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Abstract 

Bi1−xBaxFeO3(x=0, 0.2) compounds were synthesized by conventional solid-state reaction 

method. Structural, morphological, magnetic and ferroelectric properties of the products were 

investigated systematically by employing X-ray diffraction, field emission scanning electron 

microscope, vibrating sample magnetometer as well as electrical evaluation techniques, 

respectively. The XRD results demonstrated distorted rhombohedral BiFeO3 crystal structure 

with the space group of R3c. However, 20wt% Ba doped sample underwent a structural phase 

transition from rhombohedral to distorted pseudo-cubic structure. FESEM images of the BiFeO3 

sample calcined at 850°C showed agglomerated nano-particles with a mean particle size of 60 

nm, while Bi0.8Ba0.2FeO3 sample showed uniform cubic particles with a mean particle size of 220 

nm. For Bi0.8Ba0.2FeO3 sample calcined at 850˚C, an anomaly in permittivity was observed in the 

vicinity of 370˚C which is around the Neel temperature of bismuth ferrite and is in agreement 

with the recent reports. 
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1. Introduction 

Multiferroic materials have attracted considerable research interest in the recent years due to 

their simultaneous ferromagnetic, ferroelectric, and/or ferroelastic orders within one phase [1, 2]. 

Bismuth ferrite (BiFeO3)  is one of the most promising multiferroic compounds for potential 

applications in spintronics, sensors, optical filters, memory and data storage devices [3-5]. 

BiFeO3 has rhombohedrally distorted perovskite structure with R3c space group and exhibits 

coexistence of ferroelectric and magnetic ordering at room temperature, with ferroelectric Curie 

temperature (TC =826-845̊C) and G-type antiferromagnetic Neel temperature (TN =360-380̊C) 

[5-7].  

Although BiFeO3 possesses interesting properties, its application is mainly restricted due to the 

formation of impurity phases such as Bi2Fe4O9 and Bi25FeO40 during synthesis. These impurity 

phases cause weak ferromagnetic, high leakage current, weak magnetoelectric coupling and low 

resistivity [7-9]. Many techniques have been employed to synthesize BiFeO3 powders. There are 

some reports emphasizing that by using conventional solid-state reaction technique it is difficult 

to obtain the single BiFeO3 phase [10, 11], while in the chemical routes the synthesis of single-

phase bismuth ferrite is more better and simpler [12]. In the solid-state reaction method, there are 

some reports which highlight the application of nitric acid leaching process on the calcined 

powders to remove the impurities. However, this subsequent leaching resulted in coarser 

powders and a poor reproducibility [13-15]. To avoid from the formation of impurity phases, 

different methods have been developed such as nanostructures or thin films synthesis, 

introduction of some solid solution with other ABO3 perovskite materials (e.g. BiFeO3- BaTiO3), 

and some doped BiFeO3 compounds [16, 17]. It has been claimed that doping A site of ABO3 

perovskite by diamagnetic ions (Ca, La, Sr, Pb and Ba) is an efficient way for obtaining single-
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phase BiFeO3 and led to the property enhancement of it. In addition, it is well known that BiFeO3 

possesses the basic antiferromagnetic structure of the G-type cycloidally modulated spin 

structure with long wavelength of 62 nm [9, 18]. This suppresses BiFeO3 to exhibit considerable 

magnetization and causes limitation in its multifunctional properties. In order to destroy the 

spiral spin cycloid structure in BiFeO3 to increase spontaneous magnetization, different 

techniques have been reported [14, 18, 19]. The structural modifications induced by substitute 

rare-earth A-site ions with a large difference in ionic radius has been indicated a reliable 

technique [20]. Khomchenko et al. investigated the correlation between the value of net 

magnetization and the kind of diamagnetic substituting element. They found that the highest 

magnetization values are observed for the Bi1−xAxFeO3 multiferroics doped with the largest ionic 

radius ions (Ba2+, Pb2+) [21, 22]. Also, they have reported the effect of various diamagnetic ions 

on the properties of Bi0.8A0.2FeO3 (A= Ca, Sr, Pb, Ba) compounds. Hence, doping of BiFeO3 with 

larger ionic radius could be a promising method to achieve a better multiferroic properties [21, 

23]. Here, the reason behind the selection of x=0.2 among all the Bi1-xBaxFeO3 compounds is 

that, Bi0.8Ba0.2FeO3 exhibits maximum magneto electric coupling, better fatigue resistance, best 

ferroelectric hysteresis loop, enhanced multiferroic properties as well as highest activation 

energy which leads to better performance as dielectric material [24-26]. 

In the present work, single phase bismuth ferrite ceramic materials with enhanced magnetic and 

electrical properties were synthesized via solid state reaction route. The effects of barium doping 

and calcination temperature on structural and multiferroic properties of Bi1−xBaxFeO3 were 

systematically investigated. 
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2. Experimental procedure 

BiFeO3 (BFO) and Bi0.8Ba0.2FeO3 (BaBFO) material were synthesized by conventional solid-

state reaction method using high purity analytical grade Bi2O3, Fe2O3 and BaCO3 (purity≥λλ%) 

reagents. These powders were weighed according to the stoichiometric ratio and mixed in a ball 

mill . Mixed powders were then calcined at 750, 800 and 850Ԩ for 1 h with a heating rate of 10 

C/min. The calcined samples are denoted as BFO-750, BFO-800, BFO-850, BaBFO-750, 

BaBFO-800 and BaBFO-850. The phase composition of powders were studied by X-ray 

diffraction (XRD) at room temperature using Philips PW-1730 with Cu KĮ radiation (Ȝ=1.5406 

Å) in the range of 20°≤2ș≤70° and step size of 0.02. The mean crystallite size of the samples 

determined by Scherrer equation [27]. The microstructure of the synthesized powders was 

observed by field emission scanning electron microscope (FESEM), Hitachi S4160. The mean 

particle size was calculated using MIP software measuring more than 50 particles from FESEM 

images. Magnetic properties of specimens were measured by vibrating sample magnetometer 

(VSM) at a maximum magnetic field of 800kA/m at room temperature. To prepare samples for 

electrical measurements, the powders were pressed to form pellets with 10 mm in diameter and 

0.4-0.5mm thickness. Flat faces of the pellets were coated with silver paste to make electrodes. 

Dielectric measurements of the BaBFO-850 sample were carried out using a HP4192A LF 

impedance analyser in the temperature range of 20 - 420˚C and frequency range of 10kHz-

10MHz.  

3. Results and discussion 

Fig. 1 shows the X-ray diffraction patterns of BFO and BaBFO samples. It is clear from Fig. 1(a) 

that at a calcination temperature of 750°C, small amount of BiFeO3 phase together with a large 

magnitude of Bi2Fe4O9 and Bi25FeO40 intermediate phases are formed. This shows that the solid-
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state reaction was not completed at this temperature. While, for the BFO-800 and BFO-850 

samples, bismuth ferrite becomes a dominate phase [28]. Fig. 1(b) shows that for the BaBFO-

750 sample, the impurity phases significantly reduced and bismuth ferrite become the major 

phase. By increasing the calcination temperature to 800°C, single phase bismuth ferrite was 

formed and further increase in calcination temperature has negligible effect on phase 

composition. 
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Fig.1. X-ray diffraction patterns of (a) BFO and (b) BBFO samples calcined at different 
temperatures for 1h. 
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The XRD results also showed that in all doped samples, diffraction peaks shifted towards lower 

angles due to an increase in lattice parameters by the substitution of Ba2+ with larger ionic radius 

(RBa
2+= 1.42Å) instead of Bi3+ ions with smaller ionic radius (RBi

3+=1.17Å)[29]. Such an effect 

has been reported for Sr, Ce, Pb , Nb and PZT doping of BiFeO3 [9, 30-33]. It is also evident 

from the XRD patterns that all the doubly or triply peaks in the range of 20°≤2ș≤70° merge 

together by 20% Ba doping (for more detail see Fig.2). This phenomenon could be due to a 

structural phase transition from distorted rhombohedral to pseudo-cubic structure [16]. The 

rhombohedral cell is very close to the cubic one [22]. This behavior has also been reported for 

doped Pb [9], Sr [14], and co-doped Pr/Co [34] Ca/Ba [8], La/Mn [35] BFO compounds. 

Moreover, crystallite size measurement of all doped samples revealed the negligible effect of 

calcination temperature on mean crystallite size i.e. mean crystallite size slightly increased from 

16 to 18nm by increasing calcination temperature from 750 to 850°C.  

 

 

 

 

 

 

 

 

Fig.2. The magnified diffraction peaks adjacent of 2ș≈32˚. 
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Indeed in perovskite family materials, grain growth strongly depends on the calcination 

temperature and the amounts of dopants [36, 37]. Here, the calcination temperature of 850C and 

small amounts of 20wt% Ba-dopant are not considered as severe condition for unusual growth of 

final grains. 

 
Fig. 3 shows the FESEM micrographs of the BFO and BaBFO compounds. Uniform and 

spherical particles of bismuth ferrite phase with a mean particle size of 40 nm were observed in 

the FESEM image of BFO-800 sample (Fig. 3a). The nano size particles become more 

agglomerated by increasing the calcination temperature to 850°C in BFO-850 sample (Fig. 3b). 

Well crystallized cubic particles with a particle size of from 200 to 250 nm were observed in the 

FESEM images of BaBFO-800 and BaBFO-850 samples (Figs. 3c and 3d). The Ba2+ substitution 

probably induces morphological changes into BFO particles. This morphological change might 

be related to the phase transformation from rhombohedrally distorted to pseudo-cubic structure 

with 20% Ba-doping into BiFeO3 structure, which is in a good agreement with the XRD 

observations. Furthermore, partial sintering in BaBFO-850 sample can improve the multiferroic 

properties due to the improvement of electrical polarization [30, 38]. 
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Fig.3. FESEM images of (a) BFO-800°C, (b) BFO-850°C, (c) BBFO-800°C and (d) BBFO-
850°C. 

 

The particle coarsening in barium doped samples could be interpreted by increasing oxygen 

vacancies or/and increasing cation valance for charge compensation, when Bi3+ substituted by 

Ba2+ ions. Khomchenko et al. [23] found that the only mechanism for charge compensation in 

Bi1-xBaxFeO3 (x≤0.3) is due to the formation of oxygen vacancies. Oxygen vacancies have higher 

diffusion coefficient in comparison with other ions. Hence, faster motion between ions and 

consequently higher particle growth rate are expected. Such an increase in particle size have 

been reported for La3+ and NaNbO3 substitution of BiFeO3 [39, 40]. 
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Room-temperature magnetic hysteresis loops (M-H) of BFO and BaBFO samples are shown in 

Fig. 4. As can be seen in the inset (a) and (b) the nonlinear-nonzero field dependence of 

magnetization for BFO-800 and BFO-850 represent the antiferromagnetic nature of these 

samples. BaBFO samples exhibit a typically ferromagnetic hysteresis loops, probably due to the 

destruction of cycloidally spin structure via substitution of Bi3+ by Ba2+ ions. It should be noted 

that synthesis of single-phase bismuth compounds is highly sensitive to processing temperature 

and time, and the formation of secondary phases are unavoidable. Hence, the contribution of 

secondary phases can alter the properties of final products [19, 41-43]. Consequently, 

ferromagnetic response of Ba doped BiFeO3 might be a contribution from tiny amount of Fe rich 

secondary phase. However, Such a weak ferromagnetic behavior reported for Bi0.8Ba0.2FeO3 

multiferroic earlier on [24, 25, 44]. 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Room temperature M-H hysteresis loops of BFO and BBFO compounds. Inset shows the 
antiferromagnetic behavior of BFO-800˚C and BFO-850˚C. 
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Table1. Comparison of magnetic properties of Bi0.8Ba0.2FeO3 compound 

Compound 
Maximum 
Applied field 
(kOe) 

Mr 

(emu/g) 
Ms 

(emu/g) 
Hc 

(kOe) 
Reference 

Bi0.8Ba0.2FeO3 

10 0.32 1 1.029 Current work 
10 0.093 0.15 1.907 [2] 
20 0.4 0.7 3 [5] 
30 0.5 1 2.5 [14] 

 

 The magnetic data obtained in this work are aligned with those previous reports in the literature 

(Table 1). Enhancement of magnetic properties of Bi0.8Ba0.2FeO3 compound in the present work, 

could be related to the smaller particle size  of the samples in comparison with that reported 

earlier [14, 16, 45], which can increase the surface-induced magnetization phenomenon [4]. 

Also, enhancement of the magnetization could be arises from structural phase transition induced 

by Ba-dopant into BFO [46]. 

It is also shown that the saturation magnetization of both BFO and BaBFO samples increased on 

increasing the calcination temperature. This is probably due to increasing the degree of 

crystallinity as well as decrease the contribution of the surface effect with particle coarsening 

[47]. 

The room temperature hysteresis loops (P-E) of the samples are presented in Fig. 5. P-E loop of 

BFO-800 sample represented a partial reversal of the polarization in the field of ≈ 4 kV/cm (Fig. 

5a), which can be attributed to the variable oxidation states of Fe ions [9]. Although BFO-850 

shows a higher amount of polarization compare to BFO-800, the semi-roundish shape of this 

sample reveals the existence of the large leakage current even in the application of low electric 

field. This is associated with the higher level of impurities of BFO samples. Due to the relatively 
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large leakage current under the application of the larger electric field, the P-E loop of BFO bulk 

samples were completely irrational.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Room temperature polarization as a function of electric field (P–E) hysteresis loops of (a) 
BFO-800˚C (b) BFO-850˚C (c) BBFO-800˚C (d) BBFO-850˚C at 1000Hz. 

 

It is clearly illustrated in Fig. 5 that P-E loops of BaBFO samples are improved compared to 

BFO samples. Under the given experimental conditions, BaBFO samples represented unsaturated 

ferroelectric loops even under large electric field. These unsaturated loops confirm that P-E loops 

are unable to provide evidence of ferroelectricity in this case. However, it should be noted that 

the values of electric fields reported here are significantly higher than those reported earlier [17, 

24, 25]. This could be interpreted by high resistivity of synthesized BaBFO samples under very 

large electric field region. Enhancing of spontaneous polarization with increasing calcination 



13 
 

temperature can be a consequence of either larger particle size [48] or induced strain to the lattice 

by introducing of the Ba2+ in BFO structure. Table 2 highlights the characteristics of the 

synthesized samples. 

Table2. Mean particle size, magnetic and electrical parameters of BFO and BBFO multiferroics 

Sample 
Mean particle 
Size (nm) 

Ms (emu/g) 
at 10 kOe 

Mr 

(emu/g) 
Hc 

(kOe) 
Ps 

ȝC/cm2 
Pr 

ȝC/cm2 
Ec 

(kV/cm) 
BFO-800 40 0.087 0.0012 0.06 0.65 0.5 4.06 
BFO-850 62 0.116 0.0045 0.1 ----- ----- ----- 
BBFO-800 210 0.718 0.2 0.915 0.81 0.3 46.7 
BBFO-850 220 1 0.32 1.029 1.2 0.81 78 

 

The variation of permittivity () and dielectric loss (tanį) with temperature for BaBFO-850 

sample are shown in Fig. 6. It is evident that the value of  increases gradually to a maximum 

(m) with increasing temperature and then decreases slightly. Fig. 6 indicats an anomaly which 

could be related to a phase transition [19]. The result is in agreement with the antiferromagnetic 

phase transition of bismuth ferrite. In our measurement system (at 1MHz) this peak appears 

around 370̊C which is correspond to the Neel temperature (TN) of BFO. This type of dielectric 

anomaly is predicted by the Landau–Devonshire theory of phase transition in 

magnetoelectrically ordered systems as an influence of vanishing magnetic order on the electric 

order [49]. Such a transition have also been observed for Mn [50], Eu [51], Dy [52] and NaNbO3 

[21] doped BFO at different temperatures. This anomaly in permittivity indicates the coupling 

between the ferroelectric and magnetic orders which are essential in bismuth ferrite based 

multiferroic. As it can be seen in Fig. 6 the dielectric loss is also increased by increasing the 

temperature. The room temperature relative permittivity of ≈ 65 is comparable with data reported 

earlier for similar compound [24]. Moreover, tanį value are less than 1 up to 150̊C. 
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Fig. 6. Permittivity(ܭ) and dielectric loss(tanį) as a function of temperature at 1MHz for BBFO -
850˚C. 

 

Fig. 7 shows permittivity () and dielectric loss (tanį) as a function of frequency at room 

temperature for BaBFO-850 multiferroic. It is evident that the values of  is fairly constant in the 

frequency range of 10 kHz-1MHz, and then decreases rapidly with increasing frequency. At low 

frequencies the electric dipoles are able to follow the frequency of the applied field, while at high 

frequencies they may not have time for this [17]. The highest value of RT at 10kHz (the lowest 

frequency in this work) is ≈ 65, which is in the same order of 70 that found for similar 

compound, Bi0.8Ba0.2FeO3 earlier [25]. Also, Fig. 7 shows that the dielectric loss (tanį) 

dramatically decreases with increasing the frequency. We obtained tanį value of ≈ 0.25 for 

BaBFO-850 sample at 10kHz. 
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Fig. 7. Temperature dependence of (a) permittivity (ܭ) and (b) dielectric loss (tanį) of BBFO -
850˚C multiferroic at different frequencies between 10kHz-10MHz. 

 

Conclusion 

Nano-structured Bi1−xBaxFeO3(x=0, 0.2) perovskites have been successfully synthesized via 

solid-state reaction route. Nearly pure BiFeO3 compound with rhombohedrally distorted 

structure was synthesized without employing post calcination leaching process. Single phase 

pervoskite of bismuth ferrite was obtained in doped samples. A phase transition from 

rhombohedral to pseudo-cubic symmetry was occurred with 20wt% Ba doping. The mean 

particle size of BiFeO3 was in the range of nano-scale, while the particle size of Bi0.8Ba0.2FeO3 

sample was around 200 nm. Dielectric measurement of Bi0.8Ba0.2FeO3 calcined at 850˚C showed 

an anomaly in the vicinity of 370˚C which could be related to the antiferromagnetic phase 

transition temperature. The evidence of obvious ferromagnetism and electrical hysteresis loops in 

the above sample at room temperature makes it an appropriate candidate for potential 

applications. 
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