SUPPLEMENTARY MATERIAL

SUPPLEMENTARY METHODS

Systematic Search (Supplementary Table 1)

A search of the Medline, EMBASE and Cochrane library databases was performed for original articles reporting relationships between non-radiographic imaging-assessed subchondral bone pathologies joint replacement, pain or structural progression in knee, hip, hand, ankle and foot OA The bone pathological changes include bone marrow lesions (BMLs), osteophytes, attrition, cysts, as well as changes in shape, bone mineral density, bone morphometry (bone volume fraction, trabecular number, spacing and thickness), and bone signal from positron emission tomography and scintigraphy.

Data extraction

Papers meeting the inclusion/exclusion criteria were divided into longitudinal and cross-sectional papers. Longitudinal papers included prospective and retrospective cohorts and case-control studies with longitudinal data (i.e. nested case control studies). Extracted data included (a) patient demographics (age, sex and body mass index) (b) OA (clinical, radiographic or diagnostic) classification used, with the definition and prevalence of radiographic OA, (c) subchondral bone pathology feature, (d) joint replacement, pain or structural progression outcome measure (e) presence/absence of a relationship between feature and outcome (f) statistical results with or without adjustment for confounders and (g)

1

the ipsicompartmental or contralateral compartment structural progression in relation to the bone pathology in longitudinal studies.

Quality Assessment (Supplementary Table 2)

A standardised quality scoring tool, previously used in other similar systematic reviews[1, 2] was adapted to assess the following components: (a) study population, (b) MRI subchondral bone feature, (c) pain or structural progression outcome, (d) study design and (e) analysis and data presentation (Supplementary Table 2). A score of '1' or '0' was allocated for each question according to whether the study fulfilled the criteria or not respectively. Where multiple bone features were assessed per article (e.g. criteria 11) the mean score was used. Any discordance in opinion was recorded and where consensus could not be achieved a third reviewer (PC) was consulted. The number of criteria applied to each type of study (e.g. cohort n=18 and cross-sectional n=14) varied and therefore scores were compared as percentages of the maximum score. A study was considered to be high quality if it exceeded or equaled the mean score in its class.

Most studies selected patients from existing cohorts rather than from the general population (criteria 1) and patients were selected by a minimum of evidence of OA (e.g. KL \geq 2) rather than at a uniform stage of OA severity (e.g. KL=2) (criteria 2). Most studies did not provide evidence of assessing the bone image feature before the knee OA outcome (criteria 9) and similarly did not indicate a prospective analysis plan for the relationship between bone image feature and OA outcome (criteria 17).

2

Best evidence synthesis

An association of a bone feature with a longitudinal OA outcome (structural progression, longitudinal change in pain, incident pain or joint replacement) was determined from cohort studies only. If a prospective cohort study analysis was of above average quality and found a statistically significant association between a bone feature and a longitudinal outcome after adjustment for at least age, gender and body mass index (referred to in the text as 'well-adjusted') this association was referred to as an 'independent' association. These three criteria were determined for all longitudinal analyses and if any of these three criteria were not fulfilled, the associations was determined using cross-sectional and case-control studies and establishing whether the analysis of the association of severity was well-adjusted or not. This data is summarised in Table 5 of the main manuscript.

SUPPLEMENTARY TABLE 1

EMBASE (1980 to September 2014):

			25 or 26 or 27 or 28 or 29 or 30 or 31
			or 32 or 33 or 34 or 35 or 36 or 37 or
1	osteoarthri*	42	38 or 39 or 40 or 41
2	osteoarthro*	43	"magnetic resonance imag*".ti,ab
3	(arthri* adj2 degenerative)	44	mri.ti,ab
4	exp OSTEOARTHRITIS	45	mr.ti,ab
5	1 or 2 or 3 or 4	46	"magnetic resonance".ti,ab
			NUCLEAR MAGNETIC
6	knee*.ti,ab	47	RESONANCE IMAGING/
7	KNEE/	48	43 or 44 or 45 or 46 or 47
8	hand*.ti,ab	49	24 AND 42 and 48
9	HAND/	50	DEXA
10	Hip*.ti,ab	51	DXA
			DUAL ENERGY X RAY
11	HIP/	52	ABSORPTIOMETRY
12	foot*	53	50 OR 51 or 52
13	exp FOOT/	54	"bone mineral density"
14	ankle*	55	BMD
15	exp ANKLE/	56	BONE DENSITY/
10	6 or 7 or 8 or 9 or 10 or 11 or 12 or	57	E4 or EE or EC
10	13 01 14 01 13	50	34 01 33 01 36
10		50	24 and 55 and 57
10		59	
19	THE OSTEOARTHRITIS	00	
20	coxarthr*.ti.ab	61	TOMOGRAPHY
21	KNEE OSTEOARTHRITIS/	62	"micro-computed tomography"
22	gonarthr*.ti,ab	63	pQCT
23	18 or 19 or 20 or 21 or 22	64	HR-pQCT
24	17 or 23	65	59 or 60 or 61 or 62 or 63 or 64
25	"subchondral bone".ti,ab	66	57 or 42
26	bml.ti,ab	67	24 and 65 and 66
27	"bone marrow lesion*".ti,ab	68	PET
28	"bone marrow oedema".ti,ab	69	24 and 68
29	"bone marrow edema".ti,ab	70	scintigraphy
30	BONE MARROW EDEMA/	71	24 and 70
31	osteophyte*.ti,ab	72	Bone shape
32	OSTEOPHYTE/	73	24 and 72
33	"bone cyst*".ti,ab	74	49 or 58 or 67 or 69 or 71 or 73
34	BONE CYST/	75	74 limit to humans
35	"bone area*".ti,ab		
36	"bone shape".ti,ab		
37	"bone attrition".ti,ab		
38	"trabecular".ti,ab		
39	TRABECULAR BONE/		
40	"volume fraction".ti,ab		
41	"BV/TV".ti,ab		

1	osteoarthri*	40	"magnetic resonance imag*"
2	osteoarthro*	41	mri
3	(arthri* adj2 degenerative)	42	mr
4	exp OSTEOARTHRITIS	43	"magnetic resonance"
			MAGNETIC RESONANCE
5	1 or 2 or 3 or 4	44	IMAGING/
6	knee*	45	40 OR 41 or 42 OR 43 OR 44
7	knee/ OR exp KNEE JOINT/	46	23 AND 39 and 45
8	hand*	47	DEXA
9	hand/ OR exp HAND joint	48	DXA
10	Hip*	49	Absorbtiometry, photon/
11	hip/ OR exp HIP JOINT	50	47 or 48 or 49
12	foot*.ti,ab	51	"bone mineral density"
13	foot/ OR exp FOOT JOINTS/	52	BMD
14	ankle*.ti,ab	53	BONE DENSITY/
15	ankle / OR exp ANKLE JOINT/	54	51 OR 52 or 53
	6 or 7 or 8 or 9 or 10 or 11 or 12 or 13		
16	or 14 or 15	55	23 AND 50 and 54
17	5 and 16	56	"Computed tomograph*"
18	osteoarthritis hip	57	СТ
40		50	tomography, X-RAY
19	coxarthr	58	COMPUTED/
00		50	Here the second se
20	osteoarthritis knee	59	"micro-computed tomography"
20 21	osteoarthritis knee gonarthr*	59 60	"micro-computed tomography" pQCT
20 21 22	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21	59 60 61	"micro-computed tomography" pQCT HR-pQCT
20 21 22 23	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22	59 60 61 62	"micro-computed tomography"pQCTHR-pQCT56 or 57 or 58 or 59 or 60 or 61
20 21 22 23 24	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22 "subchondral bone"	59 60 61 62 63	micro-computed tomography" pQCT HR-pQCT 56 or 57 or 58 or 59 or 60 or 61 54 or 39
20 21 22 23 24 25	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22 "subchondral bone" bml	59 60 61 62 63 64	micro-computed tomography" pQCT HR-pQCT 56 or 57 or 58 or 59 or 60 or 61 54 or 39 23 and 62 and 63
20 21 22 23 24 25 26	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22 "subchondral bone" bml "bone marrow lesion*"	59 60 61 62 63 64 65	"micro-computed tomography" pQCT HR-pQCT 56 or 57 or 58 or 59 or 60 or 61 54 or 39 23 and 62 and 63 PET
20 21 22 23 24 25 26 27	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22 "subchondral bone" bml "bone marrow lesion*" "bone marrow oedema"	59 60 61 62 63 64 65 66	"micro-computed tomography" pQCT HR-pQCT 56 or 57 or 58 or 59 or 60 or 61 54 or 39 23 and 62 and 63 PET 23 and 65
20 21 22 23 24 25 26 27 27 28	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22 "subchondral bone" bml "bone marrow lesion*" "bone marrow oedema" "bone marrow oedema"	59 60 61 62 63 64 65 66 66 67	"micro-computed tomography"pQCTHR-pQCT56 or 57 or 58 or 59 or 60 or 6154 or 3923 and 62 and 63PET23 and 65Scintigraphy
20 21 22 23 24 25 26 27 28 29 29	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22 "subchondral bone" bml "bone marrow lesion*" "bone marrow oedema" "bone marrow edema" osteophyte*	59 60 61 62 63 64 65 66 67 68	"micro-computed tomography"pQCTHR-pQCT56 or 57 or 58 or 59 or 60 or 6154 or 3923 and 62 and 63PET23 and 65Scintigraphy23 and 67
20 21 22 23 24 25 26 27 28 29 30	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22 "subchondral bone" bml "bone marrow lesion*" "bone marrow oedema" "bone marrow edema" osteophyte* OSTEOPHYTE/	59 60 61 62 63 64 65 66 67 68 68 69	"micro-computed tomography"pQCTHR-pQCT56 or 57 or 58 or 59 or 60 or 6154 or 3923 and 62 and 63PET23 and 65Scintigraphy23 and 67Bone shape
20 21 22 23 24 25 26 27 28 29 30 31	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22 "subchondral bone" bml "bone marrow lesion*" "bone marrow oedema" "bone marrow edema" osteophyte* OSTEOPHYTE/ "bone cyst*"	59 60 61 62 63 64 65 66 67 68 69 70	"micro-computed tomography"pQCTHR-pQCT56 or 57 or 58 or 59 or 60 or 6154 or 3923 and 62 and 63PET23 and 65Scintigraphy23 and 67Bone shape23 and 69
20 21 22 23 24 25 26 27 28 29 30 31 32	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22 "subchondral bone" bml "bone marrow lesion*" "bone marrow oedema" "bone marrow edema" osteophyte* OSTEOPHYTE/ "bone cyst*" BONE CYSTS/	59 60 61 62 63 64 65 66 67 68 68 69 70 71	"micro-computed tomography" pQCT HR-pQCT 56 or 57 or 58 or 59 or 60 or 61 54 or 39 23 and 62 and 63 PET 23 and 65 Scintigraphy 23 and 67 Bone shape 23 and 69 46 or 55 or 64 or 66 or 68 or 70
20 21 22 23 24 25 26 27 28 29 30 31 32 33	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22 "subchondral bone" bml "bone marrow lesion*" "bone marrow oedema" "bone marrow edema" osteophyte* OSTEOPHYTE/ "bone cyst*" BONE CYSTS/ "bone area*"	59 60 61 62 63 64 65 66 67 68 69 70 71 72	"micro-computed tomography" pQCT HR-pQCT 56 or 57 or 58 or 59 or 60 or 61 54 or 39 23 and 62 and 63 PET 23 and 65 Scintigraphy 23 and 67 Bone shape 23 and 69 46 or 55 or 64 or 66 or 68 or 70 71 limit to humans
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22 "subchondral bone" bml "bone marrow lesion*" "bone marrow edema" "bone marrow edema" osteophyte* OSTEOPHYTE/ "bone cyst*" BONE CYSTS/ "bone area*"	59 60 61 62 63 64 65 66 67 68 69 70 71 72	"micro-computed tomography" pQCT HR-pQCT 56 or 57 or 58 or 59 or 60 or 61 54 or 39 23 and 62 and 63 PET 23 and 65 Scintigraphy 23 and 67 Bone shape 23 and 69 46 or 55 or 64 or 66 or 68 or 70 71 limit to humans
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 34 35	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22 "subchondral bone" bml "bone marrow lesion*" "bone marrow edema" "bone marrow edema" osteophyte* OSTEOPHYTE/ "bone cyst*" BONE CYSTS/ "bone area*" "bone shape" "bone attrition"	59 60 61 62 63 64 65 66 67 68 69 70 71 72	"micro-computed tomography" pQCT HR-pQCT 56 or 57 or 58 or 59 or 60 or 61 54 or 39 23 and 62 and 63 PET 23 and 65 Scintigraphy 23 and 67 Bone shape 23 and 69 46 or 55 or 64 or 66 or 68 or 70 71 limit to humans
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22 "subchondral bone" bml "bone marrow lesion*" "bone marrow oedema" "bone marrow edema" osteophyte* OSTEOPHYTE/ "bone cyst*" BONE CYSTS/ "bone area*" "bone shape" "bone attrition"	59 60 61 62 63 64 65 66 67 68 69 70 71 72	"micro-computed tomography" pQCT HR-pQCT 56 or 57 or 58 or 59 or 60 or 61 54 or 39 23 and 62 and 63 PET 23 and 65 Scintigraphy 23 and 67 Bone shape 23 and 69 46 or 55 or 64 or 66 or 68 or 70 71 limit to humans
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22 "subchondral bone" bml "bone marrow lesion*" "bone marrow oedema" "bone marrow edema" osteophyte* OSTEOPHYTE/ "bone cyst*" BONE CYSTS/ "bone area*" "bone area*" "bone shape" "bone shape" "bone attrition" trabecular "volume fraction"	59 60 61 62 63 64 65 66 67 68 69 70 71 72	"micro-computed tomography" pQCT HR-pQCT 56 or 57 or 58 or 59 or 60 or 61 54 or 39 23 and 62 and 63 PET 23 and 65 Scintigraphy 23 and 67 Bone shape 23 and 69 46 or 55 or 64 or 66 or 68 or 70 71 limit to humans
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22 "subchondral bone" bml "bone marrow lesion*" "bone marrow oedema" "bone marrow edema" osteophyte* OSTEOPHYTE/ "bone cyst*" BONE CYSTS/ "bone area*" "bone area*" "bone shape" "bone shape" "bone attrition" trabecular "volume fraction"	59 60 61 62 63 64 65 66 67 68 69 70 71 72	"micro-computed tomography" pQCT HR-pQCT 56 or 57 or 58 or 59 or 60 or 61 54 or 39 23 and 62 and 63 PET 23 and 65 Scintigraphy 23 and 67 Bone shape 23 and 69 46 or 55 or 64 or 66 or 68 or 70 71 limit to humans
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22 "subchondral bone" bml "bone marrow lesion*" "bone marrow oedema" "bone marrow edema" osteophyte* OSTEOPHYTE/ "bone cyst*" BONE CYSTS/ "bone area*" bone area*" "bone shape" "bone shape" "bone attrition" trabecular "volume fraction" BV/TV" 24 OR 25 OR 26 OR 27 OR 28 OR 20 OB 20 OB 24 OB 20 OB 23 OB	59 60 61 62 63 64 65 66 67 68 69 70 71 72	"micro-computed tomography" pQCT HR-pQCT 56 or 57 or 58 or 59 or 60 or 61 54 or 39 23 and 62 and 63 PET 23 and 65 Scintigraphy 23 and 67 Bone shape 23 and 69 46 or 55 or 64 or 66 or 68 or 70 71 limit to humans
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	osteoarthritis knee gonarthr* 18 or 19 or 20 or 21 17 or 22 "subchondral bone" bml "bone marrow lesion*" "bone marrow oedema" "bone marrow oedema" "bone marrow edema" "bone marrow edema" OSTEOPHYTE/ "bone cyst*" BONE CYSTS/ "bone area*" "bone area*" "bone area*" "bone shape" "bone shape" "bone attrition" trabecular "volume fraction" "BV/TV" 24 OR 25 OR 26 OR 27 OR 28 OR 29 OR 30 OR 31 OR 32 OR 33 OR	59 60 61 62 63 64 65 66 67 68 69 70 71 72	"micro-computed tomography" pQCT HR-pQCT 56 or 57 or 58 or 59 or 60 or 61 54 or 39 23 and 62 and 63 PET 23 and 65 Scintigraphy 23 and 67 Bone shape 23 and 69 46 or 55 or 64 or 66 or 68 or 70 71 limit to humans

Medline (1950 to September 2014):

SUPPLEMENTARY TABLE 2 – QUALITY SCORING TOOL

Item	Criterion	CC	СН	CS
Study	population			
1	Recruitment from the general population	1	1	1
2	Selection occurred before disease onset or at a uniform point.	1	1	1
	A uniform point was considered to be equal baseline grade of			
	structural progression (e.g. Kellgren Lawrence grade) or an			
	analysis within the same osteoarthritic joint			
3	Cases and controls drawn were from the same population	1		
4	Participation rate >80% for cohort studies (retrospective cohort		1	
	studies score zero automatically)			
5	Sufficient description of baseline characteristics - must include	1	1	1
	age, gender and Bivil (or neight and weight)	4		
6	Baseline characteristics comparable between cases and	1		
	controls - must include age, gender and Bivir (or height and			
Accock	weight)	turo		
7	Bink factor / facture accessed with a standardized method (a g		1	1
1	WORMS BML scoring or an automated calculation of bone area	1	1	
	but not a subjective opinion of a radiologist on the presence of			
	bone attrition)			
8	Risk factor / feature assessment was identical (performed the	1	1	1
•	same way) in the studied population(s)		-	
9	Risk factor / feature was assessed prior to the outcome	1	1	1
	(structural progression or pain). A score of zero was allocated if			
	the methods did not describe this.			
Asses	sment of joint OA outcome (pain or structural progression)			
10	Outcome assessment was identical in the studied population(s)	1	1	1
11	Outcomes were assessed reproducibly (intraclass correlation	1	1	1
	coefficient > 0.81 with a standardised assessment). If multiple			
	outcomes were measured the mean reproducibility score was			
	used.			
12	Outcome classification was standardised (e.g. the WOMAC pain	1	1	1
	score but not a subjective opinion of a patient's pain)			
Study	design			
13	Prospective study design used		1	
14	Follow up time > 3 years	1	1	
15	Information provided on completers vs withdrawls in cohorts		1	
	(without prospective trial data conorts automatically score zero)			
16	Outcome evaluators were blinded to feature (risk factor)	1	1	1
17	Analysis of relationship between feature and outcome was	1	1	1
	planned prospectively			
Analys	is and data presentation		1	
18	The frequency of most important outcomes were given	1	1	1
19	appropriate analysis techniques used (statistical or comparative	1	1	1
	techniques)			<u> </u>
20	adjusted for at least age, BMI and gender	1	1	
1	Maximum Score	17	18	14

CC: case control, CH cohort (prospective and retrospective), CS: cross sectional

SUPPLEMENTARY TABLES 3:	QUALITY SCORING RESULTS	CROSS-SECTIONAL STUDIES
-------------------------	--------------------------------	--------------------------------

										C	Quali	ty Sco	oring	Crite	eria								
No.	Cross-sectional Study	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Total	%
1	Ai 2010 [3]	0	0			0		1	1	0	1	1	1				1	0	1	1	0	8	57%
2	Akamatsu 2014 [4]	0	0			1		1	1	0	1	0	1				1	0	1	1	0	8	57%
3	Antoniades 2000 [5]	0	0			1		1	1	0	1	1	1				1	0	1	1	0	9	64%
4	Baranyay 2007 [6]	0	1			1		1	1	0	1	1	1				0	0	1	1	1	10	71%
5	Bilgici 2010 [7]	0	0			1		1	1	0	1	1	1				1	0	0	1	0	8	57%
6	Burnett 2012 [8]	0	0			0		1	1	0	1	1	1				1	0	1	1	0	8	57%
7	Chaganti 2010 [9]	0	0			1		1	1	0	1	0	1				1	0	1	1	1	9	64%
8	Chiba 2011[10]	0	0			0		1	1	1	1	0	1				1	0	1	1	0	8	57%
9	Chiba 2012 [11]	0	0			1		1	1	0	1	0	1				1	0	1	1	0	8	57%
10	Crema 2010 [12]	0	0			1		1	1	0	1	1	1				0	0	1	0	0	7	50%
11	Dawson 2013 [13] abstract	0	0			1		0	0	0	0	0	0				0	0	0	0	1	2	14%
12	Ding 2005 [14]	0	0			1		1	1	0	1	1	1				0	0	1	1	1	9	64%
13	Dore [15] 2009	0	0			1		1	1	0	1	1	1				1	0	1	1	1	10	71%
14	Driban [16] 2011	0	0			1		1	1	0	1	1	0				1	0	1	1	1	9	64%
15	Driban [17]2011	0	0			1		1	1	0	1	1	1				1	0	1	1	1	10	71%
16	Eckstein [18] 2010	0	0			1		1	1	0	1	0	1				0	0	1	0	0	6	43%
17	Felson 2001 [19]	0	0			1		1	1	0	1	0.5	1				0	0	1	1	0	7.5	54%
18	Fernandez-Madrid1994 [20]	0	0			1		0	0	0	1	0.5	1				1	0	1	1	0	6.5	46%
19	Frobell 2010 [21]	0	0			1		1	1	0	1	0	1				0	0	1	1	1	8	57%
20	Gosvig 2010 [22]	0	0			0		1	1	0	1	0	1				0	0	1	1	1	7	50%
21	Gudbergsen [23]	0	0			1		1	1	0	1	0	1				0	0	1	1	1	8	57%
22	Guymer 2007 [24]	0	1			1		1	1	0	1	1	1				0	0	1	1	1	10	71%
23	Haugen 2012 [25]	0	0			1		1	1	0	1	1	1				1	0	1	1	0	9	64%
24	Haugen 2013 [26]	0	0			0		1	1	0	1	0	1				0	0	1	1	0	6	43%
25	Haugen 2012 [27]	0	0			1		1	1	0	1	1	1				1	0	1	1	0	9	64%
26	Haverkamp 2011 [28]	0	0			1		1	1	0	1	0	1				0	0	0	1	0.5	6.5	46%
27	Hayashi [29]	0	0			1		0	1	0	1	1	1				1	0	1	1	0	8	57%

No.	Cross-sectional Study	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Total	%
28	Hayes [30]	0	0			1		1	1	0	1	0.5	1				1	0	1	1	0	8.5	61%
29	Hernandez-Molina 2008 [31]	0	0			1		1	1	0	1	1	1				1	0	1	1	1	10	71%
30	lp [32]	0	0			1		1	1	0	1	0.5	1				1	0	1	1	1	9.5	68%
31	Jones 2004 [33]	0	0			0		1	1	0	1	1	1				0	0	0	1	1	7	50%
32	Kalichman [34] 2007	0	0			1		1	1	0	1	0	1				1	0	1	1	1	9	64%
33	Kalichman [35] 2007	0	0			1		1	1	0	1	0	1				0	0	1	1	1	8	57%
34	Kim [36]	0	0			0		1	1	0	1	1	1				1	0	1	1	1	9	64%
35	Knupp 2009 [37]	0	0			0		1	1	0	1	1	1				1	0	1	1	0	8	57%
36	Kornaat [38] 2006	0	0			1		1	1	0	1	1	1				1	0	1	1	1	10	71%
37	Kornaat [39] 2005	0	0			1		1	1	0	1	1	1				0	0	1	1	0	8	57%
38	Kraus 2009 [40]	0	0			1		1	1	0	1	1	1				1	0	1	1	1	10	71%
39	Kraus 2013 [41]	0	0			1		1	1	0	1	1	1				1	0	1	1	1	10	71%
40	Kumar [42]	1	0			1		1	1	0	1	1	1				1	0	1	1	0	10	71%
41	Lindsey [43]	0	0			1		1	1	0	1	1	1				1	0	1	1	0	9	64%
42	Link [44] 2003	0	0			0		1	1	0	1	0.5	1				1	0	1	1	0	7.5	54%
43	Lo 2005 [45]	0	0			1		1	1	0	1	1	1				0	0	1	0	0	7	50%
44	Lo [46] 2009	0	0			1		1	1	0	1	1	1				1	0	1	1	1	10	71%
45	Lo [47] 2012	0	0			1		1	1	0	1	1	1				1	0	1	1	0	9	64%
46	Lo [48] 2006	0	0			1		1	1	0	1	1	1				1	0	1	1	1	10	71%
47	Macfarlane 1993 [49]	0	0			0		1	1	0	1	1	1				1	0	1	1	0	8	57%
48	Maksymowych 2014 [50]	0	0			1		1	1	0	1	1	1				1	0	1	1	0	9	64%
49	McCauley 2001 [51]	0	0			0		1	1	0	1	0	1				0	0	0	0	0	4	29%
50	McCrae 1992 [52]	0	0			1		1	1	0	1	0	1				0	0	1	1	0	7	50%
51	Meredith 2009 [53]	0	1			0		1	1	0	1	0	1				0	0	1	1	0	7	50%
52	Moisio [54] 2009	0	0			1		1	1	0	1	1	1				1	0	0	1	1	9	64%
53	Neumann 2007 [55]	0	0			0		1	1	0	1	0	1				0	0	1	1	0	6	43%
54	Ochiai [56] 2010	0	0			0		0	1	0	1	1	1				1	0	1	1	0	7	50%
55	Okazaki [57] 2014	0	0			0		1	1	0	1	0	1				1	0	1	1	0	7	50%
56	Ratzlaff [58] 2013	0	0			1		1	1	0	1	1	1				1	0	1	1	1	10	71%
57	Ratzlaff [59] 2014	0	0			1		1	1	0	1	1	1				1	0	1	1	0	9	64%
58	Reichenbach 2008 [60]	0	0			1		1	1	0	1	0	1				0	0	1	0	0	6	43%

No.	Cross-sectional Study	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Total	%
59	Reichenbach 2011 [61]	0	1			1		1	1	0	1	0	1				0	0	1	1	1	9	64%
60	Roemer [62] 2012	0	0			1		1	1	0	1	0	1				0	0	1	1	1	8	57%
61	Scher 2008 [63]	0	0			0		1	1	0	1	0	1				0	0	1	1	0	6	43%
62	Sengupta [64] 2006	0	0			1		1	1	0	1	1	1				1	0	1	1	1	10	71%
63	Sharma [65] 2014	0	0			1		1	1	0	1	1	1				1	0	1	1	1	10	71%
64	Sowers 2003 [66]	0	0			1		1	1	0	1	0.5	1				0	0	1	1	0	7.5	54%
65	Stefanik [67] 2014	0	0			1		1	1	0	1	1.0	1				1	0	1	1	1	10	71%
66	Stefanik [68] 2012	0	0			1		1	1	0	1	0	1				0	0	1	1	1	8	57%
67	Stehling 2010 [69]	0	1			1		1	1	0	1	1	1				0	0	1	1	1	10	71%
68	Torres 2006 [70]	1	0			1		1	1	0	1	0.5	1				0	1	1	1	0	9.5	68%
69	Wang 2005 [71]	0	0			0		1	1	0	1	1	1				0	0	1	1	1	8	57%
70	Zhai 2006 [72]	1	0			1		1	1	0	1	1	1				1	0	1	1	1	11	79%
																				Me	an	8.3	59%
																				M	ax	14	

											Qua	ality S	corin	ig Cr	iteria	T		T		Π	ľ		
No.	Cohort Study	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	total	%
1	Agricola 2013 [73]	0	1		1	1		1	1	0	1	1	1	0	1	0	0	0	1	1	1	12	67%
2	Agricola 2013 [74]	0	1		1	1		1	1	0	1	1	1	0	1	0	0	0	1	1	1	12	67%
3	Agricola 2013 [75]	0	1		1	1		1	1	0	1	1	1	0	1	0	1	0	1	1	1	13	72%
4	Bruyere[76] 2003	0	0		0	0		1	1	0	1	0	1	0	0	0	1	0	1	1	1	8.0	44%
5	Carnes [77] 2012	0	0		0	1		1	1	0	1	1	1	0	0	0	0	0	1	1	1	9.0	50%
6	Carrino [78] 2006	0	0		0	0		0	1	0	1	0	1	0	0	0	0	0	1	0	0	4.0	22%
7	Cicuttini 2004 [79]	0	0		1	1		1	1	0	1	1	1	1	1	1	1	0	1	1	1	14	78%
8	Crema 2013 [80]	0	0		0	1		1	1	0	1	0	1	0	0	0	0	0	1	1	1	8.0	44%
9	Crema 2014 [81]	1	0		0	1		1	1	0	1	1	1	0	0	0	0	0	1	1	1	10.0	56%
10	Davies-Tuck [82] 2008	0	0		0	1		1	1	0	1	1	1	0	0	1	0	0	1	1	1	10.0	56%
11	Davies-Tuck 2010 [83]	0	1		0	1		1	1	0	1	1	1	0	0	1	0	0	1	1	1	11	61%
12	De-Lange 2014 [84]	0	0		0	1		1	1	0	1	0	1	1	1	0	1	0	1	1	1	11	61%
13	Dieppe 1993 [85]	0	0		0	1		1	1	0	1	0	1	0	1	0	1	0	1	1	0	9.0	50%
14	Ding 2006 [86]	1	0		1	1		1	1	0	1	1	1	0	0	0	0	0	1	1	1	11	61%
15	Ding [87] 2008	1	0		0	1		1	1	0	1	1	1	1	0	1	0	1	1	1	1	13	72%
16	Dore 2010 [88]	1	0		0	1		1	1	0	1	1	1	0	0.5	0	1	0	1	1	1	11.5	64%
17	Dore 2010 [89]	0	0		0	1		1	1	0	1	1	1	0	0	0	0	0	1	1	1	9.0	50%
18	Dore 2010 [90]	0	0		0	1		1	1	0	1	1	1	0	0	0	0	0	1	1	1	9.0	50%
19	Driban [91] 2011	0	0		0	1		1	1	0	1	1	1	0	0	0	0	0	1	1	1	9.0	50%
20	Driban [92] 2012	0	0		0	1		0	1	0	1	0	1	0	0	0	0	0	0	1	0	5.0	28%
21	Driban [93] 2013	0	0		0	1		1	1	0	1	1	1	0	1	0	1	0	1	1	1	11.0	61%
22	Everhart [94] 2014	0	0		0	1		1	1	0	1	1	1	0	1	0	1	0	1	1	1	11.0	61%
23	Felson [95] 2003	0	0		1	1		1	1	1	1	1	1	1	0	1	1	1	1	1	1	15.0	83%
24	Foong [96] 2014	0	0		0	1		1	1	0	1	1	1	0	1	1	1	0	1	1	1	12.0	67%
25	Guermazi [97] 2014	0	0		0	1		1	1	0	1	0	1	0	1	0	1	0	1	1	1	10.0	56%
26	Haugen [98] 2014	0	0		0	1		1	1	0	1	1	1	0	1	0	1	0	1	1	1	11.0	61%
27	Haugen [99] 2014	0	0		0	1		1	1	0	1	1	1	0	1	0	1	0	1	1	1	11.0	61%
28	Hernandez-Molina [100]2008	0	0		0	1		0	1	0	1	1	1	0	0	0	0	0	1	1	1	8.0	44%

SUPPLEMENTARY TABLES 4: QUALITY SCORING RESULTS COHORT STUDIES

No.	Cohort Study	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	total	%
29	Hochberg 2014 [101]	0	0		1	0		1	1	0	1	1	1	0	1	0	1	0	1	1	1	11.0	61%
30	Hudelmaier [102] 2013	0	0		0	1		1	1	0	1	1	1	0	0	0	1	0	1	1	0	9.0	50%
31	Hunter [103] 2006	0	0		0	1		1	1	0	1	1	1	0	0	0	0	0	1	1	0	8.0	44%
32	Kornaat [104] 2007	0	0		0	1		1	1	0	1	1	1	0	0	0	1	0	1	1	1	10.0	56%
33	Koster 2011 [105]	0	0		0	1		0	1	0	1	0	1	1	0	1	0	0	1	1	0	8	44%
34	Kothari [106] 2010	1	0		0	1		1	1	0	1	0	1	0	0	0	0	0	1	1	1	9.0	50%
35	Kubota[107] 2010	0	0		0	1		0	1	0	1	0	1	1	0	0	0	0	1	1	0	7.0	39%
36	Liu 2014 [108]	0	1		1	0		1	1	0	1	1	1	1	0	0	0	0	0	1	0	9.0	50%
37	Lo [109] 2012	0	0		0	1		1	1	0	1	0	1	0	0	0	1	0	1	1	1	9.0	50%
	Madan-Sharma [110]																						
38	2008	0	0		0	1		1	1	0	1	0.5	1	0	0	0	0	0	1	1	1	8.5	47%
39	Mazzuca 2004 [111]	0	0		1	1		1	1	0	1	1	1	0	0	0	1	0	1	1	1	11	56%
40	Mazzuca 2005 [112]	0	0		1	1		1	1	0	1	1	1	0	0	0	1	0	1	1	0	10	56%
41	Moisio [54] 2009	0	0		0	1		1	1	0	1	1	1	0	0	0	1	0	1	1	1	10.0	56%
42	Parsons [113] 2014	0	0		0	1		1	1	0	1	0	1	0	0	0	1	0	1	1	1	9.0	50%
43	Pelletier [114] 2007	0	0		0	1		1	1	0	1	1	1	0	0	0	0	0	1	1	1	9.0	50%
44	Raynauld [115] 2008	0	0		0	1		1	1	0	1	1	1	0	0	0	0	0	1	1	1	9.0	50%
45	Raynauld 2011 [116]	0	0		0	1		1	1	0	1	1	1	0	1	0	1	0	1	1	1	11.0	61%
46	Raynauld 2013 [117]	0	0		0	1		1	1	0	1	1	1	0	1	0	1	0	1	1	1	11.0	61%
47	Roemer [118] 2009	0	0		0	1		1	1	0	1	1	1	0	0	0	0	0	1	1	1	9.0	50%
48	Roemer [119] 2009	0	0		0	1		1	1	0	1	0	1	0	0	0	0	0	1	1	1	8.0	44%
49	Roemer [120] 2012	0	0		0	1		1	1	0	1	0	1	0	0	0	0	0	1	1	1	8.0	44%
50	Scher 2008 [63]	0	1		0	1		1	1	0	1	1	1	0	0	0	1	0	1	1	0	10	56%
51	Sowers [121] 2011	0	0		0	1		1	1	0	1	0.5	1	0	1	0	1	0	1	1	0	9.5	53%
52	Tanamas [122] 2010	0	0		0	1		1	1	0	1	1	1	0	0	1	0	0	1	1	0	9.0	50%
53	Tanamas [123] 2010	0	0		0	1		1	1	0	1	1	1	0	0	0	0	0	1	1	0.5	8.5	47%
54	Wildi [124] 2010	0	0		0	1		1	1	0	1	1	1	0	0	0	0	0	1	1	1	9.0	50%
55	Zhang [125] 2011	0	0		0	1		1	1	0	1	1	1	0	0	0	1	0	1	1	0	9.0	50%
	<u> </u>																				mean	9.7	54%
																					Max	18.0	

											Qua	ality S	corin	g Crit	eria								
No.	Case control study	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	total	%
1	Aitken 2013 [126]	0	0	0		0	0	1	1	0	1	0	1		1		0	0	1	1	1	8	47%
2	Barr 2012 [127]	0	1	1		1	0	1	1	0	1	1	1		1		1	0	1	1	1	13	76%
3	Bennell 2008 [128]	0	0	0		1	0	1	1	0	1	1	1		0		1	0	1	1	1	10	59%
4	Bowes 2013 [129]	0	1	1		1	0	1	1	0	1	0	1		1		1	0	1	1	1	12	71%
5	Doherty 2008 [130]	0	0	0		1	0	1	1	0	1	1	1		0		0	0	1	1	1	9	53%
6	Felson 2007 [131]	0	1	1		1	0	1	1	0	1	1	1		0		1	0	1	1	1	12	71%
7	Hunter 2013 [132]	0	0	1		1	0	1	1	0	1	0	1		1		1	0	1	1	0	10	59%
8	Javaid 2012 [133]	0	0	1		1	1	1	1	0	1	1	1		0		0	0	1	1	0	10	59%
9	Javaid 2010 [134]	0	1	1		1	1	1	1	0	1	1	1		0		1	0	1	1	1	13	76%
10	Neogi 2013 [135]	0	1	1		1	0	1	1	0	1	0	1		0		1	0	1	1	1	11	65%
11	Neogi 2009 [136]	0	0	1		1	1	1	1	0	1	0	1		0		0	0	1	1	1	10	59%
12	Nicholls 2011 [137]	0	0	1		1	1	1	1	0	1	1	1		1		1	0	0	1	1	12	71%
13	Ratzlaff 20148 [138]	0	1	1		0	0	1	1	0	1	1	1		0		1	0	1	1	1	11	65%
14	Stahl 2011 [139]	0	0	1		1	0	1	1	0	1	1	1		0		0	0	1	0	0	8	47%
15	Wluka 2005 [140]	0	0	0		1	0	1	1	0	1	1	1		0		0	0	0	1	1	8	47%
16	Zhao 2010 [141]	1	0	0		1	0	1	1	0	1	0.5	1		0		0	1	1	1	0	9.5	56%
																					mean	10.1	59%
																					max	17	

SUPPLEMENTARY TABLES 5: QUALITY SCORING RESULTS CASE-CONTROL STUDIES

SUPPLEMENTARY TABLES 6: - A DESCRIPTION OF THE INCLUDED STUDIES, THE RELATIONSHIPS EXAMINED AND THE QUALITY OF EACH PAPER

Author of longitudinal studies	Patient number (n)	Study demographics	Subchondral bone feature assessed	Structural progression or severity / pain measure	Statistical analysis	Quality (score %)
	-	Knee co	hort studies			
Bruyere 2003 [76]	56	Knee OA (ACR criteria), gender distribution unknown, mean age 65 yrs	Subchondral tibial bone BMD (DXA) (C)	Minimum medial JSW TFJ after one year (L)	Multiple regression	Low (44)
Carnes 2012 [77]	395	Randomly selected older adults with over 52% knee ROA. 50% female, mean age 63 yrs. TASOAC	MRI tibial Bone area (C)	Semi-quantitative cartilage defect progression TFJ (L)	Logistic regression	Low (50)
Carrino 2006 [78]	32	Chronic knee pain with MRI features of OA. 63% female, mean age 51 yrs. USA	Crude presence of MRI BML, bone cyst TFJ (C) and (L)	Graded cartilage defect TFJ (L)	Crude comparison	Low (22)
Cicuttini 2004 [79]	113	Symptomatic, clinical (ACR) knee OA with mild to moderate TFJ ROA, mean age 64yrs, mean BMI 29, 58% females. Australia	Baseline Quantitative MRI tibial bone area (C)	TKR incidence (L) over 4 years	Logistic regression	High (78)
Crema 2013 [80]	1351	Knee OA or at high risk of it. 39% ROA, 62% female, mean age 62 yrs. MOST	MRI Incident BML (WORMS) TFJ (L)	Progressive (30 month) semi- quantitative cartilage defect (WORMS) TFJ (L)	Logistic regression	Low (44)
Crema 2014 [81]	163	Clinical knee OA, 37% knee ROA, 54% female, Mean age 58 yrs.	MRI BML (semi- quantitative) (C) (all regions)	Cartilage loss (semi-quantitative) (L) (all regions)	Logistic regression	High (56)
Davies-Tuck 2008 [82]	117	ACR knee OA. 58% female, mean age 64 yrs. Australia	Baseline MRI tibial bone plateau area (C) TFJ	Progressive semi- quantitative cartilage defect score (L) medial and lateral TFJ	Linear regression	High (56)

Author of longitudinal studies	Patient number (n)	Study demographics	Subchondral bone feature assessed	Structural progression or severity / pain measure	Statistical analysis	Quality (score %)
Davies-Tuck 2010 [83]	271	No clinical knee OA (ACR clinical criteria) and no current or historic knee pathology, mean age 58yrs, 65% female, mean BMI 25. Melbourne.	Incident BML (new BML after 2 years with no BMLs at baseline) MRI TFJ (L)	Progression in semi-quantitative MRI cartilage defects score after 2 years. TFJ (L)	Logistic regression	High (61)
De-Lange 2014 abstract [84]	133	Symptomatic OA knee. ROA Knee (>50%), 80% female, mean age 60 yrs. GARP study	MRI osteophytes (medial or lateral TFJ) (C)	Radiographic JSN progression (OARSI) (L)	Generalised estimation equation models	High (61)
Dieppe 1993 [85]	94	Symptomatic and ROA knee (100%). 96% women, mean age 64 yrs, mean BMI 26. Referrals to hospital rheumatology unit	Baseline late and or early-phase subchondral bone scintigraphy signal (C)	Progression of JSN by ≥2mm or knee operation after 5 years (L)	Pearson Chi squared test	Low (50)
Ding 2006 [86]	325	Mostly no ROA knee (17% ~ KL =1), 58% female, Mean age 45 yrs. Mean BMI 27. Offspring study	Baseline MRI tibial bone area (C) TFJ	Change in semi- quantitative MRI cartilage defect scores over 2.3 yrs (L) TFJ	Logistic regression	High (61)
Ding 2008 [87]	252	Randomly selected adults with 15% knee ROA. 58% female, mean age 45 yrs.	Baseline MRI tibial bone area (C) TFJ	Progressive Cartilage volume loss (L) TFJ	Multivariable linear regression	High (72)
Dore 2010 [88]	395	Symptomatic knee OA, knee ROA (58%). 51% female, mean age 63 yrs, mean BMI 28. TASOAC	MRI BML size (L) regional or whole TFJ over 2.7 years	Change in WOMAC pain (L) over 2.7 years Incident TKR over 5 years (L)	Mixed effects models	High (64)
Dore 2010 [89] 12(6)	405	Prevalent knee OA, 50% female, Mean age 63 yrs. TASOAC	Baseline semi- quantitative BML severity (C) TFJ	Ipsi-compartmental cartilage volume loss (L)	Logistic regression and generalised estimating equations	Low (50)

Author of longitudinal studies	Patient number (n)	Study demographics	Subchondral bone feature assessed	Structural progression or severity / pain measure	Statistical analysis	Quality (score %)
Dore 2010 [90]	341	Older adult cohort. Right knees only. Mean age 63 yrs, ~48% female, mean BMI 27. TASOAC	Baseline proximal tibial BMD, DXA Baseline tibial bone area MRI (C)	Increase or no increase in semi- quantitative MRI cartilage defects over 2.7 years (L)	Logistic regression	Low (50)
Driban 2011 [91]	44	ACR knee OA(100%). 100% knee ROA, , 52% female, Mean age 65 yrs. Clinical trial of Vitamin D	Baseline 3D BML volume (C) and 24 month change in 3D BML volume (L) in TFJ compartments	24 month change in ipsicompartmental full thickness cartilage lesion area (L)	Multiple linear regression, Spearman correlations	Low (50)
Driban 2012 [92] Abstract	38	Knee ROA (100%). 66% female, mean age 61 yrs. OAI	MRI BML volume change (L) TFJ over 24 months	Change in cartilage thickness and denuded area of bone (L) TFJ over 24 months	Pearson correlation coefficients	Low (28)
Driban 2013 [93]	404	Prevalent ROA knee (71%) 49% female, mean age 63 yrs. OAI	Knee baseline BML volume (C) BML volume 48 month change (L) (TFJ)	48 month change in WOMAC pain (L) and OARSI JSN grade (L) (TFJ)	Multiple linear regressions & logistic regression	High (61)
Everhart 2014 [94]	1338	Prevalent ROA knee (74%) 60% female, Mean age 62 yrs. OAI	Baseline TFJ subchondral surface ratio of medial and lateral TFJ compartments (C)	Incident frequent knee pain at 48 months or radiographic progression of lateral or medial knee TFJ OA at 48 months (L)	Logistic regression	High (61)
Felson 2003	223	ACR knee OA and 75% ROA. 42%	Baseline	OARSI JSN grade	Generalised	High

Author of longitudinal studies	Patient number (n)	Study demographics	Subchondral bone feature assessed	Structural progression or severity / pain measure	Statistical analysis	Quality (score %)
[95]		female, mean age 66 yrs. BOKS	presence of BML in medial or lateral TFJ (C)	progression of TFJ (L)	estimating equations	(83)
Foong 2014 [96]	198	17% ROA knee, 42% female, Mean age 47 yrs. Offspring study	Change in quantitative BML size (L) and incident BMLs (L) In all three knee compartments over 8 years	WOMAC Knee pain severity over 8 years (L)	Linear regression	High (67)
Guermazi 2014 Abstract [97]	196	Knee ROA (24%), 62% female, mean age 60 yrs	Semi-quantitative BML score WORMS (C) TFJ	Cartilage thickness loss over 30 months (L)	multivariable logistic regression,	High (56)
Hernandez- Molina 2008 [100]	258	ACR knee OA and 77% ROA. 43% female, mean age 67 yrs. BOKS	Crude presence of central BMLs on MRI (C) TFJ	Semi-quantitative cartilage defect (WORMS) (L) TFJ	Logistic regression	Low (44)
Hochberg 2014 Abstract [101]	1024	100% Symptomatic and radiographic knee OA (the 'progressor' arm). OAI	Semi-quantitative MRI baseline femoral condyle BML size (C)	Incident TKR over 6 years (L)	Multivariable Cox proportional hazard models	High (61)
Hudelmaier 2013 [102] abstract	899	Prevalent ROA knee, ROA 60%, 60% women, mean age 62 yrs, OAI	Annual change in Segmented MRI knee bone area (L)	Baseline KL grade (C)	Non-paired t-test	Low (50)
Hunter 2006 [103]	217	ACR knee OA. 44% female, mean age 66 yrs. BOKS	Change in MRI semi-quantitative BML score (L) TFJ	Change in semi- quantitative cartilage defect score (WORMS) (L) TFJ	Generalised estimating equations	Low (44)
Kornaat 2007 [104]	182	OA knee symptoms (38%) and ROA (38%). 80% female, mean age 59 yrs. GARP	Semi-quantitative MRI BML change over 2 years (L) TFJ	Mean WOMAC pain over 2 years	Linear mixed models	High (56)
Koster 2011	117	One year follow up after acute knee	Baseline BML	Any progression in	Logistic	Low

Author of longitudinal studies	Patient number (n)	Study demographics	Subchondral bone feature assessed	Structural progression or severity / pain measure	Statistical analysis	Quality (score %)
[105]		trauma in primary care, 12% ROA knee, mean age 41yrs, 43% female, mean BMI 26, HONEUR	presence (C) TFJ	KL grade over 1 year (L) TFJ	regression	(44)
Kothari 2010 [106]	177	Some WOMAC dysfunction and >74% ROA knee, 79% female, mean age 66 yrs. MAK-2	Semi-quantitative baseline MRI BML, bone cyst and attrition (WORMS) (C) TFJ	Semi-quantitative cartilage defect score change over 2 years (WORMS) (L) TFJ.	Logistic regression, with generalised estimating equations	Low (50)
Kubota 2010[107]	122	Clinical and ROA (80%) of the knee. >90% female, mean age 68 yrs. Japan	MRI BML semi- quantitative volume score change over 6 months (L) TFJ	KL grade progression over 6 months (L) TFJ	Mann-Whitney U- test	Low (39)
Lo 2012 [109]	497	52% ROA knee, 47% female , Mean age 64 yrs. OAI	DXA measured medial:lateral periarticular BMD and MRI BVF, trabecular number, thickness and spacing (C)	OARSI medial TFJ JSN grade progression between 24 and 48 months (L)	Logistic regression	Low (50)
Liu 2014 S470 Abstract [108]	128	Medial knee OA, KL grade 4. Japan	Baseline Semi- quantitative osteophyte score (WORMS) (C) TFJ	Incident TKR at 6 months follow up (L)	Mann Whitney-U test & ROC curve	Low (50)
Madan-Sharma 2008 [110]	186	Prevalent ROA knee (40%). 81% female, mean age 60 yrs. GARP	Baseline MRI semi-quantitative BML, bone cyst (C) TFJ	OARSI medial TFJ JSN grade progression over 2 years (L) TFJ	Logistic regression	Low (47)
Mazzuca 2004 [111]	86	100% female, mean age 55 yrs, mean BMI 37.	Baseline late- phase bone scintigraphy (adjusted for	Progression of minimum JSN of the medial TFJ from baseline to 30	Pearson correlation coefficients	High (56)

Author of longitudinal studies	Patient number (n)	Study demographics	Subchondral bone feature assessed	Structural progression or severity / pain measure	Statistical analysis	Quality (score %)
			normal bone uptake) of the medial tibia and whole knee (C)	months (L)		
Mazzuca 2005 [112]	174	100% female, mean age 56 yrs, mean BMI 36. A placebo controlled trial of doxycycline	Baseline late- phase bone scintigraphy (adjusted for normal bone uptake) of the medial tibia and whole knee (C)	Progression of minimum JSN of the medial TFJ from baseline to 30 months (L)	multiple linear regression	High (56)
Moisio 2009 [54]	168	Some WOMAC dysfunction and 90% ROA knee. 78% female, mean age 66 yrs. MAK-2	Baseline MRI semi-quantitative BML score (C) TFJ and PFJ	Incident frequent knee pain 2 years after baseline (L)	Logistic regression	High (56)
Parsons 2014 Abstract [113]	559	Knee ROA (100%), 73% female, mean age 63 yrs. SEKOIA	Baseline semi- quantitative BML score (C)	Annual TFJ JSN (L)	Linear regression	Low (50)
Pelletier 2007 [114]	107	100% radiographic OA knee, 64% female, Mean age 62 yrs. Bisphosphonate Trial	Regional semi- quantitative baseline BML score (medial or lateral TFJ) (C)	Regional cartilage volume over 24 months (medial or lateral TFJ) (L)	Multivariate regression	Low (50)
Raynauld 2008 [115]	86	64% female, Mean age 61 yrs. Trial of bisphosphonate	Change in BML size (L) at 24 months in TFJ	Medial cartilage volume loss (L) at 24 months in TFJ	Multivariate linear regression	Low (50)
Raynauld 2011 [116]	123	Symptomatic knee OA of the medial TFJ, 65% female, mean age 61 yrs, mean BMI 32.	Baseline semi- quantitative BML score (C) TFJ	Incidence of TKR over 3 years (L)	Logistic regression	High (61)
Raynauld 2013 [117]	57	Patients from a chondroitin trial 81% female, mean age 63, mean BMI 31.	Baseline semi- quantitative BML WORMS score (C)	Incident TKR (L) 4 year follow up Time to TKR	Logistic regression, Cox regression	High (61)

Author of longitudinal studies	Patient number (n)	Study demographics	Subchondral bone feature assessed	Structural progression or severity / pain measure	Statistical analysis	Quality (score %)
			Medial TFJ			
Roemer 2009 [118]	395	Knee OA or at high risk of it. 33% ROA. 68% female, mean age 63 yrs. MOST	Change in MRI semi-quantitative BML size over 30 months (WORMS) (L) TFJ and PFJ	Progression in semi-quantitative cartilage defects in (WORMS) over 30 months (L) TFJ and PFJ	Logistic regression	Low (50)
Roemer 2009 [119]	347	Knee OA or at high risk of it. 14% ROA. 65% female, mean age 64 yrs. MOST	Baseline MRI BML crude presence or absence (WORMS) (L) TFJ	Semi-quantitative cartilage defect progression over 30 months (WORMS) (L) TFJ	Logistic regression	Low (44)
Roemer 2012 [120]	177	Chronic knee pain, 71% knee ROA, 49% female. Mean age 52 yrs. Glucosamine trial	Semi-quantitative BML (WORMS) TFJ and PFJ (C)	Semi-quantitative cartilage score 6- month progression TFJ and PFJ (L)	Logistic regression	Low (44)
Sowers 2011[121]	363	Minor OA symptoms with18% ROA knee. 100% female, median age 45 yrs. SWAN	Semi-quantitative MRI BML, osteophyte, bone cyst size in TFJ (C)	Progression in KL grade and WOMAC pain score (11 years follow up) (L)	Chi-square tests or Fisher exact tests. Logistic regression	Low (53)
Tanamas 2010 [123]	109	ACR knee OA, 73% ROA. 40% female, mean age 63 yrs. Australia	Semi-quantitative change in MRI Bone cyst or BML size (L)	Knee cartilage volume loss over 2 years (L) TFJ Incident TKR over 4 years	Logistic regression	Low (47)
Tanamas 2010 [122]	109	ACR knee OA, 72% ROA. 50% female, mean age 63 yrs, mean BMI 29. Australia	Baseline semi- quantitative MRI BML size (C)	Cartilage volume change over 2 years (L) TFJ Annual change in WOMAC pain(L) Incident TKR over 4 years	Logistic regression	Low (50)

Author of longitudinal studies	Patient number (n)	Study demographics	Subchondral bone feature assessed	Structural progression or severity / pain measure	Statistical analysis	Quality (score %)			
Wildi 2010 [124]	161	Symptomatic medial TFJ OA knee (ACR criteria). 100% ROA knee, 66% female, Licofelone trial	24 month change in regional TFJ BML score WORMS (L)	24 months change in WOMAC pain (L) or regional change in cartilage volume (L)	Multivariate regression	Low (50)			
Zhang 2011 [125]	570	Patients with knee OA or at high risk of it. 41% ROA knee. 68% female, mean age 62 yrs. MOST	Semi-quantitative change in MRI BML size (L) TFJ over 30 months	Incidence of frequent knee pain, and categorical severity (L) over 30 months	Logistic regression	Low (50)			
Knee case-controls studies									
Aitken 2013 [126] Abstract	220	57% female, Mean age 45 yrs. Prevalence of ROA unknown. Offspring	Semi-quantitative BMLs tibia, femur & patella (C)	Cartilage volume and defect score Tibia and femur (L)	Linear regression	Low (47)			
Bowes 2013 [129]	2197	Cases of clinical knee OA (100% ROA, n=1312), control healthy knees (0% ROA, n=885). 56% female, mean age 61 yrs. OAI dataset	Change in segmented MRI 3D Bone area over 4 year (L)	KL grade defined ROA knee (C)	ANCOVA model	High (71)			
Bennell 2008 [128]	116	Cases of ACR medial knee OA (100% medial TFJ ROA) (n=75), asymptomatic control knees (n=41). 54% female, mean age 64 yrs. Australia	Volumetric BMD of tibial subchondral trabecular bone (qCT) (C)	KL grade (C)	Generalised linear models	Low (59)			
Felson 2007 [131]	330	Patients at high risk of knee OA , cases with incident pain (n=110, ROA 30%), controls without pain (n=220,ROA 20%); 66%female, mean age 63 yrs. MOST	Semi-quantitative MRI BML size increase (WORMS) (L) TFJ & PFJ	Incident frequent pain at 15 months (L)	Multiple logistic regression,	High (71)			
Hunter 2013 Abstract [132]	636	636 knees at risk of OA (ROA=0% at baseline). Cases of incident ROA n=318, Controls without incident ROA n=318, 67% female. Mean age 60 yrs. OAI	MRI bone area 8 knee regions (L)	Incident ROA knee (KL grade ≥2) (TFJ) (L)	Discrete-time Cox Proportional Hazards Regression	Low (59)			
Javaid 2012	636	Patients with prevalent ROA. Cases	Baseline Semi-	Presence of	Conditional and	Low			

Author of longitudinal studies	Patient number (n)	Study demographics	Subchondral bone feature assessed	Structural progression or severity / pain measure	Statistical analysis	Quality (score %)
[133]		have painful knees (n= 546), controls have no knee pain (n=90); 65% female, mean age 73 yrs. Health aging and body composition study	quantitative MRI BML, bone cyst and attrition size (WORMS) (C) TFJ & PFJ	frequent knee pain (C) after 2 years	marginal logistic regression	(59)
Javaid 2010 [134]	155	Clinical knee OA, cases with incident pain (n=33), controls without pain (n=122); 67% female, mean age 59 yrs. ROA 0%; MOST	Baseline semi- quantitative MRI BML, osteophyte, bone cyst size (WORMS) (C) TFJ & PFJ	Incident frequent knee pain after 15 months (L)	Logistic regression	High (76)
Neogi 2013 [135]	531	Incident knee TFJ ROA cases (n=178), controls did not develop ROA (n=353); 62% female, mean age 61 yrs. OAI dataset	MRI 3D bone shape (Tibia, Femur and patella) (C)	Incident TFJ ROA KL grade ≥2 (L)	Conditional Logistic regression	High (65)
Neogi 2009 [136]	4446	Clinical knee OA. Within-knee subregion cases (n=973) had cartilage loss, controls (n=3473) had not. 64% female, mean age 63 yrs; ROA 59% MOST	Baseline semi- quantitative MRI Bone attrition size (WORMS) (C) TFJ	Cartilage defects progression (WORMS) after 30 months TFJ	Logistic regression	Low (59)
Ratzlaff 2014 [138]	278	59% female, mean age 64, mean BMI 30. 138 cases of TKR and 138 ROA matched controls. OAI	Total tibial BML volume 12 and 24 months before TKR and interval change between 12 and 24 (C) and (L)	Incident TKR (L)	Conditional logistic regression	High (65)
Scher 2008 [63]	65	Patients with OA knee based upon radiography (>50% ROA), 54% female, mean age 51 yrs. USA	Presence of any baseline semi- quantitative MRI BMLs (C)	Incident TKR (L) over 3 years	Generalised estimating equations	High (56)
Stahl 2011 [139]	60	Clinical and 100% ROA knee cases (n=30) ; controls – healthy knees ROA 0% (n=30); All female, mean	Semi-quantitative MRI BML size (WORMS) (L)	Semi-quantitative Cartilage defect size (L) TFJ	Generalised estimating equations	Low (47)

Author of longitudinal studies	Patient number (n)	Study demographics	Subchondral bone feature assessed	Structural progression or severity / pain measure	Statistical analysis	Quality (score %)
		age 58 yrs. USA	TFJ	WOMAC score		
Wluka 2005 [140]	149	ACR knee OA cases (n=68), controls (n=81) without OA; 54% female, mean age 64 yrs. Australia	Change in MRI Tibial bone area (L)	Baseline radiographic JSN (C)	Logistic regression	Low (47)
Zhao 2010 [141]	38	Clinical and ROA cases (n=24), control (n=14) knees (KL=0); 54% female, mean age 52 yrs	MRI BML volume (C) TFJ	Overlying cartilage defect progression after one year (WORMS) (L) TFJ WOMAC pain	Student's t test	Low (56)

Author of Cross sectional studies	Patient number (n)	Study demographics	Subchondral bone feature assessed (method) region	Structural progression / pain outcome (method) region	Statistical analysis	Quality (score%)			
Knee cross-sectional studies									
Ai 2010 [3]	28	Clinical knee OA. 55% ROA, 57% female, mean age 61 yrs. China	Semi-quantitative MRI BML and osteophytes (C)	Pain verbal rating scale (Likert) (C)	Fisher exact test	Low (57)			
Akamatsu 2014 [4] Abstract	192	Varus ROA Knee 94%, 100% female, mean age 70 yrs. Japan	BMD (DXA) (C) (medial tibia & femoral condyle)	Medial TFJ JSN radiographic (C)	Pearson's Correlation	Low (57)			
Baranyay 2007 [6]	297	No clinical knee OA (ACR clinical criteria) and no current or historic knee pathology, mean age 58yrs, 63% female, mean BMI 25. Melbourne	MRI BML defined as large or not large / absent in the medial and lateral compartments of TFJ (C)	MRI semi-quantitative cartilage defects of medial and lateral compartments of TFJ Quantitative Cartilage volume medial and lateral TFJ (C)	Logistic regression	High (71%)			
Bilgici 2010 [7]	34	ACR knee OA. ROA 65%, 71% female, mean age 50 yrs.	MRI BML (WORMS) (C)	WOMAC pain & pain VAS (C)	Linear regression	Low (57)			

Author of Cross sectional studies	Patient number (n)	Study demographics	Subchondral bone feature assessed (method) region	Structural progression / pain outcome (method) region	Statistical analysis	Quality (score%)
		Turkey				
Burnett 2012 [8]	42	Knees with OA awaiting total knee replacement, 100% ROA, 60% Female, mean age 64 yrs. Canada	BMD of patellar facets (qCT) (C)	WOMAC pain – knee pain at rest (C)	Independent t- test	Low (57)
Chiba 2012 [11]	60	Prevalent Knee OA. ROA 50%. 100% female, mean age 68 yrs Japan	MRI Bone volume fraction & trabecular thickness of the medial & lateral femur & tibia. (C)	Metric JSW (radiographic) (C) of the medial and lateral TFJ	Pearson's Correlation	Low (57)
Crema 2010 [12]	1283	Knee OA or at high risk of OA. ROA knee 44%. 60% female, mean age 62 yrs.	MRI Bone cysts (WORMS) (C)	Cartilage defect (WORMS) (C)	Comparison of tabulated data	Low (50)
Ding 2005 [14]	372	Mostly no ROA knee (17% ~ KL =1), 58% female, Mean age 45 yrs. Mean BMI 27. Offspring study	MRI quantitative tibial bone area (C)	Semi-quantitative MRI knee cartilage defect severity scores (C) TFJ	Linear regression	High (64)
Dore 2009 [15]	740	>15% ROA knee, 52% female, Mean age 62 yrs. TASOAC	DXA Tibial subchondral BMD (C)	Radiograph JSN grade and MRI cartilage defect and volume (C)	Multivariable analysis	High (71)
Driban 2011 [16] Abstract	421	NR	MRI Bone volume fraction (C)	Radiographic JSN (C)	Multiple linear regression	High (64)
Driban 2011 [17] Abstract	285	OAI Progression Cohort. No other demographic data available.	MRI bone volume fraction, trabecular number, spacing & thickness of medial tibia (C)	The presence of any grade of radiographic medial & lateral JSN (C)	Multiple linear regression	High (71)
Eckstein 2010 [18]	73	ROA knee (100%), 63% female with mean age of 61 yrs. OAI	MRI Tibial bone area (segmented) (C)	OARSI JSN grade (C)	Paired t-tests	Low (43)
	401	Prevalent knee OA	Semi-quantitative	KL grade	Chi-square or	Low (54)

Author of Cross sectional studies	Patient number (n)	Study demographics	Subchondral bone feature assessed (method) region	Structural progression / pain outcome (method) region	Statistical analysis	Quality (score%)
Felson 2001 [19]		(ACR criteria) and assumed ROA knee of 100%. 41% female, and mean age of 67 yrs. BOKS	MRI BMLs (C)	chronic knee pain presence (C)	fisher exact test & logistic regression	
Fernandez- Madrid 1994 [20]	90	ACR knee OA, 66% knee ROA, 65% female, mean age 55 yrs. USA	Crude presence of MRI BMLs, osteophytes (C)	KL grade and crude pain presence (C)	Chi-square	Low (46)
Frobell 2010 [21]	891	Three groups; pre- radiographic OA (KL grade <2), ROA and controls without OA, (total ROA knee 89%), 60% female, mean age 61 yrs. OAI	MRI Bone area – manual segmentation (C)	KL grade, OARSI JSN grade (C)	T tests and multivariate analyses	Low (57)
Gudbergsen [23] 2013	192	Obesity and knee OA (ACR criteria). 81% female, mean age 63 yrs. Denmark	Semi-quantitative MRI BML (BLOKS) (C)	KL grade (C)	Spearman correlation analyses	Low (57)
Guymer 2007 [24]	176	No clinical knee OA (ACR clinical criteria) and no current or historic knee pathology, mean age 52 yrs, 100% female, mean BMI 27. Melbourne.	Presence or absence of MRI BMLs (C) TFJ	Presence or absence of semi-quantitative cartilage defects (C) TFJ	Logistic regression	High (71)
Haverkamp 2011 [28]	609	1201 knees with 6% knee ROA and 25% knee pain prevalence, 100% female, and mean age 54 yrs, mean BMI 27. Rotterdam study	2D bone shape knee 1. femur & tibial width 2. elevation of lateral tibial plateau (C)	 Presence of diffuse cartilage defects semi-quantitative scoring (MRI). Presence of ROA knee (KL≥2) Pain severity VAS (C) 	Logistic and linear generalised estimating equation regression models	Low (46)

Author of Cross sectional studies	Patient number (n)	Study demographics	Subchondral bone feature assessed (method) region	Structural progression / pain outcome (method) region	Statistical analysis	Quality (score%)
Hayashi 2012 [29]	40	ROA knee 57% with and without pain, 75% female, mean age 57 yrs. USA	Crude presence of MRI osteophytes, bone cysts (C)	Presence of pain on WOMAC pain subscale (C)	Logistic regression	Low (57)
Hayes 2005 [30]	232	Clinical and ROA knee or healthy patients. 36% ROA knee, 100% female, mean age 46 yrs. Southeast Michigan Cohort.	Semi-quantitative MRI BML, osteophyte, bone cyst (C)	KL grade and chronic pain presence (C)	Fisher Exact Test, Chi-squared test	High (61)
Hernandez- Molina 2008 [31]	1627	Patients >50 yrs of age with and without knee pain. ROA knee 22%, 59% female, mean age 64 yrs. Framingham OA cohort	Semi-quantitative MRI bone attrition (WORMS) (C)	Pain severity and nocturnal pain (WOMAC) (C)	Logistic regression	High (71)
lp 2011 [32]	255	Knee pain. ROA 38%, 56% female, median age 62 yrs. Canada	Semi-quantitative MRI BML (C)	WOMAC pain, KL grade (C)	Logistic regression & Pearson chi- squared	High (68)
Jones 2004 [33]	372	Mean age 45yrs, right knees, early ROA knee (3-14%), 58% female, mean BMI 27. Offspring	Tibial bone area (MRI) (C)	Radiographic JSN (C)	Linear Regression	Low (50)
Kalichman 2007 [34]	213	Predominantly knee OA (ACR criteria). ROA knee 75%, 41% female, mean age 67 yrs. BOKS	MRI patellar length ratio, trochlea sulcus angle (C)	JSN grade (C)	Logistic regression	High (64)
Kalichman 2007 [35]	213	Predominantly knee OA (ACR criteria). ROA knee 75%, 41% female, mean age 67 yrs. BOKS	MRI patellar length ratio, trochlea sulcus angle (C)	Cartilage defect (WORMS) (C)	Logistic regression	Low (57)
Kim 2013	358	Aging population with	Summary score and	WOMAC pain (C) or	Logistic	High (64)

Author of Cross sectional studies	Patient number (n)	Study demographics	Subchondral bone feature assessed (method) region	Structural progression / pain outcome (method) region	Statistical analysis	Quality (score%)
[36]		35% ROA knee. 51% female, mean age 72 yrs. Hallym Aging Study	severity of MRI BML (WORMS) (C)	presence of knee pain	regression	
Kornaat 2006 [38]	205	Symptomatic (35%)and ROA (47%) knee. 80% female, median age 60 yrs. GARP	Semi-quantitative MRI osteophyte bone cyst & BML (C)	Chronic pain presence (C)	Logistic regression	High (71)
Kornaat 2005 [39]	205	Symptomatic (35%)and ROA (47%) knee. 80% female, median age 60 yrs. GARP	Semi-quantitative MRI BML (KOSS) TFJ and PFJ (C)	Semi-quantitative cartilage defects (KOSS) TFJ and PFJ (C)	Odds ratio	Low (57)
Kraus 2009 [40]	159	Unilateral symptomatic and ROA knee (100%);74% female, mean age 63 yrs, mean BMI 32. POP	Ipsicompartmental late phase bone scintigraphy, semi- quantitative retention scoring of TFJ (C)	Ipsicompartmental OARSI scale of TFJ JSN (C)	Bivariate and Multivariable generalised linear modelling	High (71)
Lindsey 2004 [43]	74	Prevalent knee ROA (71%), 53% female, mean age 64 yrs,	MRI bone volume fraction & trabecular spacing (lateral TFJ) (C)	Cartilage volume in (contralateral TFJ) compartment (C)	Spearmans correlation	High (64)
Link 2003 [44]	50	Symptomatic knee OA, ROA 80%, 60% female, mean age 64 yrs. USA	Semi-quantitative MRI BML, osteophytes, and crude presence of bone cysts (C)	KL grade, WOMAC pain (C)	Fisher Exact Test, Chi-squared test	Low (54)
Lo 2005 [45]	498	Patients >50 yrs of age with and without knee pain. ROA knee 23%, 59% female, mean age 66 yrs. Framingham OA cohort	Semi-quantitative MRI BML (WORMS≥1) (C)	KL grade≥2 (C)	Crude comparison	Low (50)
Lo 2006 [48]	1612	Prevalent Knee OA, 18% ROA knee, 56% female, mean age 64 yrs. Framingham OA	DXA Medial:lateral BMD ratio at the tibial plateau (C)	Radiographic JSN grade (medial and lateral TFJ) (C)	Logistic regression	High (71)

Author of Cross sectional studies	Patient number (n)	Study demographics	Subchondral bone feature assessed (method) region	Structural progression / pain outcome (method) region	Statistical analysis	Quality (score%)
	160	Study Cohort	Semi-quantitative	WOMAC pain (C)	Univariate and	High (71)
	100	100% ROA. 50% female, mean age 61 yrs. OAI	MRI BML (BLOKS) (C)		multivariate cox regressions	- iigi (7 i)
Lo 2012 [47]	482	Prevalent knee OA, 54% ROA, 47% female, mean age 64 yrs. OAI	MRI bone volume fraction, trabecular thickness, number and DXA BMD of proximal medial tibia (C)	Radiographic medial JSN grade (C)	Kruskal-Wallis and Mann- Whitney U tests	High (64)
McCauley 2001 [51]	193	Knees referred for MRI 43% female, mean age 40 yrs, mean weight 92kg.	MRI central osteophyte presence (C) TFJ	MRI cartilage lesion presence (C) TFJ	Crude association	Low (29)
McCrae 1992 [52]	30	Clinical or ROA knee (100%). 73% female, mean age 66yrs, Overweight or obese (65%). Recruited from rheumatology clinic	Late phase 'extended bone uptake' pattern bone scintigraphy, presence around the TFJ (C)	Radiographic TFJ JSN presence (C)	Chi squared test	Low (50)
Meredith 2009	140	Knees with MRIs before	Sum of semi-	Sum of semi-	Chi-squared test	Low (50)
[00]		meniscectomy. Median age 61 yrs, 61% female	Osteophyte and BML scores in the TFJ and PFJ (C)	cartilage defect scores in the TFJ and PFJ (C)	Spearman test for non-parametric correlations	
Moisio 2009 [54]	305	Patients with some WOMAC dysfunction and 90% ROA knee. 78% female, mean age 66 yrs. MAK-2	Baseline MRI semi- quantitative BML score (C) TFJ and PFJ	Presence of baseline moderate to severe knee pain (C)	Logistic regression	High (64)
Ochiai 2010 [56]	48	Patients with clinical medial knee OA and ROA knee (76%), mean	MRI irregularity of femoral condyle contour (C)	Knee pain VAS (C)	Pearson's correlation	Low (50)

Author of Cross sectional studies	Patient number (n)	Study demographics	Subchondral bone feature assessed (method) region	Structural progression / pain outcome (method) region	Statistical analysis	Quality (score%)
		age 73 yrs. Gender distribution unknown. Japan				
Okazaki 2014 [57]	29	Radiographic knee OA (100%), 100% female, Mean age 65 yrs	Number of CT bone cysts (medial femur and tibia) (C)	Knee KL grade (C)	NR	Low (50)
Ratzlaff 2013 [58]	115	Radiographic knee OA (95%), 48% female, age range 45-79 yrs	Total BML volume in the femur or tibia (C)	Weight bearing knee pain WOMAC subscale (C)	Wilcoxon rank sum test, multivariable analysis,	High (71)
Ratzlaff 2014 [59] abstract	115	Knee ROA (90%)	Median BML volume (PFJ, TFJ) (C)	Stair-climbing knee pain WOMAC (C)	Wilcoxon rank sum test	High (64)
Reichenbach 2008[60]	964	Patients over 50 yrs of age with and without knee pain. ROA knee 18%, 57% female, mean age 63 yrs. Framingham OA cohort	Semi-quantitative MRI Bone attrition (WORMS) (C)	KL grade and semi- quantitative cartilage defects (WORMS) (C)	Crude comparison	Low (43)
Roemer 2012[62]	1248	Patients over 50 yrs of age with and without knee pain. ROA knee 23%, 58% female, mean age 64 yrs. Framingham OA cohort	MRI osteophyte (WORMS) (C)	Cartilage defect (WORMS) (C)	Logistic regression and generalised estimating equations	Low (57)
Scher 2008 [63]	73	Patients with OA knee based upon radiography (>50% ROA), 54% female, mean age 51 yrs. USA	Semi-quantitative MRI BML (C)	Semi-quantitative cartilage defect (modified Noyes) (C)	Univariate comparison (t- tests)	Low (43)
Sengupta 2006 [64]	217	Patients with prevalent knee OA (ACR criteria). ROA knee >75%, 25% female, mean age 67 yrs. BOKS	Semi-quantitative MRI Osteophyte (WORMS) (C)	Pain severity WOMAC, chronic pain (C)	Logistic regression	High (71)
Sharma 2014	837	At risk of Knee OA but	Semi-quantitative	Prevalent frequent	Multiple logistic	High (71)

Author of Cross sectional studies	Patient number (n)	Study demographics	Subchondral bone feature assessed (method) region	Structural progression / pain outcome (method) region	Statistical analysis	Quality (score%)
[65]		without ROA knee, 0% ROA knee, 57% female, mean age 60 yrs. OAI	MRI BML (WORMS) TFJ or PFJ (C)	knee symptoms (C)	regression	
Sowers 2003 [66]	231	Patients with infrequent OA knee symptoms and 15% ROA knee, 100% female, mean age 47 yrs. SWAN	Semi-quantitative MRI BML (C)	Semi-quantitative cartilage defect, chronic pain presence (C)	Wilcoxon or Maentel– Haenszel test of general association and logistic regression	Low (54)
Stefanik 2012 [68]	881	Patients with knee OA or at high risk of it. (ROA knee % unknown), 63% female, mean age 63 yrs. MOST	MRI lateral trochlear inclination and trochlear angle (C)	Semi-quantitative cartilage defect (WORMS) (C)	Logistic regression	Low (57)
Stefanik 2014 abstract [67]	2087	Prevalent clinical knee OA, 60% female, mean age 67 yrs	BML (WORMS) PFJ (C)	Prevalent knee pain (any pain in last 30 days) and pain VAS (C)	Logistic regression	High (71)
Stehling 2010 [69]	236	Knees without pain and with 6% ROA. Mean age 51yrs, 58% female, mean BMI 24. OAI	Presence of any MRI semi-quantitative BMLs, osteophytes or cysts (C)	Presence of any WORMS MRI cartilage defects (C)	Multi-variate regression	High (71)
Torres 2006 [70]	143	Patients with some WOMAC dysfunction and >55% ROA knee, 78% female, mean age 70 yrs. MAK-2	MRI BML, osteophyte, attrition, bone cyst (WORMS) TFJ & PFJ (C)	Pain VAS, semi- quantitative cartilage (WORMS) TFJ & PFJ (C)	Median quantile regression,	High (68)
Wang 2005 [71]	117	Symptomatic, clinical (ACR) knee OA with mild to moderate TFJ ROA, mean age 64yrs, mean BMI 29, males	Annual % change in tibial bone area (L) 2 yr follow up.	Baseline JSN (C)	Linear regression	Low (57)

Author of Cross sectional studies	Patient number (n)	Study demographics	Subchondral bone feature assessed (method) region	Structural progression / pain outcome (method) region	Statistical analysis	Quality (score%)
		and females. Australia				
Zhai 2006 [72]	500	Randomly selected older adults with over	Semi-quantitative MRI BMI (C)	WOMAC pain>1 (C)	Multivariable analysis	High (79)
		23% knee ROA. 50%			analysis	
		female, mean age 63				
		yrs. TASOAC				
	700		Hip cohort studies			
Agricola 2013	723	Early symptomatic hip	Baseline alpha angle	Incident ROA hip	Generalised	High (67)
[73]		ROA hip (with doubtful	dichotomous	(NL>1)	equations	
[, 0]		ROA in 26%). 80%	abnormal >60°.	ROA hip	equations	
		female, mean age 56	normal ≤60	(KL>2 or THR)		
		yrs, mean BMI 26.1,	(C)	at or within 5 yrs (L)		
		CHECK				
Agricola 2013	720	Early symptomatic hip	Baseline 2D Centre	Incident ROA hip	Generalised	High (67)
		OA, the majority had no	edge angle	(KL>1 or THR)	estimating	
[74]		ROA hip (with doubtful	(Acetabular shape):	at or within 5 yrs (L)	equations	
		ROA IN 24%), 79%	25° <inormal<40°< td=""><td></td><td></td><td></td></inormal<40°<>			
		56vrs mean BMI 26.1				
		CHFCK	(C)			
Agricola 2013	723	Early symptomatic hip	Baseline 2D femoral	Total hip replacement	Generalised	High (72)
[75]	_	OA, the majority had no	and acetabular shape	at or within 5 yrs (L)	estimating	5 ()
		ROA hip (with doubtful	modes (segmented		equations	
		ROA in 24%), 79%	by statistical shape			
		women, mean age	modelling)			
		56yrs, mean BMI 26.1.	(C)			
		CHECK	Lin and control studio			
Doberty	2076	Symptomatic	Non-spherical 2D	Presence of	Multivariable	Low (53)
2008	2010	radiographic hin OA	femoral head shape	radiographic hin OA		LUW (33)
2000		cases (n=965).	assessment:	(JSW≤2.5mm) (C)	rearession	
[130]		asymptomatic controls	1) Appearance of	(
,		without radiographic hip	'Pistol grip			
		OA (n=1111) – GOAL	deformity' (C)			

Author of Cross sectional studies	Patient number (n)	Study demographics	Subchondral bone feature assessed (method) region	Structural progression / pain outcome (method) region	Statistical analysis	Quality (score%)
			2) Maximum femoral head diameter divided by minimum parallel femoral neck diameter (C)			
Barr 2012 [127]	141	First presentation of hip pain to primary care, 32% ACR hip OA criteria, 68% female, mean age 63 yrs, mean BMI 27.	2D Shape measures of centre edge angle (acetabular shape) (C)	THR vs no radiographic progression over 5 years (L)	Logistic regression	High (76)
Nicholls 2011 [137]	268	100% women, mean age, 55yrs, mean BMI 66. 243 controls, 25 cases of total hip replacement. Chingford Study	2D CAM deformity; mean modified triangular index height, alpha angle. Acetabular dysplasia; mean lateral center edge angle (C)	Total hip replacement (L)	Logistic regression	High (71)
			Hip cross-sectional studi	es	•	•
Chaganti 2010 [9]	3529	10% ROA hip, 100% male, Mean age 78 years. Cohort of the Study of Osteoporotic Fractures in Men	Femoral neck BMD (C) DXA	Hip ROA Modified croft score (categorical 0-4) (C)	Linear regression	High (64)
Chiba 2011 [10]	47	ROA, 100% female, mean age 69 yrs	Acetabular and femoral head subchondral trabecular morphometry: bone volume fraction, trabecular thickness, number, separation (CT)	Hip joint space volume (CT) (C)	Pearson's correlation test.	Low (57)
Dawson 2013	161	142 asymptomatic hips	Femoral head BMLs	1. Presence of hip OA	Regression	Low (14)

Author of Cross sectional studies	Patient number (n)	Study demographics	Subchondral bone feature assessed (method) region	Structural progression / pain outcome (method) region	Statistical analysis	Quality (score%)
Abstract [13]		without clinical OA, 19 with hip OA. 56% female, mean age 63yrs, mean BMI 27,	(MRI) (C)	2.Femoral head cartilage volume (MRI) (C)	modelling	
Gosvig 2010 [22]	3620	Mean age 61yrs, 63% female, ROA hip 10.6% (OA substudy - CCHS III)	2D Categorical Hip deformity: 1) Normal 2)'Pistol grip' 3) Deep acetabular socket (C)	Presence of radiographic hip OA (JSW≤2mm) (C)	Multivariate logistic regression	Low (50)
Maksymowych 2014 [50]	40	55% female, mean age 65yrs, symptomatic but not radiographic hip OA	Semi-quantitative BML HIP (HOAMS) (C)	Baseline WOMAC pain (C)	Univariable regression model	High (64)
Neumann 2007 [55]	100	Symptomatic hip OA	Semi-quantitative BMLs (C)	Semi-quantitative Cartilage lesions (C)	Spearman's correlations	Low (43)
Reichenbach 2011 [61]	244	Asymptomatic men (100%). Mean age 20 yrs, mean BMI 23, Sumiswald cohort	The presence or absence of any semi- quantitative MRI- defined CAM- deformity (C)	Combined femoral and acetabular cartilage thickness (C)	Multivariable linear regression. & Wald test	High (64)
Antoniades 2000 [5]	1148	White female twins, 29% hip RO A, 100% female, median age 53 yrs. St. Thomas' UK Adult Twin Register (C)	DXA BMD of the femoral neck of left (nondominant) hip with ROA (C)	Radiographic OA (croft Score) (C)	Logistic regression	High (64)
Kumar 2013 [42]	85	Members of the public with 35% ROA hip, 48% female , mean age 56 yrs (C)	Total hip semi- quantitative BML and subchondral cysts score (C)	Self-reported hip pain HOOS score	Non-parametric Spearman's correlations	High (71)
			Hand case-series studie	es		
Haugen 2014 [98]	74	91% female, Mean age 68 yrs	BMLs – semi- quantitative	Progression of hand ROA (JSN, KL grade	Generalised estimating	High (61)

Author of Cross sectional studies	Patient number (n)	Study demographics	Subchondral bone feature assessed (method) region	Structural progression / pain outcome (method) region	Statistical analysis	Quality (score%)
			At 2 nd to 5 th IPJs (C)	or new erosion) (L)	equations	
Haugen 2014	70	90% female, mean age	Sum scores (0-48) for	AUSCAN pain scale	Linear regression	High (61)
Abstract [99]		68 yrs	BMLs (Oslo Hand OA	(L)		
			MRI score) (C) IPJS			
	T	Н	and cross-sectional stuc	lies	1	
Haugen 2012	108	91% women, mean age	BML (Oslo MRI hand	Radiographic JSN	logistic	Low (43)
Abstract [26]		69 years, 100% ROA	score) (C) IPJs	grade (OARSI atlas)	regression	
		hand Oslo hand		(C) IPJs	with generalised	
		osteoarthritis cohort			estimating	
	400	000/			equations	
Haugen	106	92% women, mean age	BIVIL, cyst, attrition,	Hand KL grade of	Generalised	High (64)
2012 [27]		69 years, 100% ROA		IPJS (C)	estimating	
			nano score) (C)		equations	
Hougon 2012 [25]	05		IPJS BML over attrition		Lincor rogradion	High (64)
	00	60 years 100% POA	DIVIL, Cysi, all'Illion,		Linear regression	піўп (64)
		hand Oslo hand	band score) (C)	(0)		
		osteoarthritis cohort				
Macfarlane 1993	35	100% ROA Hand 91%	Late phase isotope	Hand Pain VAS (C)	Kendall's	Low (57)
[49]	00	female mean age	bone scan small		correlation	
[10]		62vrs. Rheumatology	ioints of the hand		Controlation	
		clinic attenders	(C)			
		A	nkle cross-sectional stud	lies		
Knupp 2009	27	Symptomatic ankle	Late phase bone	Tibiotalar ankle joint	Mann-Whitney	Low (57)
[37]		varus or valgus	scintigraphy, semi-	JSN. (Modified	Rank sum test	
		deformities refractory to	quantitative retention	Takakura score)		
		conservative therapy,	scoring of tibiotalar	(C)		
		37% female, mean age	joint (C)			
		49 yrs.				
Kraus 2013	138	Symptomatic ankle OA	Ipsilateral late phase	Tibiotalar ROA KL	Generalized	High (71)
[41]		(23%), ROA ankle	bone scintigraphy,	grade and JSN (C)	estimating	
		(79%), 74% female,	retention presence in		equations	
		mean age 64yrs, mean	tibiotalar joint (C)			
		BMI 31. POP				

Australian/Canadian Osteoarthritis Hand Index (AUSCAN); Bone mineral density (BMD); Bone marrow lesion (BML); Boston Osteoarthritis of the Knee Study (BOKS), Boston–Leeds. Osteoarthritis Knee Score (BLOKS); a feature or outcome described in cross-section (C); Copenhagen City Heart Study (CCHS); Cohort hip and cohort knee (CHECK); knee pain on most days for at least the last month (chronic pain); Dual-energy X-ray absorptiometry (DXA); Genetics, Osteoarthritis and Progression study (GARP); GOAL (Genetics of Osteoarthritis and Lifestyle); Hip Osteoarthritis MRI scoring system (HOAMS); Hip dysfunction and Osteoarthritis Outcome Score (HOOS); interphalangeal joint (IPJ); joint space narrowing (JSN); joint space width (JSW); Kellgren Lawrence (KL); Knee Osteoarthritis Scoring System (KOSS); a feature or outcome described longitudinally (L); mechanical factors in arthritis of the knee 2 (MAK-2); patellofemoral joint (PFJ); quantitative computed tomography (qCT); radiographic osteoarthritis (ROA); Michigan study of Women's Health across the Nation (SWAN); Multicentre Osteoarthritis Study (most); osteoarthritis (OA); Osteoarthritis Initiative (OAI); Osteoarthritis Research Society International (OARSI); Strategies to Predict Osteoarthritis Progression (POP); Tasmanian Older Adult Cohort (TASOAC); tibiofemoral joint (TFJ); Total hip replacement (THR); visual analogue scale (VAS); Western Ontario and McMaster Universities arthritis index (WOMAC); whole-organ magnetic resonance imaging score (WORMS).

REFERENCES

1. Lievense AM, Bierma-Zeinstra SM, Verhagen AP, van Baar ME, Verhaar JA, Koes BW. Influence of obesity on the development of osteoarthritis of the hip: a systematic review. Rheumatology (Oxford). 2002;41(10):1155-62.

2. Yusuf E, Kortekaas MC, Watt I, Huizinga TW, Kloppenburg M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann Rheum Dis. 2011;70(1):60-7.

3. Ai F, Yu C, Zhang W, Morelli JN, Kacher D, Li X. MR imaging of knee osteoarthritis and correlation of findings with reported patient pain. Journal of Huazhong University of Science and Technology - Medical Science. 2010;30(2):248-54.

4. Akamatsu Y, Kobayashi H, Kusayama Y, Kumagai K, Mitsugi N, Saito T. Does subchondral sclerosis protect progression of joint space narrowing in patients with varus knee osteoarthritis? Osteoarthritis Cartilage. 2014;22:S362.

5. Antoniades L, MacGregor AJ, Matson M, Spector TD. A cotwin control study of the relationship between hip osteoarthritis and bone mineral density. Arthritis Rheum. 2000;43(7):1450-5.

6. Baranyay FJ, Wang Y, Wluka AE, English DR, Giles GG, Sullivan RO, et al. Association of bone marrow lesions with knee structures and risk factors for bone marrow lesions in the knees of clinically healthy, community-based adults. Semin Arthritis Rheum. 2007;37(2):112-8.

7. Bilgici A, Dogan C, Cil E, Sakarya S, Kuru O, Selcuk MB. Relationship between pain severity and magnetic resonance imaging features in patients with osteoarthritis of the Knee [Turkish]. Turkish Journal of Rheumatology. 2010;25(4):184-90.

8. Burnett WK, SA. McLennan, CE. Wheaton, D. Talmo, C. Hunter, DJ. Wilson, DR. Johnston, JD. Patella Bone density is lower in knee osteoarthritis patients experiencing pain at rest. Osteoarthritis Cartilage. 2012;20(S200-S201).

9. Chaganti RK, Parimi N, Lang T, Orwoll E, Stefanick ML, Nevitt M, et al. Bone mineral density and prevalent osteoarthritis of the hip in older men for the Osteoporotic Fractures in Men (MrOS) Study Group. Osteoporos Int. 2010;21(8):1307-16.

10. Chiba K, Ito M, Osaki M, Uetani M, Shindo H. In vivo structural analysis of subchondral trabecular bone in osteoarthritis of the hip using multi-detector row CT. Osteoarthritis Cartilage. 2011;19(2):180-5.

11. Chiba K, Uetani M, Kido Y, Ito M, Okazaki N, Taguchi K, et al. Osteoporotic changes of subchondral trabecular bone in osteoarthritis of the knee: a 3-T MRI study. Osteoporosis International. 2012;23(2):589-97.

12. Crema MD, Roemer FW, Marra MD, Niu J, Lynch JA, Felson DT, et al. Contrastenhanced MRI of subchondral cysts in patients with or at risk for knee osteoarthritis: the MOST study. European Journal of Radiology. 2010;75(1):e92-6.

13. Dawson L, Bennell, K., Wluka, A., Wang, Y., Cicuttini, F. Hip bone marrow lesions in asymptomatic and osteoarthritic adults: Prevalence, risk factors and significance. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2013;21(Suppl):S241.

14. Ding C, Garnero P, Cicuttini F, Scott F, Cooley H, Jones G. Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume,

increased joint surface area and type II collagen breakdown. Osteoarthritis Cartilage. 2005;13(3):198-205.

15. Dore D, Quinn S, Ding C, Winzenberg T, Jones G. Correlates of subchondral BMD: a cross-sectional study. J Bone Miner Res. 2009;24(12):2007-15.

16. Driban JB, Price LL, Tassinari AM, Lo GH, McAlindon TE. Peri-articular apparent bone volume fraction is associated with numerous patient characteristics in knees with osteoarthritis: Data from the osteoarthritis initiative. Arthritis Rheum. 2011;63(10 SUPPL. 1).

17. Driban JB, Price LL, Tassinari AM, Lo GH, Schneider E, McAlindon TE. Trabecular morphology is associated with numerous patient characteristics in knees with osteoarthritis: Data from the osteoarthritis initiative (OAI). Osteoarthritis Cartilage. 2011;19:s169.

18. Eckstein F, Wirth W, Hunter DJ, Guermazi A, Kwoh CK, Nelson DR, et al. Magnitude and regional distribution of cartilage loss associated with grades of joint space narrowing in radiographic osteoarthritis - data from the Osteoarthritis Initiative (OAI). Osteoarthritis Cartilage. 2010;18(6):760-8.

19. Felson DT, Chaisson CE, Hill CL, Totterman SM, Gale ME, Skinner KM, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med. 2001;134(7):541-9.

20. Fernandez-Madrid F, Karvonen RL, Teitge RA, Miller PR, Negendank WG. MR features of osteoarthritis of the knee. Magn Reson Imaging. 1994;12(5):703-9.

21. Frobell RB, Nevitt MC, Hudelmaier M, Wirth W, Wyman BT, Benichou O, et al. Femorotibial subchondral bone area and regional cartilage thickness: a cross-sectional description in healthy reference cases and various radiographic stages of osteoarthritis in 1,003 knees from the Osteoarthritis Initiative. Arthritis Care Res. 2010;62(11):1612-23.

22. Gosvig KK, Jacobsen S, Sonne-Holm S, Palm H, Troelsen A. Prevalence of malformations of the hip joint and their relationship to sex, groin pain, and risk of osteoarthritis: a population-based survey. J Bone Joint Surg Am. 2010;92(5):1162-9.

23. Gudbergsen H, Lohmander LS, Jones G, Christensen R, Bartels EM, Danneskiold-Samsoe B, et al. Correlations between radiographic assessments and MRI features of knee osteoarthritis - a cross-sectional study. Osteoarthritis Cartilage. 2013;21(4):535-43.

24. Guymer E, Baranyay F, Wluka AE, Hanna F, Bell RJ, Davis SR, et al. A study of the prevalence and associations of subchondral bone marrow lesions in the knees of healthy, middle-aged women. Osteoarthritis Cartilage. 2007;15(12):1437-42.

25. Haugen IK, Boyesen P, Slatkowsky-Christensen B, Sesseng S, van der Heijde D, Kvien TK. Associations between MRI-defined synovitis, bone marrow lesions and structural features and measures of pain and physical function in hand osteoarthritis. Ann Rheum Dis. 2012;71(6):899-904.

26. Haugen IK. BP, Slatkowsky-Christensen B., Sesseng S., van der Heijde D., Kiven TK. Associations between radiographic and clinical osteoarthritis features and mridefined bone marrow lesions in the finger joints. Annals of the Rheumatic Diseases. 2012;71(Suppl 3):299.

27. Haugen IK, Boyesen P, Slatkowsky-Christensen B, Sesseng S, Bijsterbosch J, van der Heijde D, et al. Comparison of features by MRI and radiographs of the

interphalangeal finger joints in patients with hand osteoarthritis. Ann Rheum Dis. 2012;71(3):345-50.

28. Haverkamp DJ, Schiphof D, Bierma-Zeinstra SM, Weinans H, Waarsing JH. Variation in joint shape of osteoarthritic knees. Arthritis Rheum. 2011;63(11):3401-7.

29. Hayashi D, Xu L, Roemer FW, Hunter DJ, Li L, Katur AM, et al. Detection of osteophytes and subchondral cysts in the knee with use of tomosynthesis. Radiology. 2012;263(1):206-15.

30. Hayes CW, Jamadar DA, Welch GW, Jannausch ML, Lachance LL, Capul DC, et al. Osteoarthritis of the knee: comparison of MR imaging findings with radiographic severity measurements and pain in middle-aged women. Radiology. 2005;237(3):998-1007.

31. Hernandez-Molina G, Neogi T, Hunter DJ, Niu J, Guermazi A, Reichenbach S, et al. The association of bone attrition with knee pain and other MRI features of osteoarthritis. Ann Rheum Dis. 2008;67(1):43-7.

32. Ip S, Sayre EC, Guermazi A, Nicolaou S, Wong H, Thorne A, et al. Frequency of bone marrow lesions and association with pain severity: results from a population-based symptomatic knee cohort. J Rheumatol. 2011;38(6):1079-85.

33. Jones G, Ding C, Scott F, Glisson M, Cicuttini F. Early radiographic osteoarthritis is associated with substantial changes in cartilage volume and tibial bone surface area in both males and females. Osteoarthritis Cartilage. 2004;12(2):169-74.

34. Kalichman L, Zhang Y, Niu J, Goggins J, Gale D, Zhu Y, et al. The association between patellar alignment on magnetic resonance imaging and radiographic manifestations of knee osteoarthritis. Arthritis Research & Therapy. 2007;9(2).

35. Kalichman L, Zhang Y, Niu J, Goggins J, Gale D, Felson DT, et al. The association between patellar alignment and patellofemoral joint osteoarthritis features - An MRI study. Rheumatology. 2007;46(8):1303-8.

36. Kim IJ, Kim DH, Jung JY, Song YW, Guermazi A, Crema MD, et al. Association between bone marrow lesions detected by magnetic resonance imaging and knee pain in community residents in Korea. Osteoarthritis Cartilage. 2013;21(9):1207-13.

37. Knupp M, Pagenstert GI, Barg A, Bolliger L, Easley ME, Hintermann B. SPECT-CT compared with conventional imaging modalities for the assessment of the varus and valgus malaligned hindfoot. Journal of Orthopaedic Research. 2009;27(11):1461-6.

38. Kornaat PR, Bloem JL, Ceulemans RY, Riyazi N, Rosendaal FR, Nelissen RG, et al. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology. 2006;239(3):811-7.

39. Kornaat PR, Watt I, Riyazi N, Kloppenburg M, Bloem JL. The relationship between the MRI features of mild osteoarthritis in the patellofemoral and tibiofemoral compartments of the knee. European Radiology. 2005;15(8):1538-43.

40. Kraus VB, McDaniel G, Worrell TW, Feng S, Vail TP, Varju G, et al. Association of bone scintigraphic abnormalities with knee malalignment and pain. Annals of the rheumatic diseases. 2009;68(11):1673.

41. Kraus VB, Worrell TW, Renner JB, Coleman RE, Pieper CF. High prevalence of contralateral ankle abnormalities in association with knee osteoarthritis and malalignment. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2013;21(11):1693.

42. Kumar D, Wyatt CR, Lee S, Nardo L, Link TM, Majumdar S, et al. Association of cartilage defects, and other MRI findings with pain and function in individuals with mild-moderate radiographic hip osteoarthritis and controls. Osteoarthritis Cartilage. 2013;21(11):1685-92.

43. Lindsey CT, Narasimhan A, Adolfo JM, Jin H, Steinbach LS, Link T, et al. Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee. Osteoarthritis Cartilage. 2004;12(2):86-96.

44. Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N, et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology. 2003;226(2):373-81.

45. Lo GH, Hunter DJ, Zhang Y, McLennan CE, Lavalley MP, Kiel DP, et al. Bone marrow lesions in the knee are associated with increased local bone density. Arthritis Rheum. 2005;52(9):2814-21.

46. Lo GH, McAlindon TE, Niu J, Zhang Y, Beals C, Dabrowski C, et al. Bone marrow lesions and joint effusion are strongly and independently associated with weightbearing pain in knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthritis Cartilage. 2009;17(12):1562-9.

47. Lo GH, Tassinari AM, Driban JB, Price LL, Schneider E, Majumdar S, et al. Cross-sectional DXA and MR measures of tibial periarticular bone associate with radiographic knee osteoarthritis severity. Osteoarthritis Cartilage. 2012;20(7):686-93.
48. Lo GH, Zhang Y, McLennan C, Niu J, Kiel DP, McLean RR, et al. The ratio of

medial to lateral tibial plateau bone mineral density and compartment-specific tibiofemoral osteoarthritis. Osteoarthritis Cartilage. 2006;14(10):984-90.

49. Macfarlane DG, Buckland-Wright JC, Lynch J, Fogelman L. A study of the early and late 99technetium scintigraphic images and their relationship to symptoms in osteoarthritis of the hands. Br J Rheumatol. 1993;32(11):977-81.

50. Maksymowych WP, Cibere J, Loeuille D, Weber U, Zubler V, Roemer FW, et al. Preliminary validation of 2 magnetic resonance image scoring systems for osteoarthritis of the hip according to the OMERACT filter. J Rheumatol. 2014;41(2):370-8.

51. McCauley TR, Kornaat PR, Jee WH. Central osteophytes in the knee: prevalence and association with cartilage defects on MR imaging. AJR. American Journal of Roentgenology. 2001;176(2):359-64.

52. McCrae F, Shouls J, Dieppe P, Watt I. Scintigraphic assessment of osteoarthritis of the knee joint. Annals of the rheumatic diseases. 1992;51(8):938.

53. Meredith DS, Losina E, Neumann G, Yoshioka H, Lang PK, Katz JN. Empirical evaluation of the inter-relationship of articular elements involved in the pathoanatomy of knee osteoarthritis using magnetic resonance imaging. BMC Musculoskeletal Disorders. 2009;10:133.

54. Moisio K, Eckstein F, Chmiel JS, Guermazi A, Prasad P, Almagor O, et al. Denuded subchondral bone and knee pain in persons with knee osteoarthritis. Arthritis Rheum. 2009;60(12):3703-10.

55. Neumann G, Mendicuti AD, Zou KH, Minas T, Coblyn J, Winalski CS, et al. Prevalence of labral tears and cartilage loss in patients with mechanical symptoms of the hip: evaluation using MR arthrography. Osteoarthritis Cartilage. 2007;15(8):909-17.

56. Ochiai N, Sasho T, Tahara M, Watanabe A, Matsuki K, Yamaguchi S, et al. Objective assessments of medial osteoarthritic knee severity by MRI: new computer

software to evaluate femoral condyle contours. International Orthopaedics. 2010;34(6):811-7.

57. Okazaki N, Chiba K, Kidera K, Yonekura A, Osaki M. Relationship between subchondral bone cysts, the severity of knee osteoarthritis, and alignments of lower extremities. Osteoarthritis Cartilage. 2014;22:S370-S1.

58. Ratzlaff C, Guermazi A, Collins J, Katz JN, Losina E, Vanwyngaarden C, et al. A rapid, novel method of volumetric assessment of MRI-detected subchondral bone marrow lesions in knee osteoarthritis. Osteoarthritis Cartilage. 2013;21(6):806-14.

59. Ratzlaff C, Russell R, Duryea J. Quantitatively-measured bone marrow lesions in the patellofemoral joint: Distribution and association with pain. Osteoarthritis Cartilage. 2014;22:S247-S8.

60. Reichenbach S, Guermazi A, Niu J, Neogi T, Hunter DJ, Roemer FW, et al. Prevalence of bone attrition on knee radiographs and MRI in a community-based cohort. Osteoarthritis Cartilage. 2008;16(9):1005-10.

61. Reichenbach S, Leunig M, Werlen S, Nuesch E, Pfirrmann CW, Bonel H, et al. Association between cam-type deformities and magnetic resonance imaging-detected structural hip damage: a cross-sectional study in young men. Arthritis Rheum. 2011;63(12):4023-30.

62. Roemer FW, Guermazi A, Niu J, Zhang Y, Mohr A, Felson DT. Prevalence of magnetic resonance imaging-defined atrophic and hypertrophic phenotypes of knee osteoarthritis in a population-based cohort. Arthritis Rheum. 2012;64(2):429-37.

63. Scher C, Craig J, Nelson F. Bone marrow edema in the knee in osteoarthrosis and association with total knee arthroplasty within a three-year follow-up. Skeletal Radiology. 2008;37(7):609-17.

64. Sengupta M, Zhang YQ, Niu JB, Guermazi A, Grigorian M, Gale D, et al. High signal in knee osteophytes is not associated with knee pain. Osteoarthritis Cartilage. 2006;14(5):413-7.

65. Sharma L, Chmiel JS, Almagor O, Dunlop D, Guermazi A, Bathon JM, et al. Significance of preradiographic magnetic resonance imaging lesions in persons at increased risk of knee osteoarthritis. Arthritis Rheumatol. 2014;66(7):1811-9.

66. Sowers MF, Hayes C, Jamadar D, Capul D, Lachance L, Jannausch M, et al. Magnetic resonance-detected subchondral bone marrow and cartilage defect characteristics associated with pain and X-ray-defined knee osteoarthritis. Osteoarthritis Cartilage. 2003;11(6):387-93.

67. Stefanik J, Gross K, Felson D, Niu J, Zhang Y, Lewis C, et al. Does medial patellofemoral osteoarthritis matter? the relation of mri-detected structural damage in the medial and lateral patellofemoral joint to knee pain: the most and framingham osteoarthritis studies. Osteoarthritis Cartilage. 2014;22:S54-S5.

68. Stefanik JJ, Roemer FW, Zumwalt AC, Zhu Y, Gross KD, Lynch JA, et al. Association between measures of trochlear morphology and structural features of patellofemoral joint osteoarthritis on MRI: the MOST study. Journal of Orthopaedic Research. 2012;30(1):1-8.

69. Stehling C, Lane NE, Nevitt MC, Lynch J, McCulloch CE, Link TM. Subjects with higher physical activity levels have more severe focal knee lesions diagnosed with 3T MRI: Analysis of a non-symptomatic cohort of the osteoarthritis initiative. Osteoarthritis Cartilage. 2010;18(6):776-86.

70. Torres L, Dunlop DD, Peterfy C, Guermazi A, Prasad P, Hayes KW, et al. The relationship between specific tissue lesions and pain severity in persons with knee osteoarthritis. Osteoarthritis Cartilage. 2006;14(10):1033-40.

71. Wang Y, Wluka AE, Cicuttini FM. The determinants of change in tibial plateau bone area in osteoarthritic knees: a cohort study. Arthritis Res Ther. 2005;7(3):R687-93.
72. Zhai G, Blizzard L, Srikanth V, Ding C, Cooley H, Cicuttini F, et al. Correlates of knee pain in older adults: Tasmanian Older Adult Cohort Study. Arthritis Rheum. 2006;55(2):264-71.

73. Agricola R, Heijboer MP, Bierma-Zeinstra SM, Verhaar JA, Weinans H, Waarsing JH. Cam impingement causes osteoarthritis of the hip: a nationwide prospective cohort study (CHECK). Ann Rheum Dis. 2013;72(6):918-23.

74. Agricola R, Heijboer MP, Roze RH, Reijman M, Bierma-Zeinstra SM, Verhaar JA, et al. Pincer deformity does not lead to osteoarthritis of the hip whereas acetabular dysplasia does: acetabular coverage and development of osteoarthritis in a nationwide prospective cohort study (CHECK). Osteoarthritis Cartilage. 2013;21(10):1514-21.

75. Agricola R, Reijman M, Bierma-Zeinstra SM, Verhaar JA, Weinans H, Waarsing JH. Total hip replacement but not clinical osteoarthritis can be predicted by the shape of the hip: a prospective cohort study (CHECK). Osteoarthritis Cartilage. 2013;21(4):559-64.

76. Bruyere O, Dardenne C, Lejeune E, Zegels B, Pahaut A, Richy F, et al. Subchondral tibial bone mineral density predicts future joint space narrowing at the medial femoro-tibial compartment in patients with knee osteoarthritis. Bone. 2003;32(5):541-5.

77. Carnes J, Stannus O, Cicuttini F, Ding C, Jones G. Knee cartilage defects in a sample of older adults: natural history, clinical significance and factors influencing change over 2.9 years. Osteoarthritis Cartilage. 2012;20(12):1541-7.

78. Carrino JA, Blum J, Parellada JA, Schweitzer ME, Morrison WB. MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. Osteoarthritis Cartilage. 2006;14(10):1081-5.

79. Cicuttini FM, Jones G, Forbes A, Wluka AE. Rate of cartilage loss at two years predicts subsequent total knee arthroplasty: a prospective study. Ann Rheum Dis. 2004;63(9):1124-7.

80. Crema MD, Felson DT, Roemer FW, Wang K, Marra MD, Nevitt MC, et al. Prevalent cartilage damage and cartilage loss over time are associated with incident bone marrow lesions in the tibiofemoral compartments: the MOST study. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2013;21(2):306-13.

81. Crema MD, Cibere J, Sayre EC, Roemer FW, Wong H, Thorne A, et al. The relationship between subchondral sclerosis detected with MRI and cartilage loss in a cohort of subjects with knee pain: the knee osteoarthritis progression (KOAP) study. Osteoarthritis Cartilage. 2014;22(4):540-6.

82. Davies-Tuck ML, Wluka AE, Wang Y, Teichtahl AJ, Jones G, Ding C, et al. The natural history of cartilage defects in people with knee osteoarthritis. Osteoarthritis Cartilage. 2008;16(3):337-42.

83. Davies-Tuck ML, Wluka AE, Forbes A, Wang Y, English DR, Giles GG, et al. Development of bone marrow lesions is associated with adverse effects on knee cartilage

while resolution is associated with improvement--a potential target for prevention of knee osteoarthritis: a longitudinal study. Arthritis Res Ther. 2010;12(1):R10.

84. de_Lange BJ, Ioan-Facsinay A, Bijsterbosch J, Van G, Zuurmond A, Kornaat P, et al. The patellofemoral and femorotibial joints are related based on patterns of MRI features and their association with radiologic progression. Osteoarthritis Cartilage. 2014;22:S254-S5.

85. Dieppe P, Cushnaghan J, Young P, Kirwan J. Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Annals of the rheumatic diseases. 1993;52(8):557.

86. Ding C, Cicuttini F, Scott F, Cooley H, Boon C, Jones G. Natural history of knee cartilage defects and factors affecting change. Arch Intern Med. 2006;166(6):651-8.

87. Ding C, Martel-Pelletier J, Pelletier JP, Abram F, Raynauld JP, Cicuttini F, et al. Two-year prospective longitudinal study exploring the factors associated with change in femoral cartilage volume in a cohort largely without knee radiographic osteoarthritis. Osteoarthritis Cartilage. 2008;16(4):443-9.

88. Dore D, Quinn S, Ding C, Winzenberg T, Zhai G, Cicuttini F, et al. Natural history and clinical significance of MRI-detected bone marrow lesions at the knee: a prospective study in community dwelling older adults. Arthritis Res Ther. 2010;12(6):R223.

89. Dore D, Martens A, Quinn S, Ding C, Winzenberg T, Zhai G, et al. Bone marrow lesions predict site-specific cartilage defect development and volume loss: a prospective study in older adults. Arthritis Res Ther. 2010;12(6):R222.

90. Dore D, Quinn S, Ding C, Winzenberg T, Cicuttini F, Jones G. Subchondral bone and cartilage damage: a prospective study in older adults. Arthritis Rheum. 2010;62(7):1967-73.

91. Driban JB, Lo GH, Lee J, Ward RJ, Miller E, Pang J, et al. Quantitative bone marrow lesion size in osteoarthritic knees correlates with cartilage damage and predicts longitudinal cartilage loss. BMC Musculoskeletal Disorders. 2011;12.

92. Driban JB, Pang J, Miller E, Destenaves G, Lo GH, Ward RJ, et al. Quantitative bone marrow lesion changes relate to cartilage parameter changes. Osteoarthritis Cartilage. 2012;20:S217-S8.

93. Driban JB, Price LL, Lo GH, Pang J, Hunter DJ, Miller E, et al. Evaluation of bone marrow lesion volume as a knee osteoarthritis biomarker - longitudinal relationships with pain and structural changes: Data from the Osteoarthritis Initiative. Arthritis Research and Therapy. 2013;15(5).

94. Everhart JS, Siston RA, Flanigan DC. Tibiofemoral subchondral surface ratio (SSR) is a predictor of osteoarthritis symptoms and radiographic progression: data from the Osteoarthritis Initiative (OAI). Osteoarthritis Cartilage. 2014;22(6):771-8.

95. Felson DT, McLaughlin S, Goggins J, LaValley MP, Gale ME, Totterman S, et al. Bone marrow edema and its relation to progression of knee osteoarthritis. Ann Intern Med. 2003;139(5 Pt 1):330-6.

96. Foong YC, Khan HI, Blizzard L, Ding C, Cicuttini F, Jones G, et al. The clinical significance, natural history and predictors of bone marrow lesion change over eight years. Arthritis Res Ther. 2014;16(4):R149.

97. Guermazi A, Eckstein F, Hayashi D, Roemer FW, Wirth W, Yang T, et al. Cartilage damage, bone marrow lesions and meniscal lesions predict quantitatively measured loss of cartilage over 30-months: The most study. Osteoarthritis Cartilage. 2014;22:S356.

98. Haugen IK, Slatkowsky-Christensen B, Boyesen P, Sesseng S, van der Heijde D, Kvien TK. MRI findings predict radiographic progression and development of erosions in hand osteoarthritis. Ann Rheum Dis. 2014.

99. Haugen IK. KE, Slatkowsky-Christensen B., Sesseng S., Kiven TK. Predictive value of mri-defined synovitis, bone marrow lesions and central erosions on pain and physical function in hand osteoarthritis. Osteoarthritis Cartilage. 2014;22:S386.

100. Hernandez-Molina G, Guermazi A, Niu J, Gale D, Goggins J, Amin S, et al. Central bone marrow lesions in symptomatic knee osteoarthritis and their relationship to anterior cruciate ligament tears and cartilage loss. Arthritis Rheum. 2008;58(1):130-6.

101. Hochberg MC, Yip A, Favors K, Sorkin J, Martel-Pelletier J, Pelletier JP. Features assessed on magnetic resonance images improve prediction of total knee arthroplasty in subjects with symptomatic radiographic knee osteoarthritis: Data from the osteoarthritis initiative. Osteoarthritis Cartilage. 2014;22:S175.

102. Hudelmaier M, Wirth W, Nevitt M, Eckstein F. Longitudinal rates of change in subchondral bone size in healthy knees and knees with radiographic osteoarthritis. Osteoarthritis Cartilage. 2013;21(April Suppl):S242.

103. Hunter DJ, Zhang Y, Niu J, Goggins J, Amin S, LaValley MP, et al. Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum. 2006;54(5):1529-35.

104. Kornaat PR, Kloppenburg M, Sharma R, Botha-Scheepers SA, Le MPM, Coene LN, et al. Bone marrow edema-like lesions change in volume in the majority of patients with osteoarthritis; associations with clinical features. European Radiology. 2007;17(12):3073-8.

105. Koster IM, Oei EHG, Hensen JHJ, Boks SS, Koes BW, Vroegindeweij D, et al.
Predictive factors for new onset or progression of knee osteoarthritis one year after
trauma: MRI follow-up in general practice. European Radiology. 2011;21(7):1509-16.
106. Kothari A, Guermazi A, Chmiel JS, Dunlop D, Song J, Almagor O, et al. Withinsubregion relationship between bone marrow lesions and subsequent cartilage loss in
knee osteoarthritis. Arthritis Care Res. 2010;62(2):198-203.

107. Kubota M, Ishijima M, Kurosawa H, Liu L, Ikeda H, Osawa A, et al. A longitudinal study of the relationship between the status of bone marrow abnormalities and progression of knee osteoarthritis. Journal of Orthopaedic Science. 2010;15(5):641-6.
108. Liu L, Kaneko H, Sadatsuki R, Hada S, Yusup A, Kinoshita M, et al. MRI-detected osteophyte is a predictor for receiving total knee arthroplasty in patients with

detected osteophyte is a predictor for receiving total knee arthroplasty in patients with end-stage knee osteoarthritis. Osteoarthritis Cartilage. 2014;22:S470-S1.

109. Lo GH, Schneider E, Price L, Driban J, Tassinari A, Nevitt M, et al. Periarticular bone density and trabecular morphology predict knee OA structural progression. Osteoarthritis Cartilage. 2012;20:S76.

110. Madan-Sharma R, Kloppenburg M, Kornaat PR, Botha-Scheepers SA, Le MPH, Bloem JL, et al. Do MRI features at baseline predict radiographic joint space narrowing in the medial compartment of the osteoarthritic knee 2 years later? Skeletal Radiology. 2008;37(9):805-11.

111. Mazzuca A, Brandt D, Schauwecker S, Buckwalter A, Katz P, Meyer M, et al. Bone scintigraphy is not a better predictor of progression of knee osteoarthritis than Kellgren and Lawrence grade. The Journal of rheumatology. 2004;31(2):329-32.

112. Mazzuca A, Brandt D, Schauwecker S, Katz P, Meyer M, Lane A, et al. Severity of joint pain and Kellgren-Lawrence grade at baseline are better predictors of joint space narrowing than bone scintigraphy in obese women with knee osteoarthritis. The Journal of rheumatology. 2005;32(8):1540-6.

113. Parsons C. EMH, Bruye`re O., Belissa P., Genant H.K., Guermazi A., Roemer F., Zaim S., Reginster J.-Y., Dennison E.M., Cooper C. Impact of bone marrow lesion on the progression of knee osteoarthritis in the sekoia study. Rheumatology. 2014;53(Suupl 1):i130.

114. Pelletier JP, Raynauld JP, Berthiaume MJ, Abram F, Choquette D, Haraoui B, et al. Risk factors associated with the loss of cartilage volume on weight-bearing areas in knee osteoarthritis patients assessed by quantitative magnetic resonance imaging: a longitudinal study. Arthritis Research & Therapy. 2007;9(4).

115. Raynauld JP, Martel-Pelletier J, Berthiaume MJ, Abram F, Choquette D, Haraoui B, et al. Correlation between bone lesion changes and cartilage volume loss in patients with osteoarthritis of the knee as assessed by quantitative magnetic resonance imaging over a 24-month period. Annals of the Rheumatic Diseases. 2008;67(5):683-8.

116. Raynauld JP, Martel-Pelletier J, Haraoui B, Choquette D, Dorais M, Wildi LM, et al. Risk factors predictive of joint replacement in a 2-year multicentre clinical trial in knee osteoarthritis using MRI: Results from over 6 years of observation. Annals of the Rheumatic Diseases. 2011;70(8):1382-8.

117. Raynauld JP, Martel-Pelletier J, Dorais M, Haraoui B, Choquette D, Abram F, et al. Total Knee Replacement as a Knee Osteoarthritis Outcome: Predictors Derived from a 4-Year Long-Term Observation following a Randomized Clinical Trial Using Chondroitin Sulfate. Cartilage. 2013;4(3):219-26.

118. Roemer FW, Guermazi A, Javaid MK, Lynch JA, Niu J, Zhang Y, et al. Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss: the MOST Study. A longitudinal multicentre study of knee osteoarthritis. Ann Rheum Dis. 2009;68(9):1461-5.

119. Roemer FW, Zhang Y, Niu J, Lynch JA, Crema MD, Marra MD, et al. Tibiofemoral joint osteoarthritis: Risk factors for MR-depicted fast cartilage loss over a 30-month period in the multicenter osteoarthritis study. Radiology. 2009;252(3):772-80.

120. Roemer FW, Kwoh CK, Hannon MJ, Green SM, Jakicic JM, Boudreau R, et al. Risk factors for magnetic resonance imaging-detected patellofemoral and tibiofemoral cartilage loss during a six-month period: the joints on glucosamine study. Arthritis Rheum. 2012;64(6):1888-98.

121. Sowers M, Karvonen-Gutierrez CA, Jacobson JA, Jiang Y, Yosef M. Associations of anatomical measures from MRI with radiographically defined knee osteoarthritis score, pain, and physical functioning. Journal of Bone and Joint Surgery - Series A. 2011;93(3):241-51.

122. Tanamas SK, Wluka AE, Pelletier JP, Pelletier JM, Abram F, Berry PA, et al. Bone marrow lesions in people with knee osteoarthritis predict progression of disease and joint replacement: a longitudinal study. Rheumatology. 2010;49(12):2413-9. 123. Tanamas SK, Wluka AE, Pelletier JP, Martel-Pelletier J, Abram F, Wang Y, et al. The association between subchondral bone cysts and tibial cartilage volume and risk of joint replacement in people with knee osteoarthritis: a longitudinal study. Arthritis Res Ther. 2010;12(2):R58.

124. Wildi LM, Raynauld JP, Martel-Pelletier J, Abram F, Dorais M, Pelletier JP. Relationship between bone marrow lesions, cartilage loss and pain in knee osteoarthritis: results from a randomised controlled clinical trial using MRI. Ann Rheum Dis. 2010;69(12):2118-24.

125. Zhang Y, Nevitt M, Niu J, Lewis C, Torner J, Guermazi A, et al. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum. 2011;63(3):691-9.

126. Aitken D, Khan HI, Ding C, Blizzard L, Pelletier JP, Martel-Pelletier J, et al. Structural predictors of ten year knee cartilage volume loss. Arthritis Rheum. 2013;65:S97-S8.

127. Barr RJ, Gregory JS, Reid DM, Aspden RM, Yoshida K, Hosie G, et al. Predicting OA progression to total hip replacement: can we do better than risk factors alone using active shape modelling as an imaging biomarker? Rheumatology (Oxford). 2012;51(3):562-70.

128. Bennell KL, Creaby MW, Wrigley TV, Hunter DJ. Tibial subchondral trabecular volumetric bone density in medial knee joint osteoarthritis using peripheral quantitative computed tomography technology. Arthritis Rheum. 2008;58(9):2776-85.

129. Bowes MA, Vincent GR, Wolstenholme CB, Conaghan PG. A novel method for bone area measurement provides new insights into osteoarthritis and its progression. Ann Rheum Dis. 2015;74(3):519-25.

130. Doherty M, Courtney P, Doherty S, Jenkins W, Maciewicz RA, Muir K, et al. Nonspherical femoral head shape (pistol grip deformity), neck shaft angle, and risk of hip osteoarthritis: a case-control study. Arthritis Rheum. 2008;58(10):3172-82.

131. Felson DT, Niu J, Guermazi A, Roemer F, Aliabadi P, Clancy M, et al. Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum. 2007;56(9):2986-92.

132. Hunter DJ, Bowes M, Boudreau RM, Hannon MJ, Kwohx KC. Does bone shape predict the development of incident knee oa? Osteoarthritis Cartilage. 2013;21.

133. Javaid MK, Kiran A, Guermazi A, Kwoh CK, Zaim S, Carbone L, et al. Individual magnetic resonance imaging and radiographic features of knee osteoarthritis in subjects with unilateral knee pain: The health, aging, and body composition study. Arthritis Rheum. 2012;64(10):3246-55.

134. Javaid MK, Lynch JA, Tolstykh I, Guermazi A, Roemer F, Aliabadi P, et al. Preradiographic MRI findings are associated with onset of knee symptoms: the most study. Osteoarthritis Cartilage. 2010;18(3):323-8.

135. Neogi T, Bowes MA, Niu JB, De Souza KM, Vincent GR, Goggins J, et al. Magnetic Resonance Imaging-Based Three-Dimensional Bone Shape of the Knee Predicts Onset of Knee Osteoarthritis: Data From the Osteoarthritis Initiative. Arthritis Rheum. 2013;65(8):2048-58.

136. Neogi T, Felson D, Niu J, Lynch J, Nevitt M, Guermazi A, et al. Cartilage loss occurs in the same subregions as subchondral bone attrition: a within-knee subregion-

matched approach from the Multicenter Osteoarthritis Study. Arthritis Rheum. 2009;61(11):1539-44.

137. Nicholls AS, Kiran A, Pollard TC, Hart DJ, Arden CP, Spector T, et al. The association between hip morphology parameters and nineteen-year risk of end-stage osteoarthritis of the hip: a nested case-control study. Arthritis Rheum. 2011;63(11):3392-400.

138. Ratzlaff C. RLR, K. Kwoh, M. Hannon, J. Grago, A. Guermazi, F. Roemer, M. Jarraya, D. Hunter, J. Duryea. Quantitative MRI measures of bone marrow lesion volume predict total knee replacement. Osteoarthritis Cartilage. 2014;22:S238-S9.

139. Stahl R, Jain SK, Lutz J, Wyman BT, Le MPM, Vignon E, et al. Osteoarthritis of the knee at 3.0 T: comparison of a quantitative and a semi-quantitative score for the assessment of the extent of cartilage lesion and bone marrow edema pattern in a 24-month longitudinal study. Skeletal Radiology. 2011;40(10):1315-27.

140. Wluka AE, Wang Y, Davis SR, Cicuttini FM. Tibial plateau size is related to grade of joint space narrowing and osteophytes in healthy women and in women with osteoarthritis. Ann Rheum Dis. 2005;64(7):1033-7.

141. Zhao J, Li X, Bolbos RI, Link TM, Majumdar S. Longitudinal assessment of bone marrow edema-like lesions and cartilage degeneration in osteoarthritis using 3 T MR T1rho quantification. Skeletal Radiol. 2010;39(6):523-31.