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Radar cross-section (RCS) measurements of complex, large objects are
usually performed on scale models so that the measurement is carried
out in a well-controlled environment. The feasibility of RCS measure-
ment using a terahertz (THz) quantum cascade laser (QCL) via laser
feedback interferometry is explored. Numerical simulations show
that the RCS information embedded in the nonlinear interferometric
signals obtained from simple targets can be retrieved through numer-
ical fitting of the well-known excess phase equation. The method is
validated experimentally using a THz QCL and the results are well
matched with those obtained from numerical simulations.
Introduction: Radar cross-section (RCS) characterisation of a target is
an angle- and frequency-dependent measure of its electromagnetic scat-
tering behaviour. Such characterisation at microwave frequencies is
important for military and defence-related purposes, including the detec-
tion and identification of aircraft and ships, as well as countermeasures
such as RCS reduction and stealth [1]. At microwave frequencies, RCS
characterisation requires that the measurement operates on very large
objects (in terms of wavelength), such as full-scale aircraft and ships,
which is difficult to reproduce practically. The measurement process
can also be time consuming and expensive. At the same time, the phys-
ical size of the aforementioned full-scale targets makes it impractical to
iterate the design and testing phase in stealth and defence applications
[2]. For instance, the scattered response of a target with a physical
dimension of 5 m at 2.6 GHz can be obtained from its scaled version
with the dimension of 5 mm at 2.6 THz. With the recent development
of terahertz (THz) time-domain spectrometry, attempts have been
made to perform RCS characterisation at THz frequencies [2–4].
Interest has also focused on the detection and imaging of concealed
weapons such as hand guns and knives at a standoff distance using
THz radiation [5, 6]. RCS characterisation of these targets at THz fre-
quencies will also be of interest in security applications. In this Letter,
we propose the use of a THz-frequency quantum cascade laser (QCL)
(a suitable high-power source of THz radiation [7]) in conjunction
with laser feedback interferometry (LFI) for RCS characterisation.
The feasibility of this approach is exemplified using square metallic
plate and cube targets through simulations and experiments.
Laser feedback interferometry: LFI has been demonstrated in numerous
sensing and imaging applications [8–11]. When LFI is adopted for
sensing, the laser serves as a transceiver that emits a laser beam and
receives the reflected beam so that no external detector is needed. The
radiation emitted from the laser interacts with the external target, is
reflected and partially re-injected to the laser cavity, resulting in interfer-
ence between the intra-cavity field and re-injected signal [11, 12]. The
effect of feedback from the target can be monitored via the laser terminal
voltage, which makes it ideal for work with THz QCLs [12–15]. Here,
the laser is slowly frequency modulated such that the nonlinear LFI
signal is observed as a set of periodic perturbations embedded in the
modulated voltage signal. The temporal separation between the peaks
of the LFI signal waveform, as well as its shape and phase, depend on
the length of the external cavity and the reflectivity of the external
target [15]. The RCS information is thus embedded in the nonlinear
LFI signal.

The amount of laser feedback because of an external target can be
modelled using the feedback parameter [11]
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where τL is the round trip time for light in the laser cavity, τext is the
round trip time for light in the external cavity, and α is the linewidth
enhancement factor. The term κext is the coupling coefficient that
depends on the reflectivity of the exit laser facet Rs and the reflectivity
of the target Rext
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where ɛ is the fraction of the reflected light coupled back coherently into
the lasing mode.
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Fig. 1 Monostatic RCS of 3 mm square metallic plate

a Comparison of (i) theoretical RCS using PO and (ii) theoretical RMS values of
LFI signals
b Comparison of (i) theoretical RCS using PO, (ii) theoretical RMS values of LFI
signals, and (iii) retrieved RCS from LFI signals

RCS characterisation using LFI: The RCS of the target-of-interest can
be given by [3]

s = lim
R�1

4pR2 Es| |2
Ei
∣∣ ∣∣2 (3)

where Es and Ei stand for the scattered and incident electric field,
respectively. In practice, the requirement that the distance of the scatterer
from the receiver R approaches infinity can never be fully accomplished.
For practical purposes, the distance R can easily be measured and the
equation is reduced to

s = 4pR2 Es| |2
Ei
∣∣ ∣∣2 (4)

In Fig. 1, we explore a simple case where an analytical solution for the
RCS is available to compare the results with the RCS extracted from
simulated LFI signals. The target was a 3 mm side square metallic
plate with the RCS computed at a series of angles (zero being normal
incidence) first using the physical optics (PO) approximation at
2.6 THz under plane wave illumination [16] and compared against the
RCS values extracted from the LFI simulations under the same con-
ditions. We now describe the process used to simulate swept-frequency
LFI signal waveforms and subsequently extract the RCS from them. To
simulate the RCS signals obtained using LFI with frequency modulation
[15], the monostatic scattered electric field is computed using PO at
1001 equally spaced frequencies between 2.6 and 2.601 THz. The cor-
responding reflectance at each frequency, i.e. Rext = |Es|2/|Ei|2, is then
used to calculate the feedback parameter via (1) and (2), which in
turn is used in the excess phase equation [11] to compute the corre-
sponding LFI signal in the time domain. Here, the length of the external
cavity was set to be 0.337 m. The entire process is repeated at each
measurement aspect angle. Spatially, the aspect angles of ±100° with
a resolution of 0.1° are considered, resulting in 2001 sampling points.
The time-domain LFI signal at each of the 2001 sampling points was
thus obtained, allowing the corresponding root mean square (RMS)
value [12] to be computed for each aspect angle, as plotted in Fig. 1.
Owing to the nonlinear nature of the LFI, the changes of the RMS



value do not appear to be proportional to the RCS of the target. The cor-
responding target reflectivity was extracted from each LFI signal using
the algorithm described in [12] which enabled us to subsequently calcu-
late the RCS at each angle. The retrieved RCS as a function of angle is
shown in Fig. 1b and it matches the theoretical RCS values well.

To test the validity of the numerical modelling a simple experiment
was performed by measuring the RCS of a 3 mm metallic cube using
a THz-QCL. A 2.59 THz bound-to-continuum QCL was operated in
continuous-wave mode at a heat sink temperature of 15 K, in a continu-
ous flow cryostat. The laser was operated at a driving current Idc =
0.43 A and a modulating saw-tooth current signal (50 mA peak-to-peak
amplitude) was superimposed on the dc current leading to a linear fre-
quency sweep of 600 MHz. The emitted radiation was collimated
using a 2-inch diameter, 4-inch focal length ( f/2) off-axis parabolic
reflector. The target was placed on a motorised rotary stage in the colli-
mated beam path at an external cavity distance of 0.337 m. The target
therefore was fully illuminated in what was essentially a 2-inch diameter
beam. The laser, electrical operating conditions, and signal recovery
electronics are identical to those found in [12, 15].

Fig. 2 shows the RMS values of the LFI signals measured via the laser
terminal voltage. The results are matched with those simulated using the
PO approximation with diffraction corrections from the wedges using
FEKO [17]. Although the measured values do show some noise arte-
facts, the major features of both the simulated and measure RMS LFI
signals are in good agreement.
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Fig. 2 Monostatic RCS of 3 mm square metallic plate

Comparison of RMS values of LFI signals obtained from simulation and
measurement

Conclusion: The feasibility of RCS characterisation of some simple
radar targets using LFI has been demonstrated through simulations
and measurements. The RCS information embedded in the nonlinear
LFI signals can be extracted accurately by numerical fitting to the
excess phase equation model. The results are well matched with the
theoretical RCS values. An experiment has also been performed to
obtain the RCS of a cube target. The results show that the experi-
mentally measured LFI signals are well matched with the simulated
signals. This work opens the way for RCS measurements at THz fre-
quencies using LFI.
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