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Early Interneuron Dysfunction in ALS:
Insights from a Mutant sod1

Zebrafish Model
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Objective: To determine, when, how, and which neurons initiate the onset of pathophysiology in amyotrophic lateral
sclerosis (ALS) using a transgenic mutant sod1 zebrafish model and identify neuroprotective drugs.
Methods: Proteinopathies such as ALS involve mutant proteins that misfold and activate the heat shock stress
response (HSR). The HSR is indicative of neuronal stress, and we used a fluorescent hsp70-DsRed reporter in our
transgenic zebrafish to track neuronal stress and to measure functional changes in neurons and muscle over the
course of the disease.
Results: We show that mutant sod1 fish first exhibited the HSR in glycinergic interneurons at 24 hours
postfertilization (hpf). By 96 hpf, we observed a significant reduction in spontaneous glycinergic currents induced in
spinal motor neurons. The loss of inhibition was followed by increased stress in the motor neurons of symptomatic
adults and concurrent morphological changes at the neuromuscular junction (NMJ) indicative of denervation.
Riluzole, the only approved ALS drug and apomorphine, an NRF2 activator, reduced the observed early neuronal
stress response.
Interpretation: The earliest event in the pathophysiology of ALS in the mutant sod1 zebrafish model involves
neuronal stress in inhibitory interneurons, resulting from mutant Sod1 expression. This is followed by a reduction in
inhibitory input to motor neurons. The loss of inhibitory input may contribute to the later development of neuronal
stress in motor neurons and concurrent inability to maintain the NMJ. Riluzole, the approved drug for use in ALS,
modulates neuronal stress in interneurons, indicating a novel mechanism of riluzole action.
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Neurodegenerative diseases including amyotrophic

lateral sclerosis (ALS) are characterized by the pres-

ence of protein inclusions in the affected neurons.

Emerging data indicate that protein misfolding may be

of mechanistic importance in these diseases.1 Mutations

in the ubiquitously expressed superoxide dismutase

(SOD1) gene account for 20% of cases of the familial

form of ALS. More than 150 mutations in the SOD1
gene have been discovered, including the point mutations

G93R and G85R.2 Recent studies also implicate SOD1
in the sporadic form of ALS and suggest a prionlike

propagation of misfolded SOD1.3–5 Interestingly, some

of the newly identified genes implicated in ALS, such as

TARDBP and FUS, are also proteins that show a high

propensity to misfold and prionlike activity.6 However,

we still do not know the precise mechanism by which

mutant proteins cause toxicity.5,7 The emerging consen-

sus view is that multiple interacting pathophysiological

factors, including protein misfolding, contribute to the

neuronal toxicity in ALS.8,9

Despite progress in revealing multiple molecular

processes involved in disease pathology, relatively little is
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known about when and how the disekease, which starts

focally, spreads throughout the motor network.10–12

Interestingly, even in the subtypes of ALS caused by

SOD1 mutations, there is considerable phenotypic heter-

ogeneity. Ravits and La Spada12 hypothesized that despite

disease heterogeneity, the disease poses common themes

that may involve common mechanisms. They propose

that ALS may in fact be an orderly, actively propagating

process and that fundamental molecular mechanisms

may be uniform.

The zebrafish is emerging as a useful tool for study-

ing neurological diseases relevant to humans. Previously,

we had shown that mutant sod1 transgenic fish show the

hallmarks of adult onset neurodegenerative ALS, includ-

ing defective motor performance, motor neuron loss, a

loss of neuromuscular connectivity, and muscle atrophy.13

The aforementioned observations demonstrate the useful-

ness of the zebrafish as a model for this disease.

However, among the current limitations when

working with in vivo models of ALS is the lack of a

good readout for the presymptomatic course of the dis-

ease. The zebrafish offer great advantages in studying

early disease processes, as they develop rapidly, reaching

postembryonic life at around 3 days postfertilization

(dpf ), which is developmentally similar to the neonatal

mouse (for a comparison of developmental stages in

human, mouse, and zebrafish, see Table 1). Moreover,

the embryonic and larval zebrafish spinal cord is func-

tionally and anatomically similar to that of humans, yet

it is also optically transparent and experimentally accessi-

ble, making it ideal for the study of spinal circuits in

normal and pathophysiological conditions.14

In the current study, we monitored in vivo early

neurological changes caused by mutant sod1 gene. The

sod1 zebrafish ALS model harbors a fluorescent heat

shock stress response (HSR) reporter gene (hsp70-

DsRed). The HSR is an endogenous cellular pathway

that attempts to refold the damaged proteins in stressed

cells, although this response is not always sufficient or

beneficial.15 Thus, the HSR-mediated DsRed fluores-

cence in the sod1 zebrafish model of ALS represents a

useful tool for monitoring perturbations in cellular ho-

meostasis caused by sod1 mutation. This facilitates the

mapping of disease focality and spread through the cen-

tral nervous system (CNS) by the spatiotemporal readout

of the neuronal stress response in the spinal cord of mu-

tant zebrafish and provides an understanding of the cells

and networks involved in disease propagation in ALS.

We present evidence that the HSR is an indicator

of early pathogenic processes occurring in neurons. The

HSR is first observed at embryonic stages, in discrete

populations of inhibitory interneurons in the spinal cord,

and is followed by dysregulation of glycine release from

these inhibitory interneurons. Furthermore, we observe

that following interneuron dysfunction, motor neurons

start exhibiting neuronal stress. More interestingly, we

show that motor neurons showing the HSR also show

dysfunctional neuromuscular junctions (NMJs). Taken

together, our observations suggest that the mutant sod1-

induced HSR is a robust predictor of neuronal dysfunc-

tion and thus is a reliable marker of disease pathogenesis.

Finally, we also show that the neuronal stress readout can

be used to identify neuroprotective compounds such as

riluzole and identify biological targets that may amelio-

rate early pathophysiological disease processes that are

currently not well explored. Although the sod1 zebrafish

model may by itself not be sufficient in developing new

therapies for ALS, this model system would provide a

rapid way to triage compounds for screening in higher

vertebrate models, with the potential for more rapid

identification of promising compounds for translation

into human clinical trials.

TABLE 1: Comparison of Neural Developmental Stages in Humans, Mice, and Zebrafish

Embryo Fetus

Neural groove Neural tube Spontaneous limb movement Free living

Human 23 dpf 4 wpf 9-10 wpf 40 wpf

Mouse 8.5 dpf 9.5 dpf 12 dpf 21 dpf

Embryo Larvae

Neural thickening Neural keel Spontaneous movement Free living

Zebrafish 10.3 hpf 11.6-16 hpf 17-24 hpf 56-72 hpf

dpf: days post-fertilization; hpf: hours post-fertilization; wpf: weeks post-fertilization; dpp: days post partum. Larval zebrafish:
72hpf-30dpf; juvenile zebrafish: 30 dpf-3months; breeding adult: 3 months-2 years.
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Materials and Methods

Details are given in the Supplementary Materials and Methods.

Generation of Transgenic Zebrafish
The zebrafish sod1 transgenic fish lines were created according

to protocols described previously by Ramesh et al.13 For all the

transgenic strains, a suffix Sh was added (to imply Sheffield

strain). The transgenic lines utilized for this study included the

Tg(sod1:sod1WT;hsp70:DsRed)os4-Sh4, the line expressing the

highest level of WTSod1 (�3.3 as compared to nontransgenic

lines), referred to as WTos4-Sh4 line; Tg(sod1:sod1G93R;

hsp70:DsRed)os10-Sh1, referred to as G93Ros10-Sh1 (high ex-

presser with Sod1 expression increased �3 and comparable to

WTos4-Sh4); Tg(sod1:sod1G93R;hsp70:DsRed)os10-Sh2, referred

to as G93Ros6-Sh2 (moderate expresser with Sod1 expression

increased �2.5); and Tg(sod1:sod1G85R; hsp70:DsRed) os6-Sh3

line, referred to as G85Ros6-Sh3 (low expresser with Sod1

expression increased �1.5). When both G93R and G85R lines

are discussed, they are referred to as MUTsod1 lines.

Electrophysiology
Whole cell voltage clamp recordings were conducted in 4 dpf

larvae as previously described.16 The fish were perfused with

Evans physiological saline containing the neuromuscular blocker

D-tubocurarine (10lM), the sodium channel blocker tetrodo-

toxin (TTX; to synaptically isolate neurons), kynurenic acid

(2.5mM, to block spontaneous glutamatergic currents), and

bicuculline (25lM, to block spontaneous c-aminobutyric acid-

ergic [GABAergic] currents). Cells were voltage clamped at

�75mV, a potential at which the chloride-conducting glycine

receptors generate inward currents. Sulforhodamine (0.1%) was

included in the electrode solution to visually identify the cell

type. The frequency of glycinergic miniature postsynaptic cur-

rents (mPSCs) was determined by averaging the number of

events in a 300-second period. To examine the rise time, decay,

and amplitude of mPSCs, the first 50 mPSCs were selected

from each recording and averaged across each experimental

condition.

Fluorescent RNA In Situ Hybridization
Fluorescent RNA in situ hybridization was performed on 24

hours postfertilization (hpf) G93Ros10 embryos, as previously

described.17 A mix of equal concentrations of the probes

(glyt2a, glyt2b, and DsRed; gad65,67 and DsRed; or vglut2

and DsRed) was used as previously described.18 Quantification

of cells was done by counting DsRed/glycine-, DsRed/GABA-,

and DsRed/vglut2-positive cells in the midtrunk region, and

the percentage of DsRed cells showing glycine, GABA, or gluta-

mate staining, as well as the percentage of each cell type show-

ing DsRed staining, was calculated from an average of 10

embryos (a total of 429, 505, and 634 DsRed cells were

counted, respectively, for each riboprobe pair).

Immunofluorescence
Immunofluorescence was performed as described by Ramesh

et al.13 Quantitative analysis of confocal images was performed

on image stacks of 16 to 20lm thickness (0.5–1lm/section).

Drug testing
The G93Ros10-Sh4 line was used to identify drugs that inhibit

neuronal stress. Twenty-four hours postfertilization transgenic

embryos (25 embryos/treatment) were incubated with sterile

embryo media with the optimized concentration of the test

compound and changed daily and maintained for 5 days. At 5

dpf, the lysates from transgenic or nontransgenic embryos were

obtained by sonication (Sonicator 4000; Misonix, Farmingdale,

NY) on ice followed by centrifugation. Fifty microliters of su-

pernatant was analyzed in a 96-well plate (Corning-3880;

Corning Life Sciences, Corning, NY) at DsRed wavelength.

Image Analysis
Image analysis for NMJ analysis was performed using National

Institutes of Health ImageJ software, and quantitative analysis

of the NMJ morphology was performed using a colocalization

analysis plugin.19,20

Statistical Analysis
Statistics were performed using Prism 5 (GraphPad Software,

La Jolla, CA). Unpaired t tests or analysis of variance with post

hoc Bonferroni testing were used to compare groups. Electro-

physiological data were compared using the 2-way Kolmo-

gorov–Smirnov test.

Results

Induction of Neuronal Stress in Transgenic
sod1 Zebrafish
When developing the sod1 transgenic zebrafish, we

hypothesized that misfolding of the Sod1 protein in vul-

nerable cell populations would cause cellular stress and

activate the HSR, allowing identification of potentially

dysfunctional neurons. The HSR responsive, hsp70-DsRed
construct that is inserted adjacent to the sod1 gene is

driven by the hsp70 minimal promoter (1.5-kilobase frag-

ment), and is not driven by the adjacent sod1 gene. The

basal hsp70 promoter will allow induction of the DsRed

reporter only in the presence of heat shock or cellular

stress. In the absence of stress or heat shock, the promoter

is silent, and no DsRed is synthesized. This method of re-

porter expression is commonly used in zebrafish research,

and multiple lines within our lab using other transgenes

(eg, SMN) made with this linked expression construct

behave similarly.21

We generated multiple G93R (high expresser:

G93Ros10-Sh1; moderate expresser: G93Ros6-Sh2),

G85R (low expresser: G85Ros6-Sh3), and wild-type (WT;

high expresser: WTos4-Sh4) sod1 transgenic zebrafish car-

rying the hsp70-DsRed stress reporter gene. As expected,
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the sod1 transgenic fish showed red fluorescence through-

out the body and also in the spinal cord upon heat shock

(Fig 1A, þHS). Interestingly, we found that in the absence

of heat shock the embryos expressing Sod1 exhibited spe-

cific DsRed expression in the CNS, indicating the presence

of neuronal stress (see Fig 1A,�HS). The high

(G93Ros10-Sh1) and moderate expresser (G93Ros6-Sh2)

mutant sod1 lines showed DsRed induction in distinct

neuronal groups in the dorsal spinal cord. The highest ex-

presser WTos4-Sh4 line showed a minimal level of DsRed

induction, despite having high transgene copy numbers

and 3-fold increased Sod1 protein expression; levels were

identical to the G93Ros10-Sh1 mutant line. Most impor-

tantly, endogenous hsp70 was also upregulated in cells that

expressed DsRed, evident in the neurons that show high

DsRed expression levels. The moderate expresser mutant

and the high expresser WT lines did not show strong

DsRed or detectable hsp70 induction. DsRed is a very sta-

ble protein, and this stability greatly amplifies the hsp70

induction signal. This was shown by a strong DsRed signal

persisting for several days after heat shock (Supplementary

Fig 1E, F) in the transgenic fish, whereas endogenous

hsp70, which is tightly regulated,22 returned to back-

ground levels at 15 hours after heat shock.

Stressed Neurons in the Embryonic Spinal
Cord Are Predominantly Inhibitory
Glycinergic Interneurons
The zebrafish spinal cord is composed of neurons and

glia.23 The neurons include a variety of interneurons and

motor neurons, whereas the glial population consists of

oligodendrocytes that myelinate axons and radial glial cells

(similar to astrocytes) that provide support to neurons.23

To determine the spatiotemporal onset of the HSR in the

spinal cord, we used in situ hybridization and antibody

staining to determine the identity of DsRed-expressing

cells in mutant embryos and larvae. Interestingly, DsRed

expression was never observed in oligodendrocytes, radial

glia, or motor neurons (olig2- or hb9-positive early

FIGURE 1: Sod1 transgenic fish induce the heat shock
response (HSR) without exposure to heat stress. (A) Live
G93Ros10-Sh1 showing induction of hsp70 measured by
DsRed fluorescence at 7 days postfertilization in whole
embryos (top panel) and 30 hours postfertilization (hpf) spinal
cord (bottom panel). Larvae were heat shocked (1HS) or left
unexposed to heat shock (2HS), and images of HSR induction
were compared. When exposed to heat, the larvae showed
global induction of the HSR (left panel), whereas in the ab-
sence of heat shock, only neuronal, neuroepithelial, and occa-
sionally muscle cells show induction of the HSR (right panel).
(B) Multiple mutant lines G93Ros10-Sh1 and G93Ros6-Sh2
show HSR induction in the absence of heat shock. Confocal
images of spinal neurons show induction of endogenous
hsp70 (middle column) in high expresser G93Ros10 line (top
panel) in the same cells that showed strong DsRed expression
(top row, left column). Moderate expresser G93Ros6-Sh2 line
(middle row) and high expresser WTos4-Sh4 line (bottom row)
do not show elevated hsp70 levels above background. (C)
Quantitation of the DsRed fluorescence in individual neurons
in the zebrafish embryonic spinal cord (30 hpf) by average
fluorescence intensity. Average fluorescence of individual
DsRed-positive neurons was measured and analyzed by analy-
sis of variance. *p < 0.05 for G93Ros6-Sh2 and WTos4-Sh4;
***p < 0.0001 for G93Ros10-Sh1 and WTos4-Sh4. Size bars 5
10lM. [Color figure can be viewed in the online issue, which is
available at www.annalsofneurology.org.]
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differentiating and ChAT-positive mature) in the mutant

sod1 larvae (Supplementary Fig 2).

Thus, we reasoned that the first spinal neurons to

activate HSR were likely to be interneurons. We next

sought to determine which interneuron populations ex-

hibit the HSR. The zebrafish spinal cord has been charac-

terized in detail, and the different spinal interneurons have

stereotyped neuroanatomy, with predictable anatomical

positions and axonal trajectories.24 Moreover, each class

expresses 1 of only 3 neurotransmitters: glycine, GABA,

and glutamate.24 We therefore used a combination of ana-

tomical and transmitter expression characteristics to iden-

tify the cell types in which the HSR was present.

To determine whether the stressed neurons of sod1
mutant embryos were glycinergic, we used dual color fluo-

rescence in situ hybridization with riboprobes targeted

against glycine transporter (glyt2a, b) and DsRed RNA. We

observed numerous cells in which glyt2a,b and DsRed

colocalized (Fig 2, top panel). Similarly, DsRed expression

often colocalized with cells positive for antiglycine anti-

bodies (Supplementary Fig 3B). Quantitation of the per-

centage of glycinergic interneurons that showed the neuro-

nal stress response revealed that almost half of the

glycinergic interneurons (49.23 6 12.8 percent) showed

DsRed expression at 24 hpf. The percentage of DsRed-

positive neurons that were glycinergic was 44.2 6 9.5%.

The majority of DsRed-positive cells that coex-

pressed glycine had dorsally located perikarya and axons

that projected rostrally through the dorsolateral aspect of

the spinal cord toward the brain. Such axonal projections

are observed in commissural secondary ascending

(CoSA)–glycinergic (mammalian V0-like), commissural

bifurcating longitudinal (CoBL; mammalian dl6-like),

and circumferential ascending (mammalian V1-like)

interneurons, which comprise the 3 glycinergic interneur-

ons of the zebrafish spinal cord at this stage of

development.24,25

Of these, the CoBL and CoSA interneurons are

pax2 positive.18,25,26 We therefore used anti-pax2 anti-

bodies to label CoBL and CoSA interneurons. However,

as our DsRed and pax2 antibodies were both rabbit

derived, we were limited to monitoring pax2 colocaliza-

tion within strongly DsRed-positive cells unenhanced by

immunolabeling. Multiple fields with interneurons that

showed strong DsRed expression showed colocalization

with pax2 antibody staining (see Supplementary Fig 3A).

To determine whether GABAergic interneurons

expressed the HSR, we performed in situ hybridization

with riboprobes targeted against GABA biosynthetic

enzymes gad65 and gad67. We found that 14.2 6 6.8%

of DsRed-positive neurons had a GABAergic transmitter

phenotype (see Fig 2, middle panel), whereas the per-

centage of GABA-positive neurons that showed HSR was

8.18 6 4.95%.

We next asked whether the HSR occurred in the gluta-

matergic interneurons of the mutant embryonic spinal cord.

Investigation of the expression of the glutamatergic excita-

tory neurotransmitter using vglut2 riboprobes showed that

23 6 5.4% of the DsRed-positive neurons were vglut2

FIGURE 2: Embryonic mutant sod1 zebrafish show induction
of neuronal stress predominantly in the spinal inhibitory glyci-
nergic interneurons. In situ hybridization with probes for inhibi-
tory and excitatory neurons (left panels) and DsRed riboprobes
(middle panel). Top panel: glyt2-positive glycinergic inhibitory
interneurons; middle panel: gad65,67-positive c-aminobutyric
acidergic inhibitory interneurons (dorsal longitudinal ascending
and some glycinergic interneurons); bottom panel: vglut2-posi-
tive excitatory interneurons (commissural primary ascending
and commissural secondary ascending interneurons) that cross-
modulate the spinal locomotor circuitry. Time: 24 hours postfer-
tilization. Size bars 5 10lM. [Color figure can be viewed in the
online issue, which is available at www.annalsofneurology.org.]
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positive (see Fig 2, bottom panel). Analysis of the percentage

of vglut2-positive neurons that showed the HSR indicated

that 10.86 1.94% of vglut2 neurons were DsRed positive.

Glutamatergic interneurons in zebrafish have pri-

mary ascending or descending axons. Among them, the

commissural primary ascending (CoPA) and CoSA-gluta-

matergic interneuronal subtypes have ascending axons.24

After careful examination of >25 DsRed-labeled

embryos, we were unable to see any interneurons with

primary descending axons. Hence, we believe that the

vglut2-positive interneurons that show the HSR are

either CoPA or CoSA-glutamatergic interneurons. Thus,

the populations of neurons that show the HSR in the

embryonic spinal cord were primarily inhibitory glyciner-

gic interneurons, with some GABAergic and glutamater-

gic neurons that modulate the local reciprocal activation

and inhibitory circuits required for swimming.

Reduced Glycinergic Input onto Motor Neurons
following Induction of Interneuron Stress
To this point, our findings suggested that glycinergic

inhibitory interneurons comprise the majority of stressed

neurons in the early mutant sod1 zebrafish spinal cord.

Hence, we used in vivo patch clamp electrophysiology to

monitor glycinergic inputs onto motor neurons at 2 dpf,

a time when the stress response is just manifesting, and

at 4 dpf, a time when the stress response is pervasive.

Glycinergic transmission was monitored during voltage

clamp recordings by synaptically isolating neurons with

the sodium channel blocker TTX and blocking glutamate

and GABA transmission with kynurenic acid (2.5mM)

and bicuculline (25lM), respectively. Under these condi-

tions, spontaneous mPSCs were observed in motor neu-

rons that represented quantal release of glycine from gly-

cinergic interneurons (Fig 3A). The frequency of these

events did not differ significantly in nontransgenic and

WTos4-Sh4 fish (control ¼ 0.68 6 0.09Hz, WTos4-Sh4

¼ 0.84 6 0.13Hz; p > 0.05) but was approximately 50%

lower in motor neurons of sod1 mutant fish (0.32 6

0.05Hz; p < 0.001; see Fig 3A, C). In addition, cumula-

tive probability plots revealed a 15% increase in the half-

life (control ¼ 2.21 6 0.08 milliseconds vs sod1 mutant

¼ 2.55 6 0.08 milliseconds; p < 0.05), but no change in

rise time (control ¼ 0.58 6 0.02 milliseconds vs sod1 mu-

tant ¼ 0.60 6 0.04 milliseconds; p > 0.05) or amplitude

(control ¼ 20.27 6 0.63pA vs sod1 mutant ¼ 18.9 6

0.5pA; p > 0.05) of mPSCs (see Fig 3D). However, at 2

dpf, there were no differences in these parameters between

the WT and mutants (data not shown). Taken together,

these data indicate that the stress response in glycinergic

interneurons is predictive of their impaired function.

Chronic Loss of Inhibitory Input May Contribute
to Motor Neuron Stress
As the motor neurons show dysregulation of inhibitory

input within a few days after birth, potentially due to

pathophysiological changes within inhibitory interneur-

ons, we hypothesized that loss of inhibitory input may

contribute to the onset of motor neuron stress, due to

chronic loss of inhibitory interneuron input.

FIGURE 3: Reduced glycinergic transmission onto motor
neurons of sod1 zebrafish larvae. (A) Representative traces
depicting voltage clamp (holding potential 5 275mV)
recordings of spontaneous glycinergic miniature postsynap-
tic currents (mPSCs) in motor neurons of wild-type (WT), WT
Sod1 overexpresser (WTos4-Sh4), and sod1 mutant
(G93Ros10-Sh1) fish at 4 days postfertilization. Downward
deflections represent occasional quantal release of glycine
from presynaptic terminals. (B) Average of 30 consecutive
glycinergic mPSCs from each experimental condition. (C)
Bar chart depicting mean mPSC frequency for each experi-
mental condition. GlyR 5 glycine receptor; mIPSC 5 minia-
ture inhibitory postsynaptic current. **WT vs G93R p <
0.001. (D) Cumulative probability plots of mPSC amplitude,
rise time, and half-life (p < 0.05) in WT (black lines) and
G93Ros10-Sh1 (gray lines) motor neurons.

McGown et al: Interneuron Dysfunction in ALS

February 2013 251



We had earlier shown that staining for pre- and

postsynaptic NMJ markers was reduced in the muscles of

11dpf sod1 transgenic zebrafish.13 However, at these

larval stages NMJs were not grossly perturbed, indicating

that motor neuron loss was unlikely to have occurred at

the stage when DsRed expression is first observed in the

interneuron population.13 Analysis of DsRed expression

in the high expresser G93Ros10-Sh1 line in 9 dpf larvae

(which represent a similar developmental stage to the

preweaning stages in mice) showed widespread stress in

interneurons, but an absence of stress in motor neurons,

suggesting that motor neurons do not show the HSR at

the early larval stage of development (Supplementary Fig

4).

We examined whether symptomatic adult zebrafish,

which were 12 months old, show evidence of motor neu-

ron stress. Interestingly, spinal motor neurons from mu-

tant sod1 adult fish aged 12 to 18 months, which exhibit

reduced motor function, showed evidence of motor neu-

ron stress (Fig 4A, top and middle panels). Greater

DsRed induction in the spinal cord of the high expresser

transgenic line as compared to the low expresser was

observed. However, unlike the 3 independent mutant

sod1 lines, no DsRed expression was observed in the spi-

nal motor neurons of the high expresser WTos4-Sh4 line

(see Fig 4A, bottom panel). This mutant sod1-specific
HSR could also be observed in the motor neurons of

young adult zebrafish at 6 months of age (Supplementary

Fig 5). Thus, it appears that the HSR in motor neurons

is induced between 9 dpf and 6 months of age.

Stressed Motor Neurons Show Reduced
Neuromuscular Synaptic Volume and Loss
of Muscle Innervation
How muscle denervation occurs in ALS is a fundamental

question that remains unanswered, and conflicting data

indicate that both muscle and motor neurons play an im-

portant role in disease pathogenesis.27–29 We had previ-

ously shown that, similar to both mice and humans, the

number of NMJs in the G93Ros10 mutants was

reduced, and the few that remained were abnormally

small and punctate in appearance.13 However, it was

unclear as to whether these perturbations occurred only

at sites innervated by stressed motor neurons. To

FIGURE 4: Mutant sod1 zebrafish show stress in the large spi-
nal motor neurons of the adult spinal cord and concurrent loss
of neuromuscular junction (NMJ). (A) Spinal cord cross sections
from 1- to 1.5-year-old adult zebrafish stained with 40,6-diami-
dino-2-phenylindole (Dapi), DsRed antibody, and ChAT anti-
body show robust induction of the heat shock stress response
in spinal cord motor neurons. DsRed colocalized with ChAT in
the high expresser (33) G93Ros10-Sh1 line (top panel) and the
moderate expresser (32) G85Ros6-Sh3 line (middle panel).
The high expresser (33) WTos4-Sh4 line shows little DsRed
expression, and DsRed did not colocalize with the large ChAT-
positive motor neurons (bottom panel). (B) Muscle sections la-
beled with synaptic vesicle-2 (SV2) antibody (blue), a-
bungarotoxin(a-btx) (green), and DsRed (red) in high expresser
G93Ros10-Sh1 (left panel), low expresser G85Ros6-Sh3 (mid-
dle panel), and high expresser WTos4-Sh4 (right panel). Nor-
mal NMJs are indicated by arrows. Abnormal NMJs
(arrowheads) where pre- and postsynaptic markers are absent
or small and punctate were detected in the muscle sections
from the mutant lines (left and middle panels) but not in the
high expresser wild-type line (right panel). (C) One hundred
thirteen NMJs from multiple sections were measured for NMJ
volume from confocal stacks across multiple planes in SV2-pos-
itive–DsRed-negative axons and SV2-positive–DsRed-positive
axons using colocalization software from National Institutes of
Health Image J and analyzed by unpaired t test. Significant
reduction in NMJ volume was observed associated with
stressed motor axons as compared to the nonstressed axons.
The mean is represented as a line over the distribution. Each
dot represents the volume of an individual NMJ. p < 0.00001.
[Color figure can be viewed in the online issue, which is avail-
able at www.annalsofneurology.org.]
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determine whether this was the case, we compared NMJs

innervated by stressed (DsRed-positive) and nonstressed

(DsRed-negative) motor neurons. DsRed-positive axons

were detected in the musculature of the mutant (see Fig

4B, left and middle DsRed panels) but not in the WT

sod1 transgenic zebrafish (see Fig 4B, right DsRed panel).

We also observed that the DsRed-positive axons in

the high expresser G93Ros10-Sh1 showed no identifiable

NMJ structures and were completely devoid of a-bungar-
otoxin–labeled postsynaptic structures (see Fig 4B, left a-
btx panel). However, in the low expresser G85Ros6-Sh3

muscle sections, we observed that the DsRed-positive

axons showed some recognizable NMJs, which were,

however, abnormally small in size and often punctate in

appearance (see Fig 4B, middle a-btx panel). In contrast,

the nonstressed axons in the same section that did not

show DsRed expression showed large, well-developed

NMJs (see Fig 4B, left and middle a-btx panels).

The high expresser G93Ros10-Sh1 line showed

almost no NMJs arising from the DsRed-expressing

stressed axons, thus limiting quantitative analysis of the

NMJ in this line. Hence, we chose to use the low ex-

presser G85Ros6-Sh3 line for quantitation of NMJ vol-

ume in axons derived from stressed and unstressed neu-

rons. The G85Ros6-Sh3 line showed some NMJ

structures associated with the stressed axons and allowed

appropriate measurement of the effects of stress within

the axonal compartment on NMJ integrity. NMJs were

identified at the distal ends of stressed and nonstressed

axons, and the NMJ volume within the region of interest

was quantitated using 3-dimensional images from confo-

cal stacks.19,20 We observed an almost 5.5-fold decrease

in NMJ volume associated with stressed axons as com-

pared to nonstressed axons (1,097 6 477 vs 6,245 6

864; p < 0.00001; see Fig 4C). The NMJs in the

WTsod1 transgenic line were normal and showed large

and well-developed synapses (see Fig 4B, right a-btx
panel).

Riluzole and NRF2 Activators Reduce
Neuronal Stress
The major impetus for developing the zebrafish ALS

model is their suitability for high-throughput drug

screening, thereby facilitating discovery of drugs that

ameliorate ALS. To determine whether the zebrafish

model has the potential to identify novel ALS therapies,

we tested the ability of the antiexcitotoxic drug riluzole

to modify neuronal stress in zebrafish larvae. Riluzole

was chosen for this study as it is the only drug shown to

have a disease-modifying effect in ALS patients. We sub-

jected 24 hpf G93Ros10-Sh1 embryos to a 4-day incuba-

tion in 1, 3, 5, 7, and 10lM riluzole and used DsRed

fluorescence as a marker for progressive changes in the

neuronal stress response. We observed that riluzole

caused a dose-dependent reduction in DsRed fluores-

cence, with an IC50 of approximately 7lM (Fig 5). Tri-

caine, a local anesthetic that inhibits neuronal sodium

channels30 like riluzole and also reduces excitotoxicity,

produced a significant decrease in DsRed fluorescence

(see Fig 5B).

The NRF2 (nuclear factor [erythroid-derived 2]-

like 2) pathway plays an important role in regulating oxi-

dative stress, the cellular handling of misfolded proteins,

and mounting the autophagy response.31,32 Thus, we

hypothesized that drugs that upregulate this pathway

may potentially reduce neuronal stress in this model sys-

tem. We used R-apomorphine, which is known to be an

activator of the NRF2 antioxidant response (ARE)33 to

determine the effects of ARE induction on the stress

response observed in this model system. Treatment of

FIGURE 5: Inhibition of the stress response in sod1
G93Ros10-Sh1 zebrafish embryos by riluzole and NRF2 acti-
vator R-apomorphine. (A) Dose–response curve showing
dose-dependent inhibition of the stress response by riluzole
in sod1 G93Ros10-Sh1 embryos treated for 4 days with 1,
3, 5, 7, and 10lM riluzole, p < 0.001. (B) Percentage inhibi-
tion of the stress response expressed by reduction in DsRed
fluorescence in embryos treated with 610lM Tricaine (p <
0.000001), 10lM riluzole (p < 0.00001), and 10lM R-apo-
morphine (p < 0.001) as compared to 0.1% dimethyl sulfox-
ide–treated embryos. Mean 6 standard error of the mean.
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embryos with R-apomorphine produced a significant

reduction in the neuronal stress response (see Fig 5B).

Thus, 2 neuroprotective drugs acting through diverse

mechanisms were able to reduce the readout of neuronal

stress in this model system.

Discussion

Zebrafish have become a powerful model for the study

of degenerative diseases, as their experimental accessibil-

ity, small size, and genetic similarity to mammals facili-

tates detailed analysis of disease mechanisms and drug

screens. Zebrafish expressing mutant sod1 develop hall-

mark features of ALS commonly associated with both

murine models and the human disease13 (a comparison

of pathophysiological changes in our sod1 zebrafish

model, SOD1 mouse models, and human ALS is sum-

marized in Table 2).

In the current study, we have extended our analysis

of mutant zebrafish to track early, presymptomatic per-

turbations associated with the Sod1 mutation. Using the

hsp70-DsRed marker gene as a novel readout of neuronal

stress, we have characterized perturbations in the spinal

cord from early embryonic stages through to adult life,

establishing a correlation between neuronal stress and

pathophysiological changes in stressed neurons. We find

that in early stages of development, inhibitory neurons

are sensitive to the presence of mutant Sod1, activating

the stress response upon its expression. Moreover, using

electrophysiological approaches, we show that glycinergic

neurotransmission onto motor neurons is impaired in

mutant sod1 fish. These perturbations precede the onset

of pathophysiological defects in the motor neurons and

at the neuromuscular junction, which occur later in life.

SOD1 is a ubiquitously expressed protein, but

mutation in the SOD1 gene produces a disease affecting

the CNS. How this gene selectively perturbs neurons

during ALS is not well understood, although the

accepted view is that neurons are selectively sensitive to

mutant SOD1. Our observation suggests that neuronal

stress as measured by the HSR response occurs in spinal

interneurons long before it is observed in motor neurons.

This implicates interneurons as important components of

ALS disease progression in this mutant sod1 zebrafish

model. More importantly, we provide for the first time

evidence that this process occurs in vivo.
A possible role for inhibitory interneurons in ALS

has been hypothesized previously (see Turner and

Kiernan34 for a comprehensive review on this subject).

Both human ALS patients and mouse SOD1 models

have been reported to show a loss of spinal cord

TABLE 2: Summary of ALS Disease Pathophysiology in Humans, Mice, and Zebrafish

Neuronal
stress

Electro-
physiology

NMJ
denervation

Cellular
changes,
insoluble
aggregates

Astrocytosis/
Microgliosis/
Mitochondria/
Inclusion/UPS

Gross motor
symptoms

Human ? Prior to
onset
in adults†

Prior to
onset in
adults†

Golgi, mitochondria,
insoluble aggregates
In post-mortem
specimens

In post-mortem
specimens

40-50 years

Mouse
(Sod1G93
AHiGur)

? 12 dpf* to
6 dpp**
(G85R,
G93Alow)

~30dpp Golgi changes
~40-50dpp

~70-90dpp ~100dpp

Zebrafish
(G93R)

24 hpf **
(This
manuscript)

96hpf**
(This
manuscript)

Normal NMJ
but reduced
staining at 11dpf.
6 months and 1
year Observed
denervation in
stressed motor
neuron (This
manuscript)

UPR at 1
month***.

No gross
inflammation
(unpublished)
Motor neuron
stress. 6-months
(This manuscript)

1 year

dpf: days post fertilization; hpf: hours post fertilization; dpp: days postpartum. UPR: Unfolded Protein Response †earliest tested, *
earliest tested in organotypic culture; ** Earliest tested in intact spinal cord, *** Personal communication (C.Beattie)
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interneurons, aberrant recurrent inhibition, and motor

neuron hyperexcitability, observations that suggest that

dysregulation of inhibitory influences on motor neurons

may represent an early aspect of disease pathophysiol-

ogy.11,35–38 Moreover, recent in vitro studies show that

motor neurons derived from SOD1 mice have abnormal

glycine receptor expression and reduced responses to gly-

cinergic input.39 As shown in Table 2, electrophysiologi-

cal abnormalities are the earliest changes observed in

mice, suggesting that early pre- and postnatal develop-

ment is an area important for investigation in relation to

the mechanisms of SOD1 toxicity. Together, these obser-

vations suggest that defective inhibitory transmission may

promote motor neuron stress and accelerate disease pro-

gression. It is perhaps worth noting that that human

patients carrying the SOD1D90A homozygous mutations

develop an atypical slowly progressing form of ALS, and

in these patients, inhibitory interneurons are spared.40

However, Hossaini et al41 reported that interneuron pa-

thology occurred following motor neuron death in the

low expresser SOD1G93A mice. This study was limited

to examining adult mice, a few weeks prior to the onset

of symptoms, and did not look at early embryonic or

neonatal animals. Interestingly, mice from this line show

evidence of hyperexcitability as early as postnatal day 6

to 10, long before the onset of symptoms.42 The source

of this hyperexcitability is still unclear, but the data pre-

sented in this paper raise the possibility that dysfunc-

tional inhibitory interneurons may be responsible for

these changes. Future studies looking at different neuro-

nal populations during embryonic, neonatal, and adult

stages of development in the mutant SOD1 mouse model

would be necessary to establish the exact timing of dam-

age to various cell types.

Interestingly, overexpression of WT Sod1 also

induced neuronal stress in interneurons, albeit at a much

lower level than in the mutant sod1 zebrafish lines. This

observation stands in agreement with previous studies

that show high levels of WT SOD1 are toxic, although

to a much lesser extent than mutant SOD1.3,5,43 For

example, transgenic mice that overexpress WT SOD1

also show motor neuron loss, although it occurs far later

(2 years).44 It is important to note that the high expresser

G93Ros10 line that expresses similar levels of Sod1 to

the WTos4 line showed a 10-fold greater HSR induction

compared to the WT-expressing line. Similar to the

mouse overexpressing WTSOD1 where the disease was

limited and not progressive, in WTSod1-overexpressing

transgenic zebrafish, the HSR failed to spread to motor

neurons, to produce NMJ denervation, or to cause mus-

cle atrophy. Our observations are in keeping with those

seen in WTSOD1-overexpressing transgenic mice.

Another interesting finding from our study is that motor

neurons did not show induction of the HSR at the early

embryonic and larval stages, a time when inhibitory

interneurons exhibited clear dysfunction. Rather, the

onset of HSR induction in motor neurons occurred long

after, as the fish progressed toward adult life. These find-

ings suggest that the pathophysiological changes are not

static but spread progressively through the neural net-

work controlling motor system function. The findings in

this zebrafish model indicate that inhibitory interneurons

may be the cell type within the spinal cord most suscep-

tible to neuronal stress induced by the presence of mu-

tant Sod1. One route for the propagation of the patho-

physiology from inhibitory interneurons to motor

neurons is through dysregulation of the inhibitory input

to motor neurons, as discussed earlier. The zebrafish

model we have generated offers new approaches to test

this hypothesis and identify the circuitry involved in the

pathophysiological cascade.

Dying back axonal pathology is among the pro-

posed mechanisms leading to motor neuron death,

although we do not know whether this occurs as a pri-

mary event or secondary to changes in the motor neuron

perikaryon.45,46 We had earlier shown that NMJs in mu-

tant sod1 transgenic strains were reduced, and the few

that were present were morphologically abnormal (small

and punctate). This HSR readout in our zebrafish model

allows us to track the axons of stressed motor neurons

into the muscle and evaluate whether stress in the motor

neuron perikaryon leads to detectable pathology at the

NMJ. We show that NMJs from stressed motor neurons

were abnormal, as they were absent or were small and

punctate in appearance as compared to nonstressed

axons. This effect was specific to the mutant Sod1 lines

and was not observed in the WT Sod1 overexpressing

line. This indicates that the stress we observe in the

motor neuron perikarya is predictive of synaptic degener-

ation at the NMJ. The sod1 zebrafish model will allow

more detailed dissection of the processes involved in de-

nervation at the NMJ, as now we can distinguish motor

axons arising from nonstressed and stressed motor

neurons.

Based on the combination of novel findings in the

sod1 zebrafish model of ALS, we propose a draft model

of ALS disease propagation in which neuronal stress

begins very early in life, initially affecting the inhibitory

interneuron pool, whose dysfunction may then contrib-

ute to pathophysiological changes in motor neurons later

in life (Fig 6B). In this proposed model, it is also possi-

ble that interneurons are more vulnerable to the toxic

effects of mutant Sod1, whereas motor neurons may

require 2 hits (Sod1 toxicity and loss of inhibition) to
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drive pathology. Future cell-specific transgene expression

and/or tissue transplant studies, which can be performed

in zebrafish embryos, will allow further exploration of

this hypothesis. Nonetheless, stressed motor neurons are

unable to maintain normal NMJs, which may in turn

lead to lack of the trophic support necessary for mainte-

nance of functional neuromuscular contacts, thereby

leading to denervation. Such a model has been previously

suggested,46 but here we propose that stressed motor

neurons are dysfunctional and induce a dying back phe-

notype, whereas NMJs of nonstressed neurons remain

intact. The evidence we provide here shows a direct link

between the level of chronic neuronal stress and neuro-

muscular degeneration.

Although we note that the early disease features

seen in this zebrafish model (electrophysiological changes

and NMJ denervation) are also observed in the presymp-

tomatic rodent models of SOD1-related ALS and to a

limited extent in presymptomatic human patients, further

work is necessary to determine whether these early

changes reflect the initiation of a progressive pathophys-

iological cascade that eventually culminates in motor

neuron loss. However, the similarities in the pathophysio-

logical changes occurring across these diverse species and

the gradual nature of these changes that precede motor

neuron loss suggest that they are likely to represent an

integral component of the disease process. Nevertheless,

the ability to use zebrafish to monitor these changes in

real time in vivo due to their small size, transparency,

and easy accessibility provides us with a valuable tool for

studying the cascade of motor neuron injury in ALS

from early pathophysiological changes to motor neuron

cell death.

The sod1 zebrafish model also holds promise as a

link between cell-based assays and rodent models, thus

providing a new platform for high-throughput screening

of neuroprotective compounds. In the current study, we

tested the effects of riluzole, the only therapeutic com-

pound that has shown benefit in both the SOD1G93A

murine models and human ALS patients, on neuronal

stress in the mutant sod1 zebrafish larvae. We found

that riluzole reduced the HSR in zebrafish, indicating

that it may slow progression of disease. Although rilu-

zole shows efficacy in ALS, the mechanism by which it

mediates neuroprotection is still unclear. Riluzole is

known to reduce neuronal excitability by stabilizing the

inactive state of voltage-gated sodium channels and also

by acting as a noncompetitive N-methyl-D-aspartate re-

ceptor antagonist.47 Interestingly, Tricaine, another drug

that modulates voltage-gated sodium channels, showed

a similar inhibition of the HSR. Together, these obser-

vations suggest that modulation of neuronal sodium

channel activation may affect disease progression, possi-

bly in an activity-dependent manner. Dissecting the

molecular mechanisms by which riluzole reduces the

neuronal stress response will be useful and may allow

the development of compounds with greater neuropro-

tective efficacy. We also identified that activators of the

NRF2 transcription factor, which plays an important

role in neuroprotection and operates as a master regula-

tor of the antioxidant and stress response pathways, can

also modulate the early neuronal stress response

observed in this model. Although this early stage

screening allowed identification of neuroprotective com-

pounds, further validation of hits from this assay will

be necessary in higher vertebrate models of ALS. The

in vivo high throughput zebrafish model fills an impor-

tant gap in ALS drug discovery and may provide lead

candidates for drug screening in rodent models, thus

accelerating the drug discovery process in ALS with the

potential for more rapid identification of promising

compounds for clinical translation.

FIGURE 6: Model of neuronal stress propagation in zebra-
fish model of amyotrophic lateral sclerosis. (A) Although
wild-type (WT) Sod1 overexpresser zebrafish show some
interneuron stress in early development, the stress levels
are low and there is no propagation of the stress response
to motor neurons. (B) Mutant sod1 transgenic zebrafish
show stress initially in the inhibitory interneurons that cause
dysfunction of glycinergic inhibitory interneurons with
reduced glycinergic input to motor neurons. This lack of in-
hibition may be a factor contributing to the stress response
developing in motor neurons in the adult zebrafish.
Stressed motor neurons are unable to maintain synaptic
function with resulting synaptic withdrawal at the neuro-
muscular junction (NMJ). The retraction of the presynaptic
input at the NMJ may lead to a loss of trophic support
from muscle, resulting in a vicious cycle of injury to the
motor neuron, eventually leading to motor neuron degener-
ation and muscle atrophy. Shades of gray indicate stress
levels.
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