individuals of the population. This
uniform mixing (i.e., any infective can infect any susceptible equally easy) be-
comes more evolved with special structures where either nodes (i.e., individuals)
or links may belong to one of a small number of types, thus incorporating hetero-
geneity in individuals’ susceptibility and infectivity. The notions of individuals’
susceptibility and infectivity are mainly related to the form and structure of the
contact-transmission coefficient β, when heterogeneities are allowed. For exam-
ple, a non-uniform mixing is defined by Yates et al. [40], who consider epidemics
in heterogeneous populations where individuals are classified in groups; specifi-
cally, for groups i and j, the infection parameters are given by βi,j = βλ′iπi,jµ

′
j ,

where β is some overall measure of infectiousness, λ′i quantifies the infectivity
of group i individuals, µ′

j quantifies the susceptibility of group j individuals,
and πi,j is a mixing parameter representing the relative preference of group i
infective individuals for group j susceptible individuals.

In this paper, the interest is in the stochastic SIS epidemic model, which
is formulated here as a finite CTMC allowing us to reflect heterogeneous con-
tacts in terms of disease-causing internal infection rates βi,j ≥ 0. The rates βi,j

depend on the pair (i, j) as the node i is infected, in such a way that node j
becomes infected if it is susceptible and an event of a Poisson process of rate βi,j

occurs. In addition, disease-causing external rates λi ≥ 0 and mean recovery
times γ−1

i are assumed to depend on node i. Unlike the exact 2N -state Markov
chain analyzed by Van Mieghem et al. [34, Section III], our model with hetero-
geneous contacts may be thought of as a directed network, that is, a graph in
which each edge has a direction, pointing from one node to another in such a
way that the adjacency matrix may be asymmetric and disease-causing inter-
nal/external infection rates and recovery rates are not necessarily homogeneous.
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We refer the reader to the monographs by Newman [23] and Vega-Redondo [36]
for a description of theories of processes taking place on networks, such as social
networks or search processes on computer networks; as a related work, see also
Kephart and White [18]. Directed networks have been used to model epidemics
relatively rarely (see e.g. Moslonka-Lefebvre et al. [22] and references therein),
but they are relevant to many real-world situations with asymmetries in contact-
transmission structures. Keeling and Eames [17] review the basics of epidemio-
logical theory (based on random-mixing models) and network theory (based on
work from the social sciences and graph theory), and describe a range of the
most popular network types (including random networks, lattices, small-world
networks, spatial networks, scale-free networks, and exponential random graph
models) and their implications for epidemic spread. Danon et al. [9] provide
a personalized overview into the areas of network epidemiology that have seen
the greatest progress in recent years, focusing on the types of network relevant
to epidemiology, the various ways these networks are characterized, and the an-
alytical approaches and the statistical methods that can be applied to infer the
epidemiological parameters on a concrete network. Pautasso et al. [24] focus on
small-size directed networks and study the effect of the in- and out-degree of the
starting node on the epidemic final size. Recently, Zhang et al. [41] develop an
epidemic model for an SIS infection based on semi-directed complex networks,
thus extending the scope of previous papers by Meyers et al. [21], and Sharkey
et al. [28] to allow for asymmetric contact networks. Wilkinson and Sharkey [39]
study Markovian SIS dynamics on finite strongly connected networks, which are
applicable to several sexually transmitted diseases and computer viruses, and
an exact relationship between invasion probability and (probabilistic) endemic
prevalence is proved. In the setting of social networks, Saito et al. [26, 27] con-
sider solving the influence maximization problems on directed networks under
the SIS model.

Our major motivation is to analyze various descriptors in the exact 2N -state
Markov chain model with heterogeneous contacts, and understand the influence
of graph characteristics on epidemic spreading under the practically relevant
situation when N is small, which is related to small communities sharing con-
fined spaces as families (Brimblecombe et al. [5], Grimwood et al. [14]), nursing
homes (Chamchod and Ruan [6]) and intensive care units (ICUs) (Artalejo [3],
Austin et al. [4], Cooper et al. [8], Forrester and Pettitt [12], McBryde et al.
[20]). The reader is alerted to the fact that our assumption of small population
size N does not amount to the term small-world network (see e.g. Verdasca
et al. [37]), which is described in the work of Watts and Strogatz [38] as an
attempt to capture the local nature of transmission and the potential for long-
range contacts. Our approach complements and extends previous studies on the
SIS type dynamics with heterogeneous contacts. The earlier papers by Simon
et al. [29], Van Mieghem et al. [34], and Van Mieghem and Cator [35] focus on
undirected graphs where heterogeneities are related to the position of the nodes
within the contact network. The descriptor of interest in Simon et al. [29] is the
mean transient number of infectives and susceptibles in the contact network.
Simon et al. [29] formulate an SIS type model in terms of a CTMC, revisit
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lumping and discuss various approximation methods that lead to a significant
reduction in the number 2N − 1 of equations in the original exact system. For
a special class of graphs, they illustrate how the lumped system can be derived
by using graph automorphisms. The paper by Taylor et al. [30] builds on the
work of Simon et al. [29] and formalizes the link between the SIS type dynam-
ics and the pairwise epidemic model. Van Mieghem and Cator [35] define the
ǫ-SIS process by assuming that, besides receiving the infection over links from
infected neighbors with rate β, a node can also get infected by a virus due to
some external event with rate ǫ, which was first proposed by Hill et al. [15].
The major advantage of the ǫ-SIS model is that its steady state is different from
the overall-healthy state and approximates, for certain small values ǫ > 0, the
metastable state, which is characterized by the epidemic threshold. Recently,
Sahneh et al. [25] propose a generalized epidemic model, which allows any fi-
nite number M of states (susceptible, infective, alert, etc.) per individual and
more complex interactions among individuals. More concretely, they deal with
a multilayer network that represents the various types of interactions among
individuals in such a way that, for example, one layer may model the infection
process, while another layer may refer to the dissemination of information that
affects their behavior.

In analyzing the underlying CTMC, we present a new labeling of states
that, similarly to Simon et al. [29], enables a block-tridiagonal structure for its
rate matrix. The block-tridiagonal structure of the rate matrix leads us to a
recursive procedure for the construction of its sub-matrices as the population
size N increases, and it enables the use of special routines for solving the re-
sulting systems of linear equations in an efficient manner. From a theoretical
perspective, our analytical results for the exact 2N -state Markov chain model
with heterogeneous contacts remain valid regardless of the population size N ,
but at the expense of limited computational tractability. For problems with
large networks, Taylor and Kiss [31, Section 2] present a review and summary
of the more common approaches to modeling epidemics on networks, including
meanfield, pairwise, heterogeneous pairwise, and effective degree model formu-
lations; see also the paper by Gómez et al. [13], who propose a non-perturbative
formulation of the heterogeneous mean-field approach in SIS models. For the
more general epidemic model introduced by Sahneh et al. [25], the analysis
of the exact Markov chain with MN states is also prohibitive, so the authors
propose a mean-field approximation.

The paper is organized as follows. In Section 2, we describe the distri-
butional assumptions that lead us to the exact 2N -state Markov chain model
with heterogeneous contacts. We first construct the infinitesimal rate matrix
of the underlying process X by using an iterative argument, and then present
algorithmic procedures for computing expected extinction times and the quasi-
stationary distribution of X when there is no source of external infection, and
various steady-state measures. In Section 3, the interest lies in the length of an
outbreak and related measures. We characterize the distribution of the length
of an outbreak in terms of a phase-type (PH) random variable, and derive the
distribution of the maximum number of individuals that are simultaneously in-
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fected, and the distribution of the number of infections suffered by a certain
individual during an outbreak. We also replace the role of the basic reproduc-
tion number R0 by the distribution of the exact reproduction number, which
has been recently introduced by Artalejo and Lopez-Herrero [2] as a random
variable, rather than an expected value. We close, in Section 4, with a few
concluding remarks. Some algorithmic solutions and numerical experiments are
presented in Appendices C and D.

2. Heterogeneous contacts in the stochastic SIS epidemic model

2.1. Exact 2N -state Markov chain model

We consider a closed population of N individuals, where each individual
passes from being susceptible (S) to turning infected (I), to becoming again
susceptible (S), thus allowing for a bidirectional transition between the two
possible states. Connections among individuals are described by a connected
graph, where the nodes correspond to the individuals, and the edges are their
connections, that is, a connection represents a predisposal for a disease-causing
contact. We denote the connected graph by G = (N ,L), where N = {1, 2, ..., N}
is the set of nodes, and L j N ×N is the set of edges, and we associate G with
its adjacency matrix A = (ai,j : i, j ∈ N ) with ai,j = 1 if (i, j) ∈ L, and 0 if
(i, j) /∈ L, and the set of neighborhoods {N i : i ∈ N} with N i = {j : (i, j) ∈ L}.
For each node i ∈ N , there is an external source of infection, related to nodes
that are not represented by G. Disease-causing external infections are assumed
to occur according to a Poisson process with rate λi ≥ 0 at node i. When node i
becomes infected, disease-causing internal infections occur according to a Pois-
son process with rate βi,j > 0 at every node j with j ∈ N i (i.e., (i, j) ∈ L),
in such a way that node j becomes infected if node j is susceptible and an
event of the Poisson process of rate βi,j occurs; it is assumed that βi,j = 0 in
the case j /∈ N i (i.e., (i, j) /∈ L). As node i becomes infected, it remains in-
fected for an exponentially distributed time with mean γ−1

i > 0, and it becomes
again susceptible as this exponential infectious (or recovery) period expires. The
underlying processes governing disease-causing external/internal infections and
recovery times are assumed to be mutually independent.

The state at time t is represented by a vector X(t) with entries Xi(t) for
i ∈ N , that is, node i is infected (respectively, susceptible) at time t, if and
only if Xi(t) = I (respectively, Xi(t) = S). The process X = {X(t) =
(X1(t), X2(t), ..., XN (t)) : t ≥ 0} results in a time-homogeneous CTMC with
2N states. Its state space is denoted by S = {S, I}N . For state x ∈ S and node
j ∈ N , we define vectors Sj(x) and Ij(x) by replacing the jth entry of x by S
and I, respectively. Then, for states x,y ∈ S, the non-null transition rates of
the 2N -state process X are specified by

qx,y =

{

λj +
∑

i∈I(x) βi,j , if xj = S, y = Ij(x),

γj , if xj = I, y = Sj(x),
(1)

and qx = −qx,x =
∑

j∈S(x)(λj +
∑

i∈I(x) βi,j) +
∑

j∈I(x) γj , where xj is the jth

entry of state x, I(x) = {i ∈ N : xi = I} and S(x) = {i ∈ N : xi = S}. Since
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the adjacency matrix A is not assumed to be necessarily symmetric, Equation
(1) allows us to reflect heterogeneous contacts, and it can be seen as an elaborate
version of Van Mieghem et al. [34, Equation (4)].

We express the state space S in terms of levels as ∪N
k=0l(k), where the kth

level is given by l(k) = {x ∈ S : #I(x) = k} for values k ∈ {0, 1, ..., N}. If we
suppose that states are labeled so that states in l(k) precede those in l(k + 1),
then the rate matrix Q of X has the structured form

Q =















Q0,0 Q0,1

Q1,0 Q1,1 Q1,2

. . .
. . .

. . .

QN−1,N−2 QN−1,N−1 QN−1,N

QN,N−1 QN,N















, (2)

where Qk,k′ records transition rates related to jumps of X from states of the
kth level to states of the k′th level, for k′ ∈ {k−1, k+1}, and Qk,k is a diagonal

matrix of order
(

N
k

)

with entries −qx for states x ∈ l(k). In what follows, we
use a matrix formalism; our conventions regarding notation are summarized in
Appendix A.

2.2. Construction of the rate matrix

We construct the sub-matrices Qk,k−1 and Qk,k+1 in (2) from their coun-
terparts in a connected graph with N − 1 nodes. For convenience, let us denote
by Qk,k′(M) the sub-matrix containing transition rates related to jumps from
states of the kth level to states of the k′th level in a connected graph with
M nodes; similarly, levels in a connected graph with M nodes are denoted by
l(k|M), for values k ∈ {0, 1, ...,M}.

By using the reverse lexicographical ordering (Appendix B), it is seen that
the level l(k|M), for 1 ≤ k ≤M − 1, can be expressed in terms of

l(k|M) = l(k|M − 1) × {S} ∪ l(k − 1|M − 1) × {I},

with l(0|M) = l(0|M − 1) × {S} and l(M |M) = l(M − 1|M − 1) × {I}. As a
result, sub-matrices Qk,k−1(M) and Qk,k+1(M) may be recursively evaluated
as follows:

(i) For k′ = k − 1,

Q1,0(M) =

(

Q1,0(M − 1)
γM

)

,

Qk,k−1(M) =

(

Qk,k−1(M − 1) 0(M−1

k )×(M−1

k−2 )
γMI(M−1

k−1 ) Qk−1,k−2(M − 1)

)

, 2 ≤ k ≤M − 1,

QM,M−1(M) =
(

γM , QM−1,M−2(M − 1)
)

.
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(ii) For k′ = k + 1,

Q0,1(M) =
(

Q0,1(M − 1), λM

)

,

Qk,k+1(M) =

(

Qk,k+1(M − 1) λMI(M−1

k ) + U(k, β•,M |M − 1)

0(M−1

k−1 )×(M−1

k+1 ) Qk−1,k(M − 1) + V(k, βM,•|M − 1)

)

,

1 ≤ k ≤M − 2,

QM−1,M (M) =

(

λM + U(M − 1, β•,M |M − 1)
QM−2,M−1(M − 1) + V(M − 1, βM,•|M − 1))

)

,

where U(k, β•,M |M − 1) is a diagonal matrix of order
(

M−1
k

)

with entries
∑

j∈I(x) βj,M for every state x ∈ l(k|M−1), and the matrix V(k, βM,•|M−

1) has dimension
(

M−1
k−1

)

×
(

M−1
k

)

and non-null entries βM,j if xj = S and
y = Ij(x), for every pair (x,y) of states with x ∈ l(k − 1|M − 1) and
y ∈ l(k|M − 1). Note that the algorithmic construction of the matrix
Qk−1,k(M − 1)+V(k, βM,•|M − 1) can be readily implemented by noting
that it amounts to the matrix Qk−1,k(M − 1) where each occurrence of
rate λj is replaced by λj + βM,j for 1 ≤ j ≤M − 1.

Therefore, the sub-matrices Qk,k−1 and Qk,k+1 in (2) can be iteratively
computed using the aforementioned construction for 1 ≤M ≤ N , starting with
Q0,1(1) = (λ1) and Q1,0(1) = (γ1), as Qk,k−1(N) and Qk,k+1(N), respectively,
and the diagonal elements of Qk,k are given by the entries of the column vector

−
(

(1 − δ0,k)Qk,k−1(N)1( N

k−1)
+ (1 − δk,N )Qk,k+1(N)1( N

k+1)

)

.

The graph of Simon et al. [29], and Van Mieghem et al. [34] amounts to the
values λi = 0 and γ−1

i = γ−1 for nodes i ∈ N , and βi,j = β if (i, j) ∈ L, that
is, βi,j = 0 when i and j are not connected by an edge. For this undirected
graph, Simon et al. [29] group the 2N states of S in levels l(k) as in our
approach, but they do not specify any concrete labeling for the

(

N
k

)

states
of l(k), and they use lumping to derive exact models where the number of
equations compared to the original system is significantly reduced in such a way
that the lumped system is either a reduced but exact version of the original
one, or an approximation that in the limit of large graphs (N → ∞) becomes
exact. Whilst for graphs with less symmetry the reduction in dimensionality
will not be as significant, the original 2N -dimensional system in Equation (2)

may be lumped to (N + 1)-, (2N)- and
(

N/2+3
3

)

-dimensional systems for the
complete graph, the star graph, and the household graph, respectively. Van
Mieghem and Cator [35] generalize the graph of Simon et al. [29] by adding
a nodal component to the infection; i.e., λi = ǫ for nodes i ∈ N , with ǫ > 0.
Similarly to Van Mieghem et al. [34], a lexicographical ordering of states leads
Van Mieghem and Cator [35] to a bipartite graph and a recursive structure for
the rate matrix. However, this ordering does not discriminate the various levels
and therefore a nested fractal-type structure appears that, though interesting,
it cannot be exploited from a computational point of view. In particular, the
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bipartite graph does not translate to a recursion for the steady-state vector; see
Figures 2 and 3 in Van Mieghem et al. [34] and their related comments. In
contrast, our ordering first groups states in levels according to the number of
infectives and then arranges them according to the reverse-lexicographic labeling
within each level. This enables an efficient construction and economic storage of
the rate matrix, as well as the development of stable algorithmic procedures for
various epidemic descriptors. In general, the efficient construction of the rate
matrix is an important issue of theoretical and practical relevance in epidemics,
although it may not be very useful numerically. Sahneh et al. [25, Equations
(A6)-(A8)] present such a construction for their generalized model in terms of
Kronecker products.

2.3. The special case λi = 0. Extinction times and quasi-stationary regime

The assumption λi = 0, for nodes i ∈ N , turns state (S, S, ..., S) into an
absorbing state. In the case of an irreducible class C = ∪N

k=1l(k) of transient
states, this means that the epidemic extinction is always certain and the ex-
pected times till extinction are all finite, regardless of the initial number of
infected nodes. To be concrete, let T be the time till absorption of X , that
is, T = inf{t : X(t) = (S, S, ..., S)}. It is then derived that P (T < ∞|X(0) =
x) = 1, and that the expected time E[T |X(0) = x] to reach the absorbing state
(S, S, ..., S) is finite, for any initial state x ∈ C.

Furthermore, the absorption time T can be thought of as a PH random
variable with representation (τ,Q∗), where τ is a row vector containing initial
probabilities on the class C of transient states, and the matrix Q∗ is obtained
from Q in (2) by deleting the row and column corresponding to the absorbing
state (S, S, ..., S). A direct consequence of this observation is that the cumulative
distribution function of T is given by

P (T ≤ t) = 1 − τ exp{Q∗t}12N−1, t ≥ 0.

PH distributions can be seen as a natural generalization of the exponential
and Erlang distributions; see e.g. Latouche and Ramaswami [19, Chapter 2]. In
a general context, a (continuous) PH distribution with representation (u,U) is
defined in terms of the absorption time into state 0 in a CTMC on the state space
{0, 1, ..., u} with initial probability vector (u0,u) and infinitesimal generator

(

0 0T
u

u0 U∗

)

,

where u is a row vector of size u, U∗ is a square matrix of order u with entries
(U∗)i,i < 0 and (U∗)i,j ≥ 0 for i 6= j, u0 = 1 − ueu and u0 = −U∗eu. In our
case, the class C of transient states amounts to the set {1, ..., u}, u = 2N −1, u =
τ and U∗ = Q∗. To illustrate the modeling appeal of PH random variables, we
point out that the family of PH distributions is closed under certain operations
such as convolution and convex mixture, and that PH distributions are dense
in the class of distributions on [0,∞). For practical use, the fact that they are
associated to Markov processes simplifies conditioning arguments.
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The uniformization method (Latouche and Ramaswami [19, Section 2.8])
may be used, in principle, to compute P (T ≤ t) for any given t > 0. More
concretely, we may first uniformize the absorbing CTMC X with rate matrix Q

by choosing c = max{qx : x ∈ S}, and then derive a simple algorithm (Latouche
and Ramaswami [19, Figure 2.4]) to compute P (T ≤ t) for a fixed value t > 0,
which might require some caution if tc happens to be large.

We can present an alternative method based on remaining times Tx till
epidemic extinction, given that the current state of X is x ∈ S. Consider the
Laplace-Stieltjes transforms φ(z;x) = E[e−zTx ] for x ∈ C and Re(z) ≥ 0. For
states x ∈ C, the Laplace-Stieltjes transforms φ(z;x) are specified as the unique
solution to the set of equations



z +
∑

j∈S(x)

∑

i∈I(x)

βi,j +
∑

j∈I(x)

γj



φ(z;x)

=
∑

j∈S(x)

∑

i∈I(x)

βi,jφ(z; Ij(x)) +
∑

j∈I(x)

γjφ(z;Sj(x)), (3)

with φ(z;x) = 1 if x = (S, S, ..., S) since T(S,S,...,S) = 0 almost surely. In matrix
form, Equation (3) becomes















B1(z) C1

A2 B2(z) C2

. . .
. . .

. . .

AN−1 BN−1(z) CN−1

AN BN (z)

























φ1(z)
φ2(z)

...
φN (z)











=











d1

d2

...
dN











, (4)

where φk(z) is a column vector with entries φ(z;x) for states x ∈ l(k), Ak =
−Qk,k−1 for 2 ≤ k ≤ N , Bk(z) = zI(N

k) − Qk,k for 1 ≤ k ≤ N , Ck = −Qk,k+1

for 1 ≤ k ≤ N − 1, and dk = Q1,0 if k = 1, and 0(N

k) if 2 ≤ k ≤ N . Then,

we may derive Algorithm 1 (Appendix C.1) for computing the Laplace-Stieltjes
transforms φ(z;x) for states x ∈ C. The proof of Algorithm 1 is based on
a forward elimination backward substitution solution suggested by Ciarlet [7,
page 144].

Let φ(n)(x) = E[Tn
x

] be the nth moment of the infection extinction time, for

n ≥ 1 and state x ∈ S, and φ
(n)
k denote the column vector with entries E[Tn

x
]

for states x ∈ l(k) and values k ∈ {0, 1, ..., N}; note that φ
(n)
0 = φ(n)(x) = 0

if x = (S, S, ..., S) and n ≥ 1. Then, straightforward algebra yields Equation

(4) with φk(z) and Bk(z) replaced by φ
(n)
k and Bk(0), respectively, and column

vectors dk replaced by nφ
(n−1)
k for 1 ≤ k ≤ N . Algorithm 2 (Appendix C.1)

indicates how one may determine the sub-vectors φ
(n)
k in terms of previously

computed sub-vectors φ
(n−1)
k .

We now turn our attention to the quasi-stationary distribution of X , which
provides a good approximation of the distribution of the 2N -state process X
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at a certain time, conditional on non-extinction, after a suitable waiting time.
That is, we examine the limiting behavior of the conditional probabilities

P (X(t) = x |X(0) = x0,X(t) ∈ C ) =
P (X(t) = x|X(0) = x0)

∑

z∈C P (X(t) = z|X(0) = x0)
,

for states x0,x ∈ C, rather than of P (X(t) = x|X(0) = x0) itself. For a review of
results related to quasi-stationary distributions and two alternative choices (i.e.,
the ratio of means distribution and a doubly-limiting conditional distribution)
see van Doorn and Pollett [33], and Darroch and Seneta [10, Sections 2 and 4],
respectively. In the case of an absorbing CTMC with a single communicating
class of transient states, which is our case here, the sub-matrix Q∗ recording
transition rates among transient states has all its eigenvalues with negative real
parts. Moreover, Q∗ has a unique maximal eigenvalue −α, which is real, strictly
negative and simple (i.e., its algebraic and geometric multiplicities are both
equal to one), and the quasi-stationary distribution of X is uniquely specified
as the left eigenvector u of Q∗ corresponding to −α, with u12N−1 = 1; see van
Doorn and Pollett [33, Theorems 1 and 3].

These observations enable us to determine the quasi-stationary distribution
of the 2N -state process X as the unique vector satisfying uQ∗ = −αu with
u12N−1 = 1. It is worth noting that we are interested in a single left eigenvector
u, corresponding to an eigenvalue −α of a matrix Q∗ of which an approximation
α̃ = 0 is known in advance. Since α̃ = 0 does not belong to the spectrum of Q∗,
we may derive Algorithm 3 (Appendix C.2), which is based on the structured
form of the matrix Q∗ and the use of the inverse iteration method (Ciarlet [7,
Theorem 6.4-1, exercise 6.4-2]).

2.4. The case
∑N

i=1 λi > 0. Steady-state measures

In analyzing the steady-state dynamics of X , we from now on restrict our-
selves to an irreducible 2N -state process X , and derive its steady-state distribu-
tion as the solution to πQ = 0T

2N with π12N = 1. To begin with, we decompose
the vector π into sub-vectors (π(0), π(1), ..., π(N)), where π(k) consists of the
steady-state probabilities

Px = lim
t→∞

P (X(t) = x|X(0) = x0), x ∈ l(k),

which do not depend on the initial state x0 of the process. Algorithm 4 (Ap-
pendix C.3) is adapted from Latouche and Ramaswami [19, Chapter 10], and
proceeds in two phases. During the first phase, we progressively reduce the
state space by removing one level at each step, until we are left with a CTMC
on the Nth level, which is trivially solved since it consists of a single state
x = (I, I, ..., I). Then, we construct a normalized steady-state solution in the
second phase by adding back one level at each step. The steady-state vector π
is finally derived by the normalizing equation.

From the above solution, we may compute the steady-state distribution of
the number of infected nodes as

lim
t→∞

P (Ninf (t) = k) = π(k)1(N

k), k ∈ {0, 1, ..., N},

10



and its corresponding moments; for example, the mean number of nodes that
are infected at an arbitrary time is given by E[Ninf ] =

∑N
k=1 kπ(k)1(N

k).

Let us assume that, at time t = 0, nodes are all susceptible, and define a
cycle as the time interval that starts at time t = 0 and ends at the first time
epoch t > 0 at which X(t) = (S, S, ..., S), after leaving this state. By appealing
to the theory of regenerative processes, the steady-state probability Px can be
interpreted as the long-run fraction of time that, during a cycle, the process X
stays in state x, irrespectively of the initial state x0 ∈ S. This means that we
may express Px in terms of mean sojourn times as

Px = (E[L])
−1
E[Lx],

where L is the length of a cycle, and Lx is the amount of time that, during a
cycle, the process X stays in state x. By noting that Px is the entry of π(k)
related to state x if x ∈ l(k) with 0 ≤ k ≤ N , we have

E[L] = λ−1π−1(0),

E[Lx] = λ−1π−1(0)Px, x ∈ C,

with λ =
∑N

i=1 λi. As a result, the expected amount of time that, during a
cycle, the number of infected nodes equals k is given by

∑

x∈l(k)

E[Lx] = λ−1π−1(0)π(k)1(N

k), 0 ≤ k ≤ N.

3. Length of an outbreak and related measures

An outbreak begins when a single node chosen appropriately from the pop-
ulation becomes infected. The disease spreads from the infected node to a
neighboring susceptible node at a certain rate, in such a way that each new
infected node attempts to infect each of its neighbors and then recovers in ac-
cordance with the model description in Section 2.1. The outbreak ends when
no infected nodes remain.

Under the assumption of irreducibility, the 2N -state process X will reach the
state (S, S, ..., S) starting from any state, meaning that the epidemic always dies
out. Let T ′

x
be the time until the epidemic dies out provided that the process

X currently visits state x ∈ S, and ϕ(z;x) be the Laplace-Stieltjes transform
E[e−zT ′

x ], for Re(z) ≥ 0. It is seen that the sub-vectors ϕk(z) with entries
ϕ(z;x), for states x ∈ l(k) and values 1 ≤ k ≤ N , satisfy Equation (4) with
φk(z) replaced by ϕk(z). However, it should be noted that, unlike Section 2.3
where λi = 0 for every node i ∈ N , the external infection rates λi are not
necessarily null in the present section. This implies that the Laplace-Stieljtes
transforms E[e−zT ′

x ] and its moments E[(T ′
x
)n], for states x ∈ C and values

n ≥ 1, can be numerically derived by adapting Algorithms 1 and 2, respectively,
and the length T ′

x
of an outbreak can be thought of as a PH random variable

with representation (e2N−1(x),Q∗).
In what follows, the focus is on three related characteristics allowing us to

reflect how the disease spreads on the connected graph G.
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3.1. Maximum values

Our objective here is to derive the distribution of the maximum level visited
by X (i.e., the maximum number of nodes that are simultaneously infected)
during an outbreak, denoted by Nmax.

To evaluate the mass function P (Nmax = k|X(0) = x0) for values 1 ≤ k ≤
N and initial states x0 ∈ l(1), we modify the 2N -state process X by turning
(S, S, ..., S) into an absorbing state, which implies that the set C = ∪N

k=1l(k)
becomes an irreducible class of transient states. We may observe that, for
x0 ∈ l(1), the conditional probability P (Nmax ≤ k|X(0) = x0) is equal to the
probability that, starting from x0, the process X enters the absorbing state
(S, S, ..., S) but avoiding states of ∪N

k′=k+1l(k
′). Hence, for each fixed 1 ≤ k ≤

N − 1, we consider an absorbing process X (k) defined on the state space

S(k) = {(S, S, ..., S)} ∪
k
⋃

k′=1

l(k′) ∪ {k + 1},

where state k+1 is obtained by lumping the set ∪N
k′=k+1l(k

′) of transient states

to make an absorbing state. The rate matrix of X (k) is defined as

Q(k) =





0 0T
J(k) 0

t0(k) T(k) tk+1(k)
0 0T

J(k) 0



 ,

where

t0(k) =

(

Q1,0

0J′(k)

)

,

T(k) =















Q1,1 Q1,2

Q2,1 Q2,2 Q2,3

. . .
. . .

. . .

Qk−1,k−2 Qk−1,k−1 Qk−1,k

Qk,k−1 Qk,k















, (5)

tk+1(k) =

(

0J(k−1)

Qk,k+11( N

k+1)

)

,

with J(k) =
∑k

k′=1

(

N
k′

)

and J ′(k) = J(k) −N . Since the class C is irreducible,
the set ∪k

k′=1l(k
′) consists of communicating transient states and the sub-matrix

T(k) is non-singular. The real part of each eigenvalue of T(k) is therefore strictly
negative and T(k) is stable. If we expand exp{T(k)t}, and T(k) is replaced by
its Jordan form, then it is also seen that limu→∞ exp{T(k)u} = 0J(k)×J(k). We
may observe that the column vector

p(k) =

∫ ∞

0

exp{T(k)u}dut0(k)
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contains the conditional probabilities that the absorption of X (k) into state
(S, S, ..., S) occurs in a finite time. Thus, by noting that the entries of the
matrix exponential exp{T(k)u} amount to the probabilities that up to time u
the absorbing process X (k) does not leave the subset ∪k

k′=1l(k
′) of transient

states, we notice that the entries of

p(k) =
(

−T−1(k)
)

t0(k)

specify the conditional probabilities P (Nmax ≤ k|X(0) = x0) for initial states
x0 ∈ ∪k

k′=1l(k
′).

The cumulative distribution function Fmax(k) = P (Nmax ≤ k) is derived as

Fmax(k) =
∑

x0

P (X(0) = x0)P (Nmax ≤ k |X(0) = x0 ) , 1 ≤ k ≤ N.

Since the first external infection in a completely susceptible population implies
an initial state x0 ∈ l(1), the summation above is over l(1). Thus, Fmax(k) may
be expressed in matrix form as

Fmax(k) = µ(k)p(k), 1 ≤ k ≤ N,

where µ(k) has the structured form

µ(k) =
(

µ(1|k),0J′(k)

)

, (6)

and µ(1|k) consists of initial probabilities over states of level l(1). Note that,
in the case k = N , we have directly Fmax(N) = 1. We refer the reader to
Algorithm 5 (Appendix C.4) for an algorithmic procedure for computing the
values Fmax(k), for 1 ≤ k ≤ N − 1.

It should be noted that the sub-vector of initial probabilities in (6) reflects
the beginning of an outbreak. In a general setting, a variant of Algorithm 5
can be routinely derived in the case of more than one node initially infected.
Specifically, the replacement of µ(k) in (6) by a vector (µ(1|k), µ(2|k), ..., µ(k|k))
of initial probabilities over the subset ∪k

k′=1l(k
′) of transient states, will lead us

to compute of Fmax(k) in terms of µ(k)p(k), instead of µ(1|k)s(k), in step 3 of
Algorithm 5.

3.2. Number of infections

In this section, we characterize the distribution of the number S′ of infections
suffered by a certain node during an outbreak. For convenience, we focus on
the Nth node. To derive the generating function of the random variable S′, we
proceed to evaluate in a more general setting the generating functions ξ(z;x) =
E[zS′

x ] for |z| ≤ 1, where S′
x

denotes the number of infections suffered by the
Nth node during an interval of length T ′

x
, that is, provided that the current

state of the process X is state x.
Let ξk(z) be the column vector containing the generating functions ξ(z;x)

for states x ∈ l(k) and values 1 ≤ k ≤ N . We may observe that ξ0(z) = 1
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since S′
x

= 0 almost surely in the case x = (S, S, ..., S). For states in l(k)
with 1 ≤ k ≤ N − 1, we partition level l(k) into two sub-levels l(k;S) and
l(k; I), where l(k;S) and l(k; I) contain states x ∈ l(k) with xN = S and
xN = I, respectively. Sub-levels l(k;S) and l(k; I) enable us to decompose
ξk(z) into sub-vectors ξk(z;S) and ξk(z; I), and to reexpress sub-matrices Qk,k′

with k′ ∈ {k − 1, k, k + 1} in (2) as follows:

(i) For k′ = k − 1,

Q1,0 =

(

Q1,0(S;S)
γN

)

,

Qk,k−1 =

(

Qk,k−1(S;S) 0(N−1

k )×(N−1

k−2)
γNI(N−1

k−1)
Qk,k−1(I; I)

)

, 2 ≤ k ≤ N − 1,

QN,N−1 = (γN ,QN,N−1(I; I)) .

(ii) For k′ = k,

Q0,0 = Q0,0(S;S),

Qk,k = diag (Qk,k(S;S),Qk,k(I; I)) , 1 ≤ k ≤ N − 1,

QN,N = QN,N (I; I).

(iii) For k′ = k + 1,

Q0,1 = (Q0,1(S;S),Q0,1(S; I)) ,

Qk,k+1 =

(

Qk,k+1(S;S) Qk,k+1(S; I)
0(N−1

k−1)×(N−1

k+1)
Qk,k+1(I; I)

)

, 1 ≤ k ≤ N − 2,

QN−1,N =

(

QN−1,N (S; I)
QN−1,N (I; I)

)

.

We recall that the sub-matrices Qk,k′(K;K ′), for k′ ∈ {k − 1, k + 1} and
K,K ′ ∈ {S, I}, were derived in Section 2.2 from sub-matrices associated with a
connected graph with N−1 nodes. For instance, the sub-matrix Qk,k+1(K;K ′)
is related to a new infection, and K and K ′ determine states of node N immedi-
ately before and after its occurrence; in the case K = K ′ = I and 1 ≤ k ≤ N−1,
it has the form

Qk,k+1(I; I) = Qk−1,k(N − 1) + V(k, βN,•|N − 1), (7)

where non-null entries of V(k, βN,•|N − 1) are associated with infections gener-
ated only by node N ; other infections are registered in Qk−1,k(N − 1).

By conditioning on the first transition, we have

(i) For states x ∈ l(k;S) with 1 ≤ k ≤ N − 1,




∑

j∈S(x)



λj +
∑

i∈I(x)

βi,j



+
∑

j∈I(x)

γj



 ξ(z;x) =
∑

j∈I(x)

γjξ(z;Sj(x))
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+
∑

j∈S(x),j 6=N



λj +
∑

i∈I(x)

βi,j



 ξ(z; Ij(x))+



λN +
∑

i∈I(x)

βi,N



 zξ(z; IN (x)).

(ii) For states x ∈ l(k; I) with 1 ≤ k ≤ N ,




∑

j∈S(x)



λj +
∑

i∈I(x)

βi,j



+
∑

j∈I(x)

γj



 ξ(z;x) =
∑

j∈I(x)

γjξ(z;Sj(x))

+
∑

j∈S(x)



λj +
∑

i∈I(x)

βi,j



 ξ(z; Ij(x)).

In matrix form, these equations can be written as

−Qk,k(S;S)ξk(z;S) = Qk,k−1(S;S)ξk−1(z;S) + Qk,k+1(S;S)ξk+1(z;S)

+Qk,k+1(S; I)zξk+1(z; I), 1 ≤ k ≤ N − 1, (8)

−Qk,k(I; I)ξk(z; I) = γNξk−1(z;S) + (1 − δ1,k)Qk,k−1(I; I)ξk−1(z; I)

+(1 − δk,N )Qk,k+1(I; I)ξk+1(z; I), 1 ≤ k ≤ N, (9)

where we denote ξ0(z) = ξ0(z;S) = 1. By (8) and (9), the sub-vectors ξk(z),
for 1 ≤ k ≤ N , satisfy Equation (4) with Bk(z) and Ck replaced by Bk(0) and
Ck(z), respectively, where the sub-matrices Ck(z) are defined by

Ck(z) = −

(

Qk,k+1(S;S) zQk,k+1(S; I)
0(N−1

k−1)×(N−1

k+1)
Qk,k+1(I; I)

)

, 1 ≤ k ≤ N − 2,

CN−1(z) = −

(

zQN−1,N (S; I)
QN−1,N (I; I)

)

.

Thus, by replacing Bk(z) and Ck by Bk(0) and Ck(z), Algorithm 1 computes
the generating functions ξ(z;x) for states x ∈ C, and the generating function of
the random variable S′ can be evaluated as

E
[

zS′

]

= ν(S)ξ1(z;S) + ν(I)zξ1(z; I), |z| ≤ 1,

where ν(S) and ν(I) record initial probabilities over states in sub-levels l(1;S)
and l(1; I), respectively. The amount ν(S)ξ1(0;S) represents the probability
that node N will not suffer any infection during an outbreak. Similarly, we may

evaluate the sub-vectors ξ
(n)
k with entries E[S′

x
(S′

x
− 1) · ... · (S′

x
− n + 1)] for

states x ∈ l(k) and values 1 ≤ k ≤ N , by replacing the computation of the
column vector wk at step 2 of Algorithm 2 by

wk = G−1
k (dk + (1 − δ1,k)Qk,k−1wk−1) , 1 ≤ k ≤ N − 1,

with

dk =

(

nQk,k+1(S; I)ξ
(n−1)
k+1 (I)

0(N−1

k−1)

)

, 1 ≤ k ≤ N − 1,

15



and dN = 0, where ξ
(n)
k (K) consists of those entries of ξ

(n)
k for states in sub-level

l(k;K) with K ∈ {S, I}. This leads us to the following expression for the nth
factorial moment of S′

E[S′(S′ − 1) · · · (S′ − n+ 1)] = ν(S)ξ
(n)
1 (S) + ν(I)

(

ξ
(n)
1 (I) + nξ

(n−1)
1 (I)

)

.

3.3. Basic reproduction number

The basic reproduction number, denoted by R0, is probably the most im-
portant quantity in epidemiology, and it is one of the first descriptors to be
estimated during the emergence of a new infectious disease. In the stochastic
framework, the role of R0 is replaced by the distribution of the exact repro-
duction number Rexact,0, which has been recently introduced by Artalejo and
Lopez-Herrero [2] as a random variable, rather than an expected value. Follow-
ing to Artalejo and Lopez-Herrero [2, Section 3], we define Rexact,0(i) as the
exact number of secondary cases generated by node i in the connected graph G
during its entire infectious period.

In this section, we focus on node N , and determine the distribution of
Rexact,0(N) as that of R′

(S,...,S,I), where the random variable R′
x

records the
number of secondary cases generated by node N during its residual infectious
period, provided that the current state of X is x, for states x ∈ l(k; I) with
1 ≤ k ≤ N . We first append an extra state, which we denote by ∆, to the
subset ∪N

k=1l(k; I) of states.
The distribution ofR′

x
, for any state x ∈ l(k; I) with 1 ≤ k ≤ N , is inherently

connected to a modification of the process X , which is defined on the state space
{∆} ∪ (∪N

k=1l(k; I)), where ∆ is an absorbing state, and the set ∪N
k=1l(k; I) is

a class of communicating transient states. The rate matrix of this modified
process is given by



















0
q∗

1 Q1,1(I; I) Q1,2(I; I)
q∗

2 Q2,1(I; I) Q2,2(I; I) Q2,3(I; I)
...

. . .
. . .

. . .

q∗
N−1 QN−1,N−2(I; I) QN−1,N−1(I; I) QN−1,N (I; I)
q∗

N QN,N−1(I; I) QN,N (I; I)



















,

where q∗
k = γN1(N−1

k−1)
. By using the decomposition formula (7), we have the

following equality for the sub-vectors ψk(z) with entries ψ(z;x) = E
[

zR′

x

]

, for

states x ∈ l(k; I) and values 1 ≤ k ≤ N :

−Qk,k(I; I)ψk(z) = q∗
k + (1 − δ1,k)Qk,k−1(I; I)ψk−1(z)

+(1 − δk,N ) (Qk−1,k(N − 1) + zV(k, βN,•|N − 1))ψk+1(z).

Therefore, sub-vectors ψk(z), for 1 ≤ k ≤ N , satisfy (4) with the sub-matrices
Ak, Bk(z), Ck and dk replaced by −Qk,k−1(I; I), −Qk,k(I; I), −(Qk−1,k(N −
1)+zV(k, βN,•|N−1)) and q∗

k, respectively. We show in Algorithm 6 (Appendix
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C.5) how to compute E
[

zR′

x

]

, for states x ∈ ∪N
k=1l(k; I), by adapting our

arguments in Algorithm 1.

Sub-vectors ψ
(n)
k of factorial moments E[R′

x
(R′

x
− 1) · ... · (R′

x
− n+ 1)], for

states x ∈ l(k; I) with 1 ≤ k ≤ N , can be also evaluated from Algorithm 6

by replacing Ck(z) and dk by Ck(1) and (1 − δk,N )nV(k, βN,•|N − 1)ψ
(n−1)
k+1 ,

respectively. The expected number of secondary infections generated by nodeN ,

during its entire infectious period, is then determined as E[Rexact,0(N)] = ψ
(1)
1 ,

since ψ1(z) = E[zRexact,0(N)]. A population-based version of this expected value
is given by

E[Rexact,0] = λ−1
N
∑

i=1

λiE[Rexact,0(i)],

where the term λ−1λi specifies the probability that, in a completely susceptible
population, the disease transmission is caused by node i.

In Diekmann et al. [11], we may find an interesting discussion on how various
indicators of the infectiousness of an individual (such as the basic reproduction
number R0, the speed c0 of the spatial propagation of an infection and the
probability of a major outbreak, among others) can be used to describe the
spread of an epidemic in a network. The main argument in Diekmann et al.
[11, Section 10.6] is that R0 cannot provide sufficient information for the spread
of an epidemic in a general network. In particular, two simple situations are
presented, when the individuals of a finite population occupy the positions of
an integer lattice on a line, and when they are placed on the nodes of a regular
lattice in a plane. In the former case, the possibility of a major outbreak can
be characterized in terms of R0, whereas in the latter it cannot. The reason is
that, in a network with loops, there does not exist a typical spatial configuration
of already infected and still susceptible individuals, unlike in the integer lattice
on a line. Thus, R0 makes sense for networks with a tree configuration, but its
value is arguable for more complex network structures.

In contrast to R0, the exact reproduction number Rexact,0 does not take
into account only the immediate neighbors of an individual, but rather it con-
siders the whole effect of an initially infected individual on the network till its
first recovery. Moreover, it takes into account not only the underlying contact
structure but also the differences in the levels of susceptibility, infectivity and
recovery of an individual. This more detailed information comes at a higher
computational cost, which is not prohibitive for small populations. The compu-
tation of Rexact,0 (or its first moment) when N is small can help to shed light
on various natural questions. For example, in the case of a newly infected fam-
ily (Appendix D), it may answer to questions like ‘Does the nature of the first
infected member (child, mother, father) influence the number of members that
will be affected till the first recovery?’ or ‘How many members will be affected
till the recovery of the first infected member?’
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4. Discussion

In this paper, we describe the network of contacts between individuals by
a graph G = (N ,L) with members of the population represented by nodes in
N , and with connections between individuals represented by edges in L. The
2N -state process X amounts to a directed graph G, whence we complement
and extend previous studies (Simon et al. [29], Van Mieghem et al. [34], Van
Mieghem and Cator [35]) where the authors treat undirected networks, with
disease transmission possible in either direction along an edge.

A key idea in the paper is an appropriate labeling of states in S, which differs
from the lexicographic ordering assumed by Van Mieghem et al. [34], and Van
Mieghem and Cator [35]. Similarly to Simon et al. [29], we group the 2N

states of S in levels l(k) according to the number k ∈ {0, 1, ..., N} of infectives,
which leads to a block-tridiagonal rate matrix Q in (2). In addition, we use a
reverse-lexicographic labeling of states in level l(k) and, for a population of N
individuals, we construct the sub-matrices Qk,k−1 and Qk,k+1 in (2) in terms of
their counterparts for N − 1 individuals. The iterative construction in Section
2.2 enables a more economic storage of the infinitesimal transition rates, as well
as the use of special routines for solving the resulting systems of linear equations
for the various epidemic descriptors in Sections 2.3, 2.4 and 3.

The existing literature on epidemic models on networks is essentially focussed
on phase-transition phenomena (critical thresholds, which are linked to a major
outbreak), the transient distribution and some related distributions (metastable
state) of the number of infectives. Our interest is in epidemic descriptors that
quantify the spread of the epidemic at a population level (steady-state mea-
sures, extinction times, quasi-stationary regime, and maximum values), and at
an individual level (number of infections during an outbreak, and number of
secondary cases generated by a certain individual). In studying descriptors,
our labeling of states plays a crucial role when defining suitable absorbing ver-
sions of the process X , and adapting well-known numerically stable solutions
(block-Gaussian elimination, inverse iteration method, etc.) for their efficient
implementation. It is not clear how these descriptors could be investigated with
the previously proposed orderings of states.

Whilst we show how current SIS type models can be extended in a way
that captures a variety of network topologies and heterogeneities in individuals’
infectiousness and susceptibility, the analytical treatment of the exact 2N -state
Markov chain will have a more theoretical rather than practical motivation in
the case of network sizes N ≥ 20. In Appendix D, the approach is seen to
perform well with regard to both accuracy and speed for networks with sizes
N ≤ 15 and a variety of configurations. Table 1 briefly summarizes a preliminary
set of numerical experiments for a complete graph with uniform mixing (Van
Mieghem and Cator [35]), and it shows that the steady-state vector of the
process X can be more efficiently evaluated with Algorithm 4 than with general-
purpose algorithms. Differences in execution times become more apparent with
increasing population sizes N . This is mainly explained by the fact that, in
solving numerically the 2N -dimensional system πQ = 0T

2N with π12N = 1, the
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Table 1: Execution times in computing the mean number E[Ninf ] of infectives for the graph
of Van Mieghem and Cator [35] with ǫ = 2.0, β = 2.0 and γ = 4.0.

N 10 11 12 13 14 15 16 17

LU factorization 0.19s 1.38s 9.91s 1m14.22s 10m14.53s 1h15m36.41s — —
Algorithm 4 0.02s 0.13s 0.77s 5.41s 45.63s 4m59.94s 1h22m24.76s 10h45m1.97s

approach leads us to solve N +1 systems of linear equations for
(

N
k

)

unknowns,
with k ∈ {0, 1, ..., N}, which reduces significantly the computational burden for
a fixed size N . The uniform mixing in the complete graph is considered in Table
1 not for any computational convenience, but for testing the accuracy by noting
that the uniform mixing in the complete graph yields a birth-and-death process
governing the process X in steady-state. In evaluating numerical results, we use
the Python programming language in a high performance computing facility –
quad-core AMD 8384 (2.7Ghz) processor with 64GB of DDR2 memory – of the
University of Leeds.

It is clear that, from a practical point of view, the increase in the range of N
for which Algorithm 4 provides a numerical solution, while conventional tools
cannot, is not qualitatively significant in our examples (Table 1). However, from
a theoretical perspective, the ordering of states and the recursive construction
of the rate matrix in Sections 2.1 and 2.2 are neat, and they provide a path for
the study of epidemic descriptors that have not been considered earlier.

The main idea that relies in the ordering of states (Sections 2.1 and 2.2) can
be extended in more general epidemic models with multiple individual states
or compartments, which would yield a state space S structured by levels and
sub-levels. For example, a similar analysis can be carried out for SIR type
models, where susceptible individuals become infected, and infected individuals
eventually become recovered, staying in this state for the rest of the process. In
this case, we may express S in terms of levels as

S =

N
⋃

k=0

l(k). (10)

The kth level is now given by l(k) = ∪N−k
i=0 l′(k; i), and the sub-levels are defined

by l′(k; i) = {x ∈ S : #R(x) = k,#I(x) = i}, where #R(x) and #I(x) denote
the numbers of recovered and infected individuals in state x, respectively. For
practical use, our algorithmic solution and the Kronecker’s products approach
in Sahneh et al. [25] will fail for moderate values of N , since #S = 3N in the
SIR type model; similarly to the SIS model, the labeling of states in (10) permits
to study various descriptors, such as the duration of an outbreak, the final size
of the epidemic, and the number of simultaneously infected individuals during
an outbreak. Unlike the block-tridiagonal structure of Q in the SIS model,
Equation (10) yields a rate matrix with a special block-bidiagonal structure.
The numerical relevance of this statement is that, in studying these descriptors,
no inverses are needed to be computed in the resulting algorithmic procedures
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and, consequently, efficient recursions can be obtained.
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Appendix A. Glossary of notation

For ease of reference we summarize here some of the notation that is used
in the rest of paper.

Matrices have uppercase and vectors lowercase letters. The transpose of W

is written as WT . For a square matrix W, the matrix exponential is defined
by exp{W} =

∑∞
n=0(n!)−1Wn. We denote by Ia and 0a×b the identity matrix

of order a and the null matrix of dimension a × b, respectively. The matrix
diag(e1, ..., ea) is the square matrix having elements e1, ..., ea along its diagonal
and zeros elsewhere, even if the entries e1, ..., ea are matrices.

We let 1a be the column vector of order a of 1s, and 0a be the column vector
of order a of 0s. The vector ea(x) is a column vector of order a such that all
entries equal zero, with the exception of the entry for state x which is equal to
one. Finally, δa,b denotes Kronecker’s delta, and #B denotes cardinality of a
set B.

Appendix B. Reverse lexicographical ordering

For states of level l(k) in the connected graph G, the reverse lexicographical
ordering is derived as follows. First, states x ∈ S are translated into states
x ∈ {0, 1}N by replacing S and I by 0 and 1, respectively. Second, resulting
states x ∈ {0, 1}N within level l(k) are ordered by using the lexicographical
ordering. Third, states in the form (x1, x2, ..., xN ) with entries xi ∈ {0, 1} are
then rewritten as states (xN , xN−1, ..., x1) with xi ∈ {S, I}.

As an example, we consider the case N = 4 and k = 2. This gives a
total of six states, which are ordered as (0, 0, 1, 1) ≺ (0, 1, 0, 1) ≺ (0, 1, 1, 0) ≺
(1, 0, 0, 1) ≺ (1, 0, 1, 0) ≺ (1, 1, 0, 0). States in l(2) are then ordered as

(I, I, S, S) ≺ (I, S, I, S) ≺ (S, I, I, S) ≺ (I, S, S, I) ≺ (S, I, S, I) ≺ (S, S, I, I).

Appendix C. Algorithmic solutions

Appendix C.1. Algorithms 1 and 2

Algorithms 1 and 2 provide iterative procedures for computing the Laplace-
Stieltjes transforms φ(z;x) in (4), and their moments E[Tn

x
], for states x ∈ C

and n ≥ 1.
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Algorithm 1 Computation of E[e−zTx ] for states x ∈ C

Step 1: k := 1;
Gk(z) := zIN − Q1,1;
wk(z) := G−1

1 (z)Q1,0;
while k < N , repeat

k := k + 1;
Gk(z) := zI(N

k) − Qk,k − Qk,k−1G
−1
k−1(z)Qk−1,k;

wk(z) := G−1
k (z)Qk,k−1wk−1(z).

Step 2: φk(z) := wk(z);
while k > 1, repeat

k := k − 1;
φk(z) := wk(z) + G−1

k (z)Qk,k+1φk+1(z).

Algorithm 2 Computation of E[Tn
x

] for states x ∈ C and n ≥ 1

Step 1: k := 1;
Gk := −Q1,1;

wk := nG−1
k φ

(n−1)
k ;

while k < N , repeat
k := k + 1;
Gk := −Qk,k − Qk,k−1G

−1
k−1Qk−1,k;

wk := G−1
k (nφ

(n−1)
k + Qk,k−1wk−1).

Step 2: φ
(n)
k := wk;

while k > 1, repeat
k := k − 1;

φ
(n)
k := wk + G−1

k Qk,k+1φ
(n)
k+1.

Algorithms 1 and 2 lead themselves to stable computations since Gk(z) has
non-positive off-diagonal elements and strictly positive row sums for Re(z) ≥ 0,
and Gk = Gk(0). More particularly, the value

z +
∑

i∈I(x)

∑

j∈S(x)

βi,j

results in a lower bound to the row sum corresponding to state x ∈ l(k), which
implies that the matrix Gk(z) is nonsingular, forRe(z) ≥ 0. Elements of G−1

k (z)
are thus nonnegative; see Latouche and Ramaswami [19, Theorem 2.4.3].

Appendix C.2. Algorithm 3

Steps 1 and 2 in Algorithm 3 show how, in a specialized manner, one pro-
ceeds when solving uk′+1Q

∗ = uk′ by block-Gaussian elimination.

Algorithm 3 Computation of the quasi-stationary distribution of X
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Step 1: k′ := 0;
k := N ;
Q∗

k := QN,N ;
select uk′ := (u0(1),u0(2), ...,u0(N));
while k > 1, repeat

k := k − 1;
Q∗

k := Qk,k + Qk,k+1(−Q∗
k+1)

−1Qk+1,k;
while k < N − 2, repeat

Rk := Qk,k+1(−Q∗
k+1)

−1;
Gk := (−Q∗

k+1)
−1Qk+1,k;

k := k + 1.
Step 2: k := N ;

vk′+1(k) := uk′(N);
while k > 1, repeat

k := k − 1;
vk′+1(k) := uk′(k) + vk′+1(k + 1)Gk;

uk′+1(1) := vk′+1(1)(Q∗
1)

−1;
while k < N − 1, repeat

k := k + 1;
uk′+1(k) := vk′+1(k)(Q

∗
k)−1 + uk′+1(k − 1)Rk−1.

Step 3: If ||uk′+1 − uk′ || > ε, then
k′ := k′ + 1;
repeat step 2;

else
u := (uk′+112N−1)

−1uk′+1;
endif.

For practical use, we shall select u0 as an arbitrary non-zero vector (Cia-
rlet [7, page 213]) but we point out that, from a theoretical perspective, it
corresponds to a vector that does not belong to the subspace spanned by the
vectors corresponding to the eigenvalues which are distinct from −α. Step 3
will progressively increase k′ until finding a suitable approximation to the limit

lim
k′→∞

(−1)k′

(||uk′ ||)−1
uk′ = u,

with a predetermined accuracy ε > 0, which holds true regardless of the vector
norm || · || under consideration.

Appendix C.3. Algorithm 4

Here is an algorithmic procedure for computing the steady-state distribution
of the 2N -state process X .

Algorithm 4 Computation of the steady-state distribution of X

Step 1: k := 0;
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Q∗
k := Q0,0;

while k < N − 2, repeat
k := k + 1;
Q∗

k := Qk,k + Qk,k−1(−Q∗
k−1)

−1Qk−1,k.
Step 2: k := N ;

π∗(k) := 1;
while k > 0, repeat

k := k − 1;
π∗(k) := π∗(k + 1)Qk+1,k(−Q∗

k)−1.
Step 3: k := N ;

π(k) :=
(

1 +
∑N−1

k′=0 π
∗(k′)1(N

k′)

)−1

;

while k > 0, repeat
k := k − 1;
π(k) := π(N)π∗(k).

Appendix C.4. Algorithm 5

Algorithm 5 is inspired from block-Gaussian elimination, and it is based on
the partition of T(k) into sub-matrices

T(k) =

(

T(k − 1) C′
1,2(k − 1)

C′
2,1(k − 1) Qk,k

)

,

where C′
1,2(k− 1) and C′

2,1(k− 1) are defined from (5) in an appropriate man-
ner. Sub-matrices C1,2(k − 1) and C2,2(k − 1) in step 2 are then obtained by
evaluating −T−1(k) from Hunter [16, Theorem 4.2.4].

Algorithm 5 Computation of Fmax(k)

Step 1: k := 1;
C2,2(k) := −Q−1

1,1;

p(k) :=

(

(

∑N
j=1,j 6=k′(λj + βk′,j) + γk′

)−1

γk′ : 1 ≤ k′ ≤ N

)

;

p1(k) := p(k).
Step 2: While k < N − 1, repeat

k := k + 1;
C2,2(k) := − (Qk,k + Qk,k−1C2,2(k − 1)Qk−1,k)

−1
;

if k = 2, then
p≤k−1(k) := C2,2(k − 1)Qk−1,kC2,2(k)Qk,k−1pk−1(k − 1),
p≤k−1(k) := pk−1(k − 1) + p≤k−1(k),

else

p≤k−1(k) :=

(

C1,2(k − 1)Qk−1,kC2,2(k)Qk,k−1pk−1(k − 1)
C2,2(k − 1)Qk−1,kC2,2(k)Qk,k−1pk−1(k − 1)

)

,

p≤k−1(k) :=

(

p≤k−2(k − 1)
pk−1(k − 1)

)

+ p≤k−1(k),

endif;
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C1,2(k) :=

(

C1,2(k − 1)Qk−1,kC2,2(k)
C2,2(k − 1)Qk−1,kC2,2(k)

)

;

pk(k) := C2,2(k)Qk,k−1pk−1(k − 1);

p(k) :=

(

p≤k−1(k)
pk(k)

)

;

s(k) := ((p(k))k′ : 1 ≤ k′ ≤ N).
Step 3: Fmax(k) := 1;

while k > 1, repeat
k := k − 1;
Fmax(k) := µ(1|k)s(k).

Appendix C.5. Algorithm 6

By adapting Algorithm 1, we derive the following procedure for evaluating

E
[

zR′

x

]

, for states x ∈ ∪N
k=1l(k; I):

Algorithm 6 Computation of E
[

zR′

x

]

for states x ∈ ∪N
k=1l(k; I)

Step 1: k := 0;
while k < N − 2, repeat

k := k + 1;
Gk(z) := −Qk,k(I; I) + (1 − δ1,k)Qk,k−1(I; I)G

−1
k−1(z)Ck−1(z);

wk(z) := G−1
k (z) (dk + (1 − δ1,k)Qk,k−1(I; I)wk−1(z)).

Step 2: k := N ;

ψk(z) :=
(

−QN,N (I; I) + QN,N−1(I; I)G
−1
N−1(z)CN−1(z)

)−1
;

ψk(z) := ψk(z)(q∗
N + QN,N−1(I; I)wN−1(z));

while k > 1, repeat
k := k − 1;
ψk(z) := wk(z) − G−1

k (z)Ck(z)ψk+1(z).

Appendix D. Numerical experiments

In this appendix, our numerical work is related to the spread of the syndrome
Acute coryza within a family, and infections caused by nosocomial pathogens
in an intensive care unit. Supplementary material related to numerical ex-
periments can be found online at http://dx.doi.org/10.1016/j.physa.***.
Throughout this section, we use here the notation T ′ and S′ instead of T ′

x
and

S′
x

as the initial infective x is well specified by the context.

Appendix D.1. On the spread of Acute coryza among five-member families

In this example, results are related to a classical study conducted by Brim-
blecombe et al. [5], which is designed to describe the introduction and spread
of respiratory diseases among families of the same size and structure living in
the same district at the same time, but under varying domestic conditions.
Specifically, our interest is in the syndrome Acute coriza. In the survey by
Brimblecombe et al. [5], only families consisting of father, mother and three
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Figure D.1: Mass function of Rexact,0 for (from top to bottom) uncrowded, crowded and
overcrowded families, when the tagged individual corresponds (from left to right) to the father,
the mother, the oldest child, the middle child and the youngest child.

children (of whom one was under 5 years of age) are included. These families
live in a separate and independent household with their own living and sleeping
accommodation, whether in their own house, self-contained flat, or tenement
accommodation, and they are monitored during two years. The information ob-
tained is of two kinds: (i) basic data concerning the environment of the family
and of their health before the survey is begun; and (ii) serial data concerning
the clinical infections and bacteriological findings encountered during the course
of the survey. To reflect that infection is transferred more readily in the more
crowded homes, the families are divided into three groups: uncrowded, crowded

and overcrowded, in such a way that the degree of crowding is assessed from
the number of rooms available. The individuals in the survey are classified in
five types: father, mother, oldest child (termed child 1 ), middle child (child 2 ),
and youngest child (child 3 ); in particular, the oldest and middle children are
school-children, and the youngest one is a pre-school-child.

For each type of housing condition, the study yields several statistics con-
cerning with the introduction and secondary attack rates of Acute coryza [5,
Table III]. For each type of individual, the study gives statistics related to the
introduction and secondary attack rates of Acute coryza [5, Table IV], the cross-
infection rates [5, Table V], and the ratios quantifying the relative susceptibility
and the relative communicability [5, Table VI]. Based on this set of empirical
data in [5], we specify a stochastic SIS epidemic model with five nodes, each
having heterogeneous infectiousness and/or susceptibility. Concrete specifica-
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Table D.2: Mean length E[T ′] of an outbreak, mean number E[Ninf ] of infected individuals
in steady state, and mean exact reproduction number E[Rexact,0] versus housing conditions.

Initial infective Uncrowded Crowded Overcrowded

E[T ′] Father 13.50112 21.62513 25.26581
Mother 11.72094 19.03885 22.35284
Child 1 15.19095 23.89612 27.76915
Child 2 15.94390 24.87605 28.84198
Child 3 15.77180 24.59425 28.51996

E[Ninf ] 1.11696 1.53312 1.83873
E[Rexact,0] Father 1.52631 1.67343 1.71588

Mother 1.10959 1.23341 1.26964
Child 1 1.97870 2.14887 2.19760
Child 2 2.28243 2.46109 2.51139
Child 3 2.34125 2.53071 2.58344

tions for the rates λi, βi,j and γi are then derived from [5, Tables III-VI] in a
straightforward manner, and we thus omit here their resulting expressions.

Our numerical results are summarized in Figure D.1 and Table D.2. In
Figure D.1, we plot the probability mass function of the exact reproduction
number Rexact,0 for the father, the mother and the children, in the cases of
uncrowded, crowded and overcrowded families. Table D.2 lists the expected
length E[T ′] of an outbreak (in days), the mean number E[Ninf ] of infected
individuals in steady state, and the expected value E[Rexact,0] of secondary
cases generated by various choices of the initial infective within uncrowded,
crowded and overcrowded families.

It is then observed that, regardless of the tagged individual, the values of each
probabilistic descriptor increase with the crowding of the housing conditions of
a family. Regarding the various types of individuals within a family, the mother
seems to play the less infective role during an outbreak, regardless of the housing
conditions, and by contrast the children play the most infective role. However,
there is not a clear monotonicity regarding the age of the child and its infectivity,
although the youngest children seem to be more infectious than the oldest and
middle children. The low infective role played by the mother (which is closely
related to the probability mass function of Rexact,0 in Figure D.1 as well as to
the mean duration of an outbreak and the mean exact reproduction number in
Table D.2) seems to be accompanied by the more vulnerable role regarding the
spread of the disease during an outbreak. Indeed, regardless of the type of the
family and the individual who initiates an outbreak, the mother is the member
of the family that suffers more infections after the beginning of an outbreak.
This remark does not contradict the well-documented fact [5, Table V] that
the youngest child is most often the primary case, since the exact reproduction
number is a measure of transfer of infectivity within the family (that is, results
in Figure D.1 and Table D.2 are related to an outbreak).

Appendix D.2. On organizational aspects of intensive care units

We study here a decision-making case regarding organizational aspects of
ICUs. Based on concrete recommendations on basic requirements for intensive
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care medicine (Valentin and Ferdinande [32]), we focus on a single ICU or a
number of ICUs accommodating twelve intensive care beds, and the spread of a
disease caused by nosocomial pathogens, such as Staphylococcus aureus (Cham-
chod and Ruan [6], Forrester and Pettitt [12], McBryde et al. [20]). Decisions
concern especially the size of separate cubicles (common rooms) accommodating
patients, and the number of nursing staff members and their responsibilities. In
our examples, identical sizes are assumed for cubicles, which may accommodate
a number r of 1, 2, 3, 4, 6 and 12 intensive care beds. This leads us to divide the
set of twelve beds into 12, 6, 4, 3, 2, and 1 cubicles, respectively. The number
of intensive care nurses necessary to provide appropriate care and monitoring is
calculated according to the following scenarios:

Scenario A: Patients shall be able to be visualized at all times to facilitate
detection of status changes and enhance implementation of therapeutic ac-
tions. This may be arranged from a single central nursing station, which
results in a complete connected graph where the nodes correspond to the
patients, and disease-causing internal infections are generated by either
indirect contacts among patients due to the nursing staff and related re-
sponsibilities, or direct contacts among patients sharing the cubicle.

Scenario B: The intensive care nurses are divided into a number of nursing
stations, and each nursing station is only in charge of two consecutive

cubicles. Cubicles can be then thought of as a circular connected graph
since they communicate only with their neighbors.

For convenience, we assume that patients are homogeneous with respect to
their recovery processes and disease-causing external infections, that is, γi = γ
and λi = λ for nodes (patients) 1 ≤ i ≤ 12, with γ > 0 and λ > 0. Patients
accommodated in different cubicles, but under the case of a common nurse are
assumed to have transmission-contact rates βi,j = βj,i = a, whereas βi,j =
βj,i = a+ b in the case of patients belonging to the same cubicle; i.e., the term
a is associated with indirect contacts due to a common nurse, and infections
caused by direct contacts for patients sharing a common cubicle are related to
the term b.

Figure D.2 and Table D.3 are related to the parameters γ = 1.0 and λ =
0.04. More concretely, we display in Figure D.2 the probability mass function
of Rexact,0 for values a = 0.5 and b = 0.5. Three selections for the cubicle size
r are considered for scenarios A and B. Similarly, Table D.3 lists the expected
value of the exact reproduction number for cubicle sizes r ∈ {1, 2, 3, 4, 6, 12}
and scenarios A and B, with a ∈ {0.25, 0.5, 1.0} and b ∈ {2−1a, a, 2a}. For
every fixed pair (a, b), it is observed that the effect of the number r of beds per
cubicle on E[Rexact,0] is not very significant in scenario A while, on the contrary,
the value r in scenario B is important for the spread of the disease in terms
of secondary cases. The spread level of the disease – in terms of E[Rexact,0] –
behaves as an increasing function of the number r of beds per cubicle, regardless
of the selected values a and b.
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Figure D.2: Mass function of Rexact,0 for (from top to bottom) the cubicle sizes r = 1, 2 and
3, under the organizational assumptions in (from left to right) scenarios A and B.

As a general recommendation, we point out that scenario B shall be pre-
ferred to scenario A. Organizational aspects of the nursing staff seem to be
more important than an appropriate selection of the number r of beds per cu-
bicle for a predetermined scenario; more concretely, it seems more beneficial to
organize the nursing staff than reducing the cubicle size. However, differences
in the values of E[Rexact,0] between scenarios A and B become smaller with
increasing values of the number r of beds per cubicle. Note that identical values
are derived for scenarios A and B in the cases r ∈ {4, 6, 12} since the selection
of r in these cases turn the complete connected graph into a circular connected
one.
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