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SUMMARY

Repair of DNA double-strand breaks (DSBs) by recombination pathways is essential for plant growth and

fertility. The recombination endonuclease MRE11 plays important roles in sensing and repair of DNA DSBs.

Here we demonstrate protein interaction between Arabidopsis MRE11 and the histone acetyltransferase

TAF1, a TATA-binding protein Associated Factor (TAF) of the RNA polymerase II transcription initiation fac-

tor complex TFIID. Arabidopsis has two TAF1 homologues termed TAF1 and TAF1b and mutant taf1b lines

are viable and fertile. In contrast, taf1 null mutations are lethal, demonstrating that TAF1 is an essential

gene. Heterozygous taf1+/� plants display abnormal segregation of the mutant allele resulting from defects

in pollen tube development, indicating that TAF1 is important for gamete viability. Characterization of an

allelic series of taf1 lines revealed that hypomorphic mutants are viable but display developmental defects

and reduced plant fertility. Hypersensitivity of taf1 mutants lacking the C-terminal bromodomain to X-rays

and mitomycin C, but not to other forms of abiotic stress, established a specific role for TAF1 in plant DNA

repair processes. Collectively these studies reveal a function for TAF1 in plant resistance to genotoxic stress,

providing further insight into the molecular mechanisms of the DNA damage response in plants.
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INTRODUCTION

DNA repair, recombination and replication all take place in

the context of chromatin structure. Packaging of DNA into

chromatin can modulate access of DNA damage detection

and repair complexes. Chromatin structure can be altered

by chromatin remodelling enzymes or covalent modifica-

tion including phosphorylation and acetylation. Histone

acetylation/deacetylation plays key roles in regulation of

transcriptional regulation, whilst modification of lysine

residues in the histone tails of H3 and H4 is important to

recombinational repair of chromosomal breaks in yeast

and mammals (Bird et al., 2002; Tamburini and Tyler,

2005). Acetylation or deacetylation of specific lysine

residues in histone proteins is mediated by transcription

cofactors which are often associated with histone acetyl-

transferase (HAT) and histone deacetylation (HDAC) activi-

ties. In plants, HATs are classified into three families that

are also present in other eukaryotes. These include the

p300/CREB binding protein family, the TAF1 family and the

GNAT (GCN5-related N-terminal acetyltransferases)-MYST

superfamily (Pandey et al., 2002). HAT-mediated histone

acetylation has diverse roles in transcriptional regulation

in plant development and in response to environmental

stimuli.

Proteins of the TAF1 family participate in transcription

initiation as part of the RNA polymerase II pre-initiation

complex, comprised of RNA polymerase II and a subset of

core transcription factors (TFIIA, B, D, E, F and H). Initial

promoter recognition is mediated by the basal transcrip-

tion factor TFIID, which includes the TATA-binding protein

(TBP) in a complex with several evolutionary conserved

TBP-associated factors (TAFs). TAFs function in basal tran-

scription and can act as transcriptional coactivators in tran-

scriptional complex assembly and in promoter recognition.

TAF1 (also termed TAFII250) is conserved across eukary-

otes and is essential for TFIID function (Wassarman and

Sauer, 2001). TAF1 possesses several enzymatic activities

© 2015 The Authors
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License,
which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

545

The Plant Journal (2015) 84, 545–557 doi: 10.1111/tpj.13020

http://creativecommons.org/licenses/by/4.0/


including protein kinase activity (Maile et al., 2004),

ubiquitination (Pham and Sauer, 2000) and histone acetyl-

transferase activities (Mizzen et al., 1996). C-terminal

bromodomains target TAF1 to acetylated histones H4, H3

and H2A in vivo and TAF1 acetyltransferase activity results

in further histone acetylation, promoting transcription

(Martinez, 2002; Kanno et al., 2004).

Arabidopsis has two TAF1 related genes, termed HAF1

(At1g32750) and HAF2 (At3g19040) (Pandey et al., 2002) or

TAF1 and TAF1b (Lago et al., 2004). The TAF1N-terminal

domain (TAND) was shown to be important for interaction

with TBP in yeast and Drosophila (Lawit et al., 2007). The

TAND domain is present in TAF1 in Arabidopsis, rice and

Drosophila, but is mostly absent in the TAF1b isoform

(Lawit et al., 2007) which has specific developmental roles,

mediating light-induced responses. Mutant haf2 plants are

viable but produce lighter coloured seedlings with a

reduced chlorophyll content than wild-type plants (Ber-

trand et al., 2005). Transcriptional responses are mediated

by HAF2/TAF1b acetylation of histone H3 and H4 in the

promoter of the light-induced genes, including the gene

encoding small subunit of RUBISCO (RBS-1A) (Benhamed

et al., 2006). In contrast, no major growth defects were

identified in the haf1 (taf1-3) line investigated in the study

of Bertrand et al. (2005), which supported the hypothesis

that the essential core transcriptional functions are shared

redundantly between HAF1 and HAF2 (TAF1/TAF1b).

Chromatin modification by acetylation and HAT activities

have important roles in DSB repair in mammals and yeast

(Bird et al., 2002; Tamburini and Tyler, 2005). However,

early events in eukaryotic DNA damage detection and

repair remain to be elucidated in plants. Recent work has

additionally identified that changes in histone acetylation

patterns are associated with the plant DNA damage

response (Raut and Sainis, 2011; Drury et al., 2012). Here

we establish interaction between the histone acetyltrans-

ferase TAF1 with MRE11, a factor involved in DNA DSB

repair. MRE11 is a core component of the conserved

MRE11-RAD50-NBS1 (MRN) complex which plays impor-

tant roles in DNA double-strand break (DSB) detection and

repair in both vegetative and meiotic tissues (Bundock and

Hooykaas, 2002; Puizina et al., 2004; Waterworth et al.,

2011). Interaction was identified by yeast two-hybrid library

screening and confirmation in vivo further localised the

site MRE11 interaction to the bromodomain of TAF1. Fur-

ther characterisation of TAF1 identified that this transcrip-

tion factor, unlike TAF1b, is essential for plant viability and

fertility. Specific hypersensitivity of taf1 mutant lines to

genotoxins that induce DNA DSBs and interstrand DNA

crosslinks, but not other forms of abiotic stress, demon-

strates a role for TAF1 in plant responses to DSBs. This

study reveals a molecular link between basal transcription

and recombination factors and establishes a requirement

for TAF1 in genotoxic stress resistance in plants.

RESULTS

TAF1 interacts with the recombination endonuclease

MRE11

MRE11 has endo- and exonuclease activities and plays a

central role in eukaryotic DNA repair and DNA damage sig-

nalling. The endonuclease activity is essential for meiotic

recombination, and mre11 mutant lines also display

defects in DSB repair in vegetative cells (Heacock et al.,

2004). MRE11 was previously shown to interact with NBS1

and RAD50 in plants, forming the conserved eukaryotic

MRN complex (Waterworth et al., 2007). RAD50 has struc-

tural roles in bridging DNA ends, whereas NBS1 in mam-

mals has intracellular signalling activity, mediated in part

through interaction with the protein kinase ATM (Falck

et al., 2005). Yeast two-hybrid library screening for pro-

teins that interact with Arabidopsis MRE11 confirmed the

previously identified interaction between NBS1 and MRE11

(Waterworth et al., 2007) (Figure 1a), isolating an NBS1

fragment that included the conserved ‘FKRFKR’ MRE11-in-

teracting motif (residues 467–472 of NBS1). In addition

three interactions were identified, including the meiotic

protein AtPRD3, required for DSB formation in early meio-

sis (De Muyt et al., 2009), and an uncharacterised protein

(At3g28830). Specific interaction was also identified

between the core transcription factor TAF1 and MRE11,

mediated by the C-terminal third of TAF1 in a region distal

to the histone acetyltransferase catalytic domain but con-

taining a bromodomain, a conserved protein motif

involved in binding acetylated lysine residues. A series of

MRE11 deletion constructs was tested to further delineate

the region of MRE11 that mediates interaction with TAF1

(Figure 1b), and revealed that the N-terminal and middle

region of MRE11 are not sufficient for interaction, that the

C-terminal domain is not required, but that MRE11 up to

residue 529 is required for the interaction with TAF1. This

interaction prompted further investigation into the roles of

TAF1 in plants.

Arabidopsis contains two TAF1-related genes

TAF1 (AT1G32750) is a 10.5 kbp gene encoding a 1919 aa

protein (Pandey et al., 2002) with 27.5% similarity to

human TAF1. Highest sequence conservation is localised

to domains including the TBP-binding region, the histone

acetyltransferase region, the bromodomain and ubiquitin

associated domains (Figure 1c). TAF1b (AT3G19040,

HAF2), previously implicated in control of light regulated

developmental processes in plants, displays 24.9% similar-

ity with hTAF1 (Earley et al., 2007) and lacks the N-terminal

90 aa containing the TBP-domain found in AtTAF1 and

hTAF1 (Lawit et al., 2007). TAF1b (HAF2) is involved in

transcriptional responses to light, but analysis of TAF1 has

not previously been reported in detail. To investigate the

function of TAF1 in Arabidopsis, two independent T-DNA
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insertion mutants were obtained from the SALK collection

(Alonso et al., 2003) and a third mutant line was isolated

from the SAIL collection (Sessions et al., 2002) (Figure 1c).

TAF1 is an essential gene

The taf1-1 mutant line (SALK_116607) contained an inser-

tion site localised to the intron between exons 14 and 15

(Figure 2a), corresponding to the highly conserved histone

acetyltransferase catalytic domain shared amongst TAF1

homologues (Figure 1c). Despite extensive genotyping

(n > 900), no plants homozygous for the taf1-1 allele were

obtained, suggesting that TAF1 is an essential gene in Ara-

bidopsis. The requirement for TAF1 was confirmed by the

observation that homozygous taf1-1 plants were only

viable when complemented by the wild-type gene (Fig-

ure 2b). This indicates that TAF1 is an essential gene in

Arabidopsis and is not redundant to TAF1b. This suggests

that during plant evolution, TAF1 gene duplication led to

specialisation of the TAF1b isoform in control of light regu-

lated gene expression and that TAF1 retained the core tran-

scriptional activities.

TAF1 is important for viability of the male gametophyte

PCR genotyping of the progeny of a selfed taf1-1+/� hem-

izygous line revealed non-Mendelian segregation of the

mutant allele, with the taf1-1� allele significantly underrep-

resented in the segregating population (Figure 2b). Pro-

geny from the selfed hemizygote differed significantly

from both normal segregation (1:2:1 of homozygous

mutants:heterozygous plants:wild-type plants) and also

from the 2:1 segregation predicted for recessive lethal

mutant alleles (P < 0.01, chi-squared test, n = 97, Fig-

ure 2b). The ratio of wild-type:hemizygous plants was not

significantly different to the 1:1 ratio which would result

from expected for loss of the mutant allele through either

the male or female germline (P > 0.05). Complementation

with wild-type TAF1 gene restored segregation of the

mutant allele to Mendelian ratios (P > 0.05, chi-squared

test, n = 36) and rescued the abnormal segregation seen in

the heterozygous mutant lines (P < 0.01, Figure 2c).

Outcrossing from hemizygous taf1-1+/� plants indicated a

strong defect in transmission of the taf1-1 allele through

the male line, accounting for only ~6% crossed progeny,

significantly different from the 50% normal transmission

(P < 0.01, chi-squared test, n = 36, Figure 2d). The taf1-1

mutant allele showed normal inheritance through the

female line, with half the progeny carrying the allele when

mutant plants were cross-fertilised with wild-type pollen

(P > 0.05, chi-squared test, n = 24, Figure 2d).

Loss of the taf1-1 allele results from impaired pollen tube

growth

Loss of mutant alleles through the male line can arise as a

consequence of defects in gametophyte development.

Wild-type pollen undergoes two rounds of cell division on

completion of meiosis, initially to produce the generative

and vegetative nuclei, whilst subsequent division of the

generative cell results in mature, tricellular pollen. Failure

TAF1-pGADc (AD)
-trp –leu –his - ade-trp -leu

Empty vector

AtMRE11(1-529)

(a)

(c)

MRE11 (full length) 720

MRE11 254

254 MRE11 453

MRE11 529

MRE11-pGBKT7 (DB)

1953FUDPBT BrUBQ TAF1

MRE11-interaction site

(b)

* *3-1fat1-1fat

08620g3tA 245-664Nijmegen Breakage
Syndrome 1AtNBS1

1278-1919At1g32750 Histone acetyltransferase
of the TAFII250 Family 1AtTAF1

03882g3tA 935-842Protein of unknown
function (DUF1216)unknown

09601g1tA 944-522Putative recombination
initiation defects (PAIR1)AtPRD3

taf1-2*

AGI code gene ID Description MRE11-interacting region (Y2H)

Figure 1. Yeast two-hybrid analysis identifies the

interaction between MRE11 and TAF1.

(a) MRE1-interacting proteins isolated in the yeast

two-hybrid screen. Proteins identified showing the

regions isolated in the Y2H screen.

(b) Confirmation of the yeast two-hybrid analysis

shows the interaction between MRE11 and TAF1

requires the central region of MRE11 and the C-ter-

minal region of TAF1.

(c) TAF1 schematic showing an N-terminal TATA-

binding protein interaction domain (TBP), a con-

served HAF1 domain (DUF5391), a ubiquitin domain

(UBQ) and a C-terminal bromodomain (Br). Aster-

isks correspond to positions of T-DNA insertions in

the TAF1 coding sequence.
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to complete these divisions results in immature, non-viable

pollen and loss of the mutant allele. Bicellular pollen (con-

taining one generative cell) results in fertilisation of the

ovule but not the endosperm, resulting in a characteristic

early abortion in early embryogenesis. Inspection of taf1-

1+/� siliques found no evidence of increased embryo abor-

tion relative to wild-type plants (Figure 3a). In support of

this observation, fluorescence microscopy of DAPI-stained

pollen indicated no increase in the incidence of immature

pollen in taf1-1+/� plants, with high levels of tricellular pol-

len with two generative nuclei clearly visible (Figure 3b).

Therefore, the taf1-1 mutation did not affect pollen grain

development, indicative that downstream processes may

be impaired in the mutant background.

Analysis of pollen tube growth in heterozygous taf1-1+/�

mutants showed a significant decrease in the number of

full-length pollen tubes relative to wild-type lines (Fig-

ure 3c,d), consistent with the reduced transmission of the

taf1-1� allele. In heterozygous taf1-1+/� mutants around

50% mature pollen grains failed to germinate or displayed

poor growth compared to both Col-0 controls and comple-

mented taf1-1 mutant lines carrying the wild-type TAF1

gene. Taken together, these results indicate that TAF1 is

essential for plant viability and loss of TAF1 in haploid pol-

len severely reduces, although does not abolish, pollen

viability.

T-DNA insertion upstream of TAF1 results in ectopic

expression of a mutant transcript in taf1-2 mutant lines

A taf1 mutant allele with a T-DNA insertion in the 50 UTR

(Figure 4a, taf1-2) was identified in the SAIL collection of

T-DNA lines (Sessions et al., 2002). Homozygous mutants

Copied sequence

Insertion

Insertion

Intron

Intron

(a)

(b)

(d)

(c)

Figure 2. Segregation analysis of the taf1-1 mutant allele.

(a) Schematic of the TAF1 gene showing the positions of T-DNA insertion in the taf1-1 line. Exons are shown as black boxes, introns as lines and untranslated

regions are represented as grey boxes.

(b) Analysis of the segregation of the taf1-1 allele. Chi-squared analysis (P) of segregation ratios indicates that taf1-1 is consistent with loss in transmission

through the male or female line. NS = not significant.

(c) Segregation of the taf1-1 mutant allele in complemented taf1-1 heterozygous lines is not significantly different to wild-type.

(d) Segregation of the taf1-1 allele is normal through the female line, while the taf1-1 allele displays greatly reduced transmission through pollen.
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were viable but displayed growth defects, suggesting that

there was sufficient TAF1 expression in these lines to per-

mit plant growth. Analysis of the insertion present in the

taf1-2 lines indicated that the left border was inserted

towards the 30 direction of the gene, within the first intron

of the 50 UTR. The T-DNA construct used in the SAIL lines

contains a dual 1020 promoter located 96 bases from the left

border. This promoter is bidirectional (Velten et al., 1984)

and in the SAIL T-DNA, the 10 portion drives expression of

the herbicide resistance selectable marker. The 20 promoter

(a)

(b)

(c)

(d)

taf1-1+/– taf1-1–/–
pTAF1:TAF1

Col-0

taf1-1+/–

taf1-1+/–

Col-0

Col-0

**

Figure 3. Abnormal taf1-1 segregation results from

defects in pollen tube growth.

(a) taf1-1 hemizygotes display no increased inci-

dence of aborted seeds.

(b) Pollen development is normal in taf1-1 mutant

lines, with tricellular pollen evidence in DAPI-stain-

ing of wild-type and taf1-1 hemizygotes. Scale bar

represents 20 lm.

(c) Pollen tube growth is defective in taf1-1 hemizy-

gotes, which display approximately half the number

of full-length pollen tubes relative to wild-type

lines. Error bars represent the SEM of 3 or more

replicates of > 10 pollen grains.

(d) Complementation with the wild-type TAF1

restores pollen tube growth to wild-type levels. Bar

represents 50 lm.
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has previously been reported to drive expression of genes

adjacent to the insertion site in SAIL mutant lines (€Ulker

et al., 2008). Analysis of the taf1-2 mutants by RT-PCR con-

firmed that TAF1 was expressed in the homozygous mutant

lines, and overall transcript levels were similar to those of

wild-type plants (Figure 4b,c) despite mis-expression from

TAF1

ACT2

Col-0 taf1-2

0                 2                 4                 6            8                                    10kbp

LB LB

taf1-2

SAIL_256_D10

CAACAAattgatccaattgaatggtaaacaaat
SAIL T -DNA

atcctgtctaagcgtcaatttgtttacacctcaattTGAATGGTA

TAF1 5’UTR

SAIL T -DNA TAF1 5’UTR

SAIL T-DNA

TAF1

SAIL LB primer

cgccttttcagaaatggataaatagccttgcttcctattatatcttcccaaattaccaat 60

acattacactagcatctgaatttcataaccaatctcgatacaccaaatcgaattcaattc 120

ggcgttaattcagtacattaaaaacgtccgcaatgtgttattaagttgtctaagcgtcaa 180

tttgtttacaccacaatatatcctgtctaagcgtcaatttgtttacacctcattTGAATG 240
M 

GTTTTGATTGAGTTTTAATGGTTGGGGATTTGGGAAGGACAATTGCCTTGTCGTCTCCCG 300
V  L  I  E  F  -
ATTGTCACCATTGTAGTTAAATCTTTGAATATGGCTGAATCCAATGGCAAGGGTTCCCAC 360

M  A  E  S  N  G  K  G  S  H 
AACGAGACTTCCTCAGATGACGATGATGAATATGAGGACAACAGCAGGGGTTTTAACCTT 420
N  E  T  S  S  D  D  D  D  E  Y  E  D  N  S  R  G  F  N  L

*

*

Insertion

0

0.5

1

1.5

2

2.5

Col-0 taf1-2N
or

m
al

is
ed

 T
A
F1

 e
xp

re
ss

io
n

(a)

(b)

(d)

(c)

Figure 4. taf1-2 mutants express a mutant TAF1 transcript.

(a) taf1-2 contains a SAIL T-DNA inserted in the TAF1 50 untranslated region. The TAF1 50 UTR is shown in uppercase, introns as lower case and inserted

sequence in italics. Analysis of left border sequences is consistent with a head-to-head double insertion of the T-DNA.

(b) Comparison of TAF1 expression levels in Col-0 and taf1-2 mutants by semi-quantitative PCR.

(c) Q-PCR normalised to ACTIN2.

(d) Sequence analysis of the TAF1 transcript expressed in taf1-2 mutants. ATG codons corresponding to translation AUG start sites in the messenger RNA are

indicated in bold. Translation is shown for the ATG codons in frame with wild-type TAF1 coding region. The position in corresponding to the SAIL T-DNA Left

Border primer is indicted by the box. An insertion at the T-DNA/TAF1 border is shown in italics and homology with the T-DNA is shown in bold. Splice sites are

indicated by asterisks.
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the T-DNA derived promoter. The TAF1 mRNA expressed in

taf1-2 lines includes the T-DNA left border region (including

the region corresponding to the SAIL LB primer) which

runs into the TAF1 coding region, which is correctly spliced

in the homozygous mutant line (Figure 4d). Wild-type TAF1

has a complex 50UTR which includes an intron. The spliced

TAF1 mRNA contains two AUGs upstream of the start

codon, one of which is out of frame and the other has a

stop codon shortly downstream (Figure 4d, nucleotides 258

and 237 respectively). The T-DNA derived sequence in taf1-

2 lines adds two additional non-coding upstream AUG

codons to the mature TAF1 transcript (Figure 4d), which

may result in a reduction in translation efficiency.

Mutant taf1-2 lines display pleotropic phenotypes

including reduced fertility

Homozygous taf1-2 plants demonstrated a number of

developmental abnormalities including defective floral

morphology. Buds displayed numerous growth defects,

with premature opening of the sepals and purple coloura-

tion (Figure 5a). taf1-2 siliques were significantly smaller

and contained a substantial number of aborted embryos,

causing a reduction in seed numbers from a mean of 50

seeds per silique in wild-type to 10 seeds in taf1-2 mutant

plants. Complementation of taf1-2 with the wild-type TAF1

gene restored seed numbers to 30 seeds per silique

(P < 0.01, Figure 5b–d). These phenotypes identify multiple

roles for TAF1 in plant floral development and fertility.

Homozygous taf1-2 also exhibited significantly shorter

roots relative to wild-type plants (P < 0.01, Figure 5e), and

this phenotype of the mutant lines was fully comple-

mented by transformation with the wild-type TAF1 gene

(P > 0.05). Interaction with the DNA repair factor MRE11

raised the possibility that taf1-2 mutant lines may be defec-

tive in the response to DNA damage. However, no signifi-

cant difference was observed in the taf1-2 lines in growth

relative to wild-type plants following treatment with

X-rays, which induces single- and double-strand DNA

breaks (Figure 5f).

Loss of the C-terminal bromodomain does not affect

development of taf1-3 plants

Previous analysis of the taf1-3 allele (SALK_110848), in

which the T-DNA is inserted in the 21st exon (Figure 6a),

reported that taf1-3 (haf1) mutants were viable and exhib-

ited normal growth characteristics under standard green-

house conditions (Bertrand et al., 2005). This initial study

suggested that TAF1 showed redundancy with HAF2/

TAF1b in the essential core transcriptional activities of

TFIID (Bertrand et al., 2005). The position of the T-DNA

insertion in taf1-3 corresponds to the C-terminal region of

the protein (amino acid 1763 of 1919) which would be

expected to result in a truncated TAF1 protein lacking the

bromodomain (1806–1901), a conserved motif involved in

(a) (b)

(c)

Col-0 taf1-2

Col-0

taf1-2

Col-0

taf1-2

taf1-2 +
pTAF1:TAF1

(d)

(e) (f)

taf1-2 +
pTAF1:TAF1

Figure 5. taf1-2 mutants display pleotropic effects

including reduced fertility.

(a) Flowers showing normal flower development

(Col-0) and taf1-2 mutant lines with incomplete

sepals and purple colouration.

(b) High frequency of aborted embryos in taf1-2 sili-

ques.

(c) taf1-2 siliques are a reduced in thickness and

slightly reduced in length relative to wild-type sili-

ques.

(d) taf1-2 siliques contain reduced numbers of

mature seeds. Error bars show SEM of >15 siliques.

(e) taf1-2 roots are shorter than wild-type plants but

complementation restores wild-type root growth.

Error bars show SEM of >66 roots.

(f) taf1-2 mutants are not hypersensitive to X-rays.

Error bars show SEM of >35 roots.
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binding acetylated lysine residues (Marchler-Bauer et al.,

2011). RT-PCR and sequence analysis confirmed that

homozygous taf1-3 lines expressed a truncated mRNA

lacking the region encoding the bromodomain (Figure 6b).

In agreement with the previous report from Bertrand et al.

(2005), mutant taf1-3 plants show a normal growth pheno-

type, indistinguishable from wild-type under normal glass-

house conditions, with normal silique and seed

development (Figure S1a,b). Previous reports identified

that haf2/taf1b mutant plants displayed lighter coloured

cotyledons due to a reduced chlorophyll content. In con-

trast, the taf1-3 mutant seedlings were indistinguishable

from wild-type lines, indicating no defects in light regula-

tion of plant development in this line (Figure S1c). How-

ever, root growth was reduced in taf1-3 plants, which

displayed significantly shorter roots than wild-type lines

(P < 0.01, Figure 6c). Growth under abiotic stress

conditions with either 100 mM NaCl or 200 mM mannitol

resulted in a similar reduction in root length at 21 days in

both taf1-3 and wild-type lines (P > 0.05), indicating no

hypersensitivity to salt or osmotic stress in plants lacking

the C-terminal region of TAF1 (Figure S1d). This suggested

Col-0 taf1-3

TAF1F TAF4R

0 2 4 6 8 10

LBSALK T-DNA

taf1-3

SALK_110848

TAF1SALK T-DNA

TAF1(a)

(b)

TAF3R

4R 3R 4R 3R

PCR with TAF1F
and reverse

Primer:

(d)(c)

LB

TAF1 SALK T-DNA

kbp

Figure 6. taf1-3 mutants are hypersensitive to genotoxic stress.

(a) Schematic showing the T-DNA insertion in taf1-3 mutants in exon 20. The translation shows the TAF1 protein sequence.

(b) taf1-3 plants express a truncated mRNA that lacks the region encoding the C-terminal bromodomain.

(c) taf1-3 displays hypersensitivity to X-rays. Root growth was measured after plating X-ray treated imbibed seeds on MS plates and grown vertically. Two-way

ANOVA shows a significant interaction between genotype and X-ray sensitivity for the taf1-3 lines (P < 0.001) whereas the complemented lines are not signifi-

cantly different from wild-type. Error bars show SEM of >15 roots.

(d) taf1-3 displays hypersensitivity to the interstrand crosslinking reagent mitomycin C (MMC), quantified by measurement of fresh weight after growth in liquid

culture supplemented with MMC at the concentrations indicated. Error bars show SEM of >15 roots.
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that stress responses were not impaired in the mutant line

and that the truncated mRNA was sufficient for plant

growth and development.

C-terminal truncation of TAF1 results in hypersensitivity to

DNA damage

Identification of specific interaction between TAF1 and

MRE11 prompted further investigation into the DNA dam-

age sensitivity of the taf1-3 allele. While taf1-3 mutants do

not display hypersensitivity to abiotic stresses including

salt and osmotic stresses (Figure S1d), root growth of

homozygous mutants was hypersensitive to X-ray expo-

sure, with highly significant interaction between genotype

and treatment (P < 0.001, two-way factorial ANOVA, Fig-

ure 6c). X-rays induce a range of forms of DNA damage

of which DNA DSBs have the greatest biological effect.

Significantly, wild-type levels of X-ray sensitivity were

restored by complementation of the taf1-3 line with full-

length TAF1, indicating that loss of the C-terminal bro-

modomain of the TAF1 protein results in hypersensitivity

to genotoxic stress. This was confirmed by the observed

hypersensitivity of the taf1-3 mutant line to mitomycin C,

a bifunctional alkylating agent that crosslinks DNA and

inhibits DNA replication (Figure 6d; P < 0.01). As growth

hypersensitivity was not observed in response to other

forms of abiotic stress, including methyl methanesul-

fonate (MMS) which causes alkylation to bases (Fig-

ure S1e), this was indicative of TAF1 playing a role in the

plant response to DNA damage and specifically in the

forms of DNA damage that require recombinational repair

(DSBs and interstrand DNA crosslinks). The transcriptional

response to X-rays, characterised by a high level induc-

tion of RAD51, POLY(ADP)RIBOSE POLYMERASE 2

(PARP2), X-RAY INDUCED 1 (XRI1), RIBONUCLEOTIDE

REDUCTASE small subunit (TSO2) and THYMIDINE

KINASE 1A (TK1A) (Culligan et al., 2006; Dean et al., 2009)

was not significantly different between Col-0 and taf1-3

lines (Figure S1f,g, P > 0.05), suggesting that the ATM-de-

pendent DNA damage response was not impaired in the

taf1-3 line. These results are consistent with a require-

ment for the bromodomain-containing C-terminal region

of TAF1 in the plant DNA damage response, possibly

through interaction with MRE11.

MRE11- interaction is mediated by the C-terminal

bromodomain of TAF1

To further investigate the roles of the bromodomain region

of TAF1, in planta interactions between MRE11 and a series

of TAF1 deletion constructs were analysed using bimolecu-

lar fluorescence complementation. Protein fusions with

the C- and N-terminus of the Venus YFP variant were

expressed in Arabidopsis leaf protoplasts as described pre-

viously (Zhong et al., 2008). Initially, the interaction

between MRE11 and the C-terminal region of TAF1 previ-

ously identified in the yeast two-hybrid screen (Figure 1)

was investigated. MRE11 was expressed as fusion with the

N-terminal half of YFP (nYFP) and TAF1(1278–1919) was

expressed as a fusion with the C-terminal half of YFP

(cYFP). Fluorescence microscopy identified YFP fluores-

cence localised to the nucleus in transformed protoplasts

(Figure 7a). As a positive control, similar evidence of inter-

action was observed after co-expression of MRE11-nYFP

with NBS1-cYFP, confirming previous reports of interaction

between these two proteins (Figure 7b) (Waterworth et al.,

2007). The in planta interaction between MRE11 and TAF1

confirmed the results of the yeast two hybrid interaction

(Figure 1b), showing interaction between the C-terminal

641 aa of TAF1 and full-length MRE11. The role of the bro-

modomain was further investigated by expression of the

C-terminal 164 aa of TAF1 in BiFC. Interaction between

TAF1(1755–1919)-cYFP and MRE11-nYFP resulted in YFP

fluorescence, indicative of interaction between the bro-

modomain and MRE11 (Figure 7c). In contrast, interaction

was not observed between MRE11-nYFP and TAF1(1246–
1606)-cYFP which lacked the bromodomain (Figure 7d), or

between nYFP alone and the TAF1-cYFP constructs (Fig-

ure S2a,b).

DISCUSSION

Here we identify physical interaction between the histone

acetylase TAF1, a conserved component of the TFIID basal

transcription complex, and the recombination endonucle-

ase MRE11, which has important functions in the early

stages of chromosomal break repair. Specific hypersensi-

tivity of taf1-3 mutants to DNA-damaging agents that

induce DNA crosslinks or DSBs demonstrates a require-

ment for TAF1 in plant recovery from genotoxic stress. Our

studies therefore provide evidence of interaction of a core

plant recombination factor, MRE11, with a histone acetyla-

tion transferase and thereby identify a potential mecha-

nism for the recruitment of HAT activity to the site of the

DNA DSB.

The Arabidopsis genome encodes two TAF isoforms

(TAF1 and TAF1b), whereas rice only has one identifiable

TAF1 gene, suggesting possible gene duplication in the

Arabidopsis lineage. Diversification has led the TAF1b

(HAF2) isoform to evolve specialised physiological func-

tions in the integration of light signalling in Arabidopsis

development, activating light-induced transcription

through histone acetyltransferase activity (Benhamed

et al., 2006). In contrast, TAF1 is essential for plant viabil-

ity, indicative of a lack of redundancy between the two Ara-

bidopsis TAF1 genes. The observed lethality of taf1-1

homozygous lines is consistent with this being a null

allele. It is therefore surprising that the loss of gamete via-

bility in heterozygous lines is not fully penetrant, with

around 6% of taf1-1� pollen successfully transmitting the

mutant allele. This indicates that de novo transcription of
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the TAF1 gene is not an absolute requirement for pollen

function, reflecting that either residual TAF1 activity is car-

ried over from meiosis or that TAF1-mediated transcrip-

tional activity is important, but not essential for pollen

viability. Similar loss of the mutant allele through the male

line has also been observed in Arabidopsis mutants defi-

cient in the TFIID factor AtTAF6 (Lago et al., 2005) and in

lines deficient in the transcription factor AtTFIIB (Zhou

et al., 2013), both of which display impaired pollen tube

growth. These results indicate that de novo transcription is

important in pollen growth tube, consistent with the

observed dynamic changes in the pollen transcriptome

and the sensitivity of germinating Arabidopsis pollen to

actinomycin D (Wang et al., 2008).

Phenotypic analysis of the hypomorphic taf1-2 allele,

which expresses a mutant taf1-2 transcript driven by the

T-DNA 20 promoter, revealed a range of pleotropic effects.

The mutant transcript contains an extended 50UTR with

multiple non-coding upstream AUGs which may reduce

translation of the full-length TAF1 transcript. Plants

homozygous for this mutation display defects in

root growth, floral development and fertility. The TFIID

component TAF10 has also been implicated in floral devel-

opment. Overexpression of both Flaveria trinervia TAF10

or AtTAF10 in Arabidopsis results in floral abnormalities in

addition to defects in leaf development (Furumoto et al.,

2005; Tamada et al., 2007). Insertional mutants with

reduced AtTAF10 levels displayed shorter roots and a high

incidence of arrested vegetative meristems (Tamada et al.,

2007).

Hypersensitivity of taf1-3 to DNA-damaging reagents

that induce crosslinks and DSBs, together with identifica-

tion of physical association with MRE11, here reveals a

role for TAF1 in the plant response to genotoxic stresses.

Mammalian cells lacking TAF1 display a constitutively acti-

vated DNA damage response, consistent with roles for this

histone acetylase in maintaining genome integrity (Buch-

mann et al., 2004). The TFIID transcriptional complex con-

taining TAF1 also binds to different forms of DNA damage

including DNA crosslinks, further supporting the associa-

tion of this factor with mammalian DNA repair (Vichi et al.,

1997). In plants, an alternative explanation for the DNA

damage hypersensitivity observed in the Arabidopsis taf1-

3 mutant line could be transcriptional dysregulation of the

(c) (d)

QBU rB1953FUDPBT TAF1* *taf1-1 taf1-3taf1-2

*

MRE11-nYFP
TAF1 (1755-1919)-cYFP

MRE11-nYFP
TAF1 (1246-1606)-cYFP

AtTAF (1278-1919)

AtTAF (1755-1919)

AtTAF (1246-1606)

Br

Br

(a) (b)

+
+
–

(e) MRE11-
interaction

MRE11-nYFP
NBS1-cYFP

MRE11-nYFP
TAF (1278-1919)-cYFP  

Figure 7. Interaction between MRE11 and the TAF1

bromodomain.

(a) Confirmation of MRE11 and TAF1 interaction in

planta by split YFP in transient expression in an

Arabidopsis protoplast showing nuclear localised

TAF1–MRE11 complex (green) and red chlorophyll

autofluorescence.

(b) Interaction of MRE11–nYFP and NBS1–cYFP.
(c) Interaction between the TAF1 bromodomain and

MRE11.

(d) No interaction observed between MRE11 and

the C-terminal TAF1 region distal to the bromod-

omain (protoplast showing dsRED fluorescence as

a transformation control).

(e) Schematic showing the domains of TAF1 tested

in BiFC. Scale bars: 5 lm.
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DNA damage response. Whilst it is difficult to completely

eliminate this possibility, evidence against this is provided

by the normal upregulation of all five genes investigated

which represent integral components of the plant tran-

scriptional response to DNA damage. This is indicative that

the plant transcriptional response to DNA damage is not

eliminated in the taf1-3 mutant background. In addition,

the mutated transcript expressed in the taf1-2 line is suffi-

cient to cause developmental defects but does not result in

significant hypersensitivity to DNA damage. This is consis-

tent with the model that the hypersensitivity to DNA dam-

age in taf1-3 mutants specifically results from the complete

loss of the bromodomain. In this model, the levels of TAF1

that allow survival of taf1-2 mutants are also sufficient for

wild-type DNA damage responses in this line. This hypoth-

esis was further supported by complementation of taf1-3

with full-length TAF1, which restored wild-type levels of

genotoxin sensitivity to the mutant line. Collectively, these

results point to an important role for the C-terminal bro-

modomain of TAF1 in the response to damage to the plant

genome.

In mammals and yeast, HAT activities are required for

efficient recombinational repair of DSBs, and acetylation of

histones H3 and H4 plays an important role in survival

under genotoxic stress (Bird et al., 2002; Tamburini and

Tyler, 2005). However, the role of histone acetylation in the

plant DSB response and mechanisms is poorly under-

stood. Our previous mass spectroscopy analysis identified

a global increase in the relative abundance of the acety-

lated N-terminus of H3 and a decrease in H4 acetylation in

response to X-ray-induced DNA damage in Arabidopsis,

indicative of dynamic changes in histone post-translational

modification following genotoxic stress (Drury et al., 2012).

Acetylation of histone H4 was found on residue K16

together with any combination of K5, K8 and/or K12 acety-

lation. As in yeast, a significant reduction in H4K16 acetyla-

tion is observed in response to DNA damage, which in

Arabidopsis requires ATM activity (Tamburini and Tyler,

2005; Drury et al., 2012). In response to X-ray treatment,

Arabidopsis histone H3 was hyperacetylated, with modifi-

cations detected on K14 with or without K9, and K23 with

or without K18 (Drury et al., 2012). In yeast, acetylation of

residues H3 K14 and K23 have been shown to be critical

for responses to DNA damage (Qin and Parthun, 2002).

However, the mechanistic basis of histone modification in

the plant response to DNA damage remains to be estab-

lished. In mammals, MRE11 recruits HAT activity to DSBs

through interaction with TIP60, which forms part of a com-

plex that participates in DSB repair through acetylation of

histones at the site of the break. DSB repair defects caused

by TIP60 deficiency can be reversed by chromatin relax-

ation, suggestive that the TIP60 complex functions to mod-

ulate chromatin accessibility at the DSB site (Murr et al.,

2006). In Arabidopsis, interaction of the C-terminal region

bromodomain of TAF1 with MRE11 provides a potential

mechanism for recruitment of HAT activity to a DSB and

an explanation for the hypersensitivity of taf1-3 mutants

specifically to genotoxins.

Our knowledge of the early events in plant DNA damage

signalling and repair by recombination pathways remains

incomplete despite their crucial importance for cellular sur-

vival. Rapid and efficient DNA break recognition is crucial

to alleviate the extreme cytotoxic effects of DSBs and the

recruitment of MRE11 and associated proteins represents a

key step in the initiation of chromosomal break repair. Col-

lectively our studies identify function of TAF1 in the plant

response to DNA damage. Further work is required to

determine the significance of MRE11-TAF1 interaction in

histone acetylation and the downstream regulation of plant

DNA DSB repair pathways. Understanding the mechanisms

which control recombination pathways in plants is impor-

tant in crop resistance to abiotic stress, in meiosis for the

generation of new varieties in plant breeding, and in the

development of improved gene targeting methodologies.

EXPERIMENTAL PROCEDURES

Plant material and growth conditions

Arabidopsis thaliana seeds were surface sterilized in 70% ethanol
for 5 min, and resuspended in sterile 0.1% agar, stratified at 4°C
for 2 days and grown on half-strength Murashige and Skoog
(Sigma, www.sigmaaldrich.com) medium containing 20 g L�1

sucrose, 0.5 g L�1 MES pH 5.7, 8 g L�1 plant agar (Duchefa) for
16 h:8 h light:dark cycles at 22°C. Plants were transferred to soil
after 2 weeks and incubated in growth chambers (Sanyo, http://
www.panasonic.net/sanyo/) under constant humidity (70%), with
16 h light and 8 h dark cycles at 22°C. Arabidopsis mutant lines
were obtained from Nottingham Arabidopsis Stock Centre (Scholl
et al., 2000). Agrobacterium-mediated plant transformation was
performed according to published protocols (Clough and Bent,
1998).

Nucleic acid purification, amplification and cloning

DNA procedures and bacterial manipulations were by established
protocols (Sambrook et al., 1989). RNA was isolated from above-
ground tissues of flowering Arabidopsis using the SV total RNA
isolation kit (Promega, https://www.promega.com) according to
the manufacturer’s instructions. Reverse transcriptase (Superscript
II, Invitrogen, www.thermofisher.com) was used for cDNA synthe-
sis and PCR amplification for cloning used iProof polymerase
(Bio-Rad, www.Bio-Rad.com) or for analysis used RedTaq (Sigma).
DNA extraction for PCR genotyping was performed by grinding
plant tissue in shorty buffer (0.2 M Tris pH 9.0, 1% SDS, 0.4 M LiCl,
25 mM EDTA) in a 1.5 ml microfuge tube, using a plastic micropes-
tle. Cell debris was pelleted at 13 000 g for 5 min and the super-
natant mixed 1:1 with 100% isopropanol. Precipitated DNA was
recovered by centrifugation at 13 000 g for 10 min. The dried pel-
let was resuspended in 400 ll TE buffer. Primers used in plant
genotyping were taf1_3_T: CACCGACAGAAAGAGAACAGC;
taf1_3_W: AGGTGGTATTCCTGGGTTACG; LBb1_3_SALK: ATTTTG
CCGATTTCGGAAC; taf1_1_T: CAATTGCTGCAGATGAGCTGTCTT;
taf1_1_W: ACGCAAGTGTGCAACTCCTAGATG; taf1_2_W: CAATC
TTGTCTTGGTCGCTTC, taf1_2_T: CAGGCTACAGTAGCCTCCATC;
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SAIL LB: GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC. RNA
was purified from plant tissue using an SV RNA kit (Promega) and
quantified by spectrometry (NanoDrop, www.nanodrop.com).
cDNA was synthesised using Invitrogen Superscript II and primed
with oligodT. TAF1 cDNA primers were used to determine gene
expression and designed to the 20th and 21st exons: TAF1F ACA-
GAATCACAACCCGAAGG; TAF3R AGGCTTGTGTGATTCGCTCT;
TAF4R TCTGGAGCTTCCTTCTTGGA.

Yeast two-hybrid analysis

Two-hybrid analysis was performed as described previously
(Fields and Song, 1989; Durfee et al., 1993). Full-length MRE11
cDNA was cloned into the plasmid pGBKT7 (Clontech, www.
clontech.com) in frame with and N-terminal the GAL4-DNA bind-
ing domain for use in yeast two-hybrid screening. RNA was iso-
lated from 2-week-old Arabidopsis seedlings 2 h after exposure to
10 Gy X-rays and mixed with an equal quantity of RNA isolated
from buds and flowers at various stages of development. RT-PCR
and in vivo cloning was used to simultaneously generate an acti-
vation domain library and conduct the library screening using the
Matchmaker kit according to manufacturer’s instructions (Clon-
tech). Transformants were plated directly onto selective media
lacking tryptophan, leucine and histidine and supplemented with
2.5 mM 3-amino-1,2,4-triazole. Colonies growing after 1 week
were re-plated onto selective media which also lacked adenine
before colony analysis by PCR and sequencing. Interactions were
verified by plasmid isolation and re-transformation into the yeast
reporter strain AH109 (MATa, trp1-901, leu2-3, 112, ura3-52, his3-
200, gal4D, gal80D, LYS2::GAL1UAS-GAL1TATA-HIS3, GAL2UAS-
GAL2TATA-ADE2, URA3::MEL1UAS-MEL1TATA-lacZ, MEL1) as
described previously (Soni et al., 1993).

Analysis of pollen

DAPI (40,6-diamidino-2-phenylindole) staining of pollen grains was
performed as described by Park et al. (2015), and viewed on a
Zeiss LSM 510 META Axiovert 200M inverted confocal microscope
pollen tube germination was performed according to published
procedures (Rodriguez-Enriquez et al., 2013).

Nucleic acid purification, amplification and cloning

DNA procedures and bacterial manipulations used established
protocols (Sambrook et al., 1989). RNA was isolated from above-
ground tissues of flowering Arabidopsis using the SV total RNA
isolation kit (Promega) according to the manufacturer’s instruc-
tions. RT-PCR was performed using Superscript II reverse
transcriptase (Invitrogen) for cDNA synthesis followed by amplifi-
cation using iPROOF (Bio-Rad). PCR products were cloned using a
TOPO-TA cloning kit and E. coli TOP10 cells (Invitrogen), and plas-
mid DNA was prepared using spin columns (Qiagen, https://
www.qiagen.com) prior to DNA sequencing (GATC Biotech,
www.gatc-biotech.com). Real-time PCR analysis was performed
on an CFX96 thermocycler (Bio-Rad) using iQ SYBR Green Super-
mix (Bio-Rad) and primers qPCR_ACTf (CTCAGGTATCGCT-
GACCGTATGAG) and qPCR_ACTr (CTTGGAGATCCACATCT
GCTGGAATG) for ACTIN2 (At3g18780). AtRAD51 (At5G20850) was
amplified using primers rad51RTf (GTTCTTGAGAAGTCTTCAA-
GAAGTTAG) and rad51RTr (GCTGAACCATCTACTTGCGCAAC-
TAC). Transcript levels were normalized against those for ACTIN2.
Complementation of taf mutations was performed using a full-
length genomic clone ligated into pCB1300. TAF1 was amplified
using primers TAF1F (GGGTCACTAGTCCGTTGCTGGTTGTT-
CAAAACTGAC) and TAF1R (GGGTCACTAGTGGGGCCTAAAGAA
AGGGTTACA) incorporating SpeI sites and ligated into XbaI

digested pCB1300. Transformed plants were selected on MS med-
ium supplemented with hygromycin (40 mg L�1) and claforan
(50 mg L�1).

Bimolecular fluorescence complementation

BiFC was performed as described previously (Zhong et al., 2008).
MRE11 and TAF1(1278–1919) were amplified and cloned into the
entry vector pENTRE (Invitrogen) before subcloning into the split
YFP vectors pDH51-GW-YFPn and pDH51-GW-YFPc. Truncations
of TAF1 were made by restriction digestion: the bromodomain-
YFP fusion (TAF1 1755–1919) was constructed using XbaI–NotI
digestion followed by ligation with the filler oligonucleotide GGA-
TATG. The bromodomain was removed (TAF 1246–1606) by NsiI–
XhoI digestion followed by DNA polymerase fill in (iProof; Bio-
Rad) and ligation. Purified plasmids were used to transform Ara-
bidopsis protoplasts according to the tape-sandwich method (Wu
et al., 2009). Fluorescence imaging was performed on a Zeiss
(www.zeiss.co.uk) Axiovert 700 inverted confocal microscope.

Accession numbers

Sequence data from this article can be found in the EMBL/GenBank
data libraries under accession number(s) AT1G32750 (TAF1, HAF1),
AT3G19040 (TAF1b, HAF2), AT5G54260 (MRE11), At3g02680
(NBS1), At5g20850 (RAD51) and At3g18780 (ACTIN2).
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