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Abstract— Stationary and distributed consensus protocols
for a network of n dynamic agents under local information is
considered. Consensus must be reached on a group decision
value returned by a function of the agents’ initial state values.
As a main contribution we show that the agents can reach
consensus if the value of such a function computed over the
agents’ state trajectories is time invariant. We use this basic
result to introduce a protocol design rule allowing consensus
on a quite general set of values. Such a set includes, e.g., any
generalized mean of order p of the agents’ initial states. We
demonstrate that the asymptotical consensus is reached via a
Lyapunov approach. Finally we perform a simulation study
concerning the alignment maneuver of a team of unmanned
air vehicles.

I. INTRODUCTION

Distributed consensus protocols are local control policies
based on partial information that allow the coordination
of multi-agent systems. Agents implement a consensus
protocol to reach consensus, that is to (make their states)
converge to a same value, called consensus-value, or group
decision value [1].
Coordination of agents/vehicles is an important task in
several applications including autonomous formation
flight [2], [3], cooperative search of unmanned air-vehicles
(UAVs) [4], [5], swarms of autonomous vehicles or
robots [6], [7], multi-retailer inventory control [8], [9] and
congestion/flow control in communication networks [10].
Actually, a central point in consensus problems is
the connection between the graph structure, defined
by the Laplacian Matrix, and delays or distortions
in communication links [11]. Switching topology and
directional communications are studied in [1], [12], [13],
[14], [15], [16], while cooperation based on the notion of
coordination variable and coordination function in [17],
[18]. There, coordination variable is referred to as the
minimal amount of information needed to effect a specific
coordination objective, whereas a coordination function
parameterizes the effect of the coordination variable on
the myopic objectives of each agent.
In this paper, n dynamic agents reach consensus on a
group decision value by implementing distributed and
stationary control policies based on neighbors’ state
feedback. Here, neighborhood relations are defined by
a time-invariant connected undirected communication
topology. To generalize our results for switching topology
and directional communications, one could follow the
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same line of reasoning as in [1]. Similarly to [1], [2], [19],
the dynamics of the agents is a simple first order one.
We restrict the group decision value to be a permutation
invariant function of the agents’ state initial values.
Permutation invariance means that the value of the function
is independent of the agents indexes.
Our contribution to the study on consensus problems is to
show that consensus can be reached if the agents’ state
trajectories satisfy a certain time invariancy property. On
the basis of such a result, we prove that the group decision
values considered are sufficiently general to include any
mean of order p of the agents’ state initial values, such
as the arithmetic/min/max means usually dealt with in the
literature (see, e.g., [20]). Finally we argue that agents
reach asymptotically consensus on the desired group
decision value by studying equilibrium properties and
stability of the group decision value via Lyapunov theory.

II. THE CONSENSUS PROBLEM

We consider a system of n agents Γ = {1, . . . , n} and
model the interaction topology among agents through a
time-invariant connected undirected graph G = (Γ, E). The
graph is undirected since we assume the existence of only
bidirectional information exchange links between pairs of
agents. Then, each edge (i, j) in the edgeset E means that
agent i can receive information from agent j and, vice
versa, agent j can receive information from agent i. The
graph is connected since we assume that for any agent
i ∈ Γ there exists a path, i.e., a sequence of edges in
E, (i, k1)(k1, k2) . . . (kr, j), that connects it with any other
agent j ∈ Γ. Finally, the graph G is not complete since
each agent i exchanges information only with a subset of
other agents Ni = {j : (i, j) ∈ E} called neighborhood
of i.
Each agent i has a (simplified) first-order dynamics con-
trolled by a distributed and stationary control policy

ẋi = ui(xi, x
(i)) ∀i ∈ Γ, (1)

where x(i) is the state vector of the agents in Ni
with generic component j defined as follows, x

(i)
j ={

xj if j ∈ Ni,
0 otherwise.
The policy is distributed since, for each agent i, it

depends only on the local information available to it, which
is xi and x(i). No other information on the current or
past system state is available to agent i. (We discuss the
limit of this assumption at the beginning of Section 3).
The policy is stationary since it does not depend explicitly
on time t. In other words, the policy is a time invariant



and memoryless function of the state. Define the vector
x(t) = {xi(t), i ∈ Γ} as the system state and u(.) =
{ui(.) : i ∈ Γ} as a distributed stationary protocol or
simply a protocol. In accordance with [1], we say that
a protocol u(.) makes the agents asymptotically reach
consensus on a group decision value χ̂(x(0)) if there exists
an asymptotically stable equilibrium x∗ of ẋ = u(x), such
that x∗ = χ̂(x(0))1. When this happens we also say that the
system converges to χ̂(x(0))1. Here and in the following,
1 stands for the vector (1, 1, . . . , 1)T .
Notwithstanding each agent i has only a local information
(xi, x

(i)) on the system state x, we are interested in making
the agents reach consensus on group decision values that are
functions of the whole system initial state x(0). In particu-
lar, we study protocols that make the agents asymptotically
reach consensus on a group decision value χ̂(x(0)) where
χ̂ : <n → < is a generic function, such that

min
i∈Γ
{yi} ≤ χ̂(y) ≤ max

i∈Γ
{yi}, for all y ∈ <n. (2)

In other words, the group decision value must be confined
between the minimum and the maximum agents’ initial state
values. Any values in this range can be chosen as consensus
value by the general protocol we consider. Henceforth the
function χ̂(.) will be also referred to as agreement function.
In the above context, we face the following problem.

Problem 1: (Consensus Problem) Consider a network
G = (Γ, E) of dynamic agents with first-order dynamics.
For any function χ̂(.) determine a (distributed stationary)
protocol, whose components have the feedback form (1),
that makes the agents asymptotically reach consensus on
χ̂(x(0)) for any initial condition x(0).
In the following, a protocol that solves the consensus
problem is also referred to as a consensus protocol.

III. TIME INVARIANCY OF χ̂(x(t))

Initially, we show that if a protocol, which solves a
consensus problem, is distributed and stationary then the
system state trajectory enjoys the property that χ̂(x(t))
is time invariant. Then, we find a family of non trivial
protocols that guarantee such a property. We prove that
some of such protocols are consensus protocols with
respect to χ̂(x(0)) in the next section.

Lemma 1: (Time invariancy) Consider a network G =
(Γ, E) of dynamic agents with first-order dynamics. For any
function χ̂(.) implement a distributed stationary protocol
u(t), whose components have the feedback form (1), that
makes the agents converge to value χ̂(x(0)) for any initial
state x(0). Then the value of χ̂(x(t)) is time invariant, i.e.,
χ̂(x(t)) = χ̂(x(0)) for all t > 0.

Observe that there may exist consensus protocols not
implying the time invariancy of χ̂(x(t)). However, such
protocols must rely on additional information about the
whole system initial state x(0) or the value of χ̂(x(0)) (see,
e.g., [21] where a local estimate of the percentage of the
active players at each stage is performed). Unfortunately,
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COMMONLY USED MEANS AND THEIR REPRESENTATIONS IN TERMS OF

f AND g

in the case under study the local information alone is in
general not sufficient to reconstruct either x(0) or χ̂(x(0)).

Supposing that the state trajectory reaches the point
χ̂(x(0))1, the time invariancy property stated in Lemma 1
implies also that χ̂(x(0)) = χ̂(χ̂(x(0))1). Note that the last
condition satisfies (2). Actually, (2) imposes that function
χ̂(.) must be chosen such that any point λ1, for all λ ∈ <,
is a fixed point, i.e., χ̂(λ1) = λ, as it can be trivially derived
assuming x(0) = λ1.
With this consideration in mind, let us impose the time
invariancy of χ̂(x(t)). It holds χ̂(x(t)) = const when

dχ̂(x(t))

dt
= ∇xχ̂(x)·ẋ =

∑
i∈Γ

∂χ̂(x)

∂xi
ẋi =

∑
i∈Γ

∂χ̂(x)

∂xi
ui = 0.

(3)
The trivial protocol constantly equal to 0 leaves any value
χ̂(x(t)) time invariant, for any possible χ̂(.), but obviously
does not make the system converge. Consequently, it is no
longer considered hereafter.
Some other solutions of equation (3) can be obtained easily
when χ̂(x) presents a particular structure. A first possibility
is when the following condition holds

∂χ̂(x)

∂xi
ui = 0 ∀i ∈ Γ. (4)

For example, χ̂(x) = min{xi} and ui =
h(xi,minj∈Ni

{xj}) satisfy the above condition, for
any h(x, y) : <2 → < such that h(x, y) = 0 when x = y.
Actually, ∂χ̂(x)

∂xi
6= 0 only for i such that xi = minj∈Γ{xj},

then, by definition of function h(.), it holds ui(xi) = 0
and hence (4). The system converges to χ̂(x(0)) if we
impose the additional condition h(x, y) < 0 when x > y.
Trivially, analogous argument applies to χ̂(x) = max{xi}.
We specialize our study considering a more general family
of function χ̂(x).

Assumption 1: (Structure of χ̂(.)) Assume χ̂(.) satisfy-
ing condition (2) and such that χ̂(x) = f(

∑
i∈Γ g(xi)), for

some f, g : < → < with dg(xi)
dxi

6= 0 for all xi.
This set of functions includes all the commonly used means,
at least when xi(0) > 0, for all i ∈ Γ (see, e.g., Tab. I).

Theorem 1: (Protocol design rule) For any function χ̂(.)
as in Assumption 1, the non trivial protocol

ui(xi, x
(i)) =

1
dg(xi)
dxi

∑
j∈Ni

φ(xj , xi), for all i ∈ Γ (5)



lets the value χ̂(x(t)) be time invariant, where φ : <2 → <
is an antisymmetric function, i.e., φ(xj , xi) = −φ(xi, xj).

Consider the linear function φ(xj , xi) = α(xj − xi)
and the different means introduced in Tab. I. The arith-
metic mean is time invariant under protocol u(xi, x

(i)) =
α
∑
j∈Ni

(xj − xi); the geometric mean under protocol
u(xi, x

(i)) = αxi
∑
j∈Ni

(xj − xi); the harmonic mean un-
der protocol u(xi, x

(i)) = −αx2
i

∑
j∈Ni

(xj−xi); the mean

of order p under protocol u(xi, x
(i)) = α

x1−p
i

p

∑
j∈Ni

(xj−
xi).
Obviously, the time invariancy of χ̂(x(t)) under a given
protocol does not necessarily imply that the system con-
verges to χ̂(x(0))1. As it turns out at the end of the next
section, for the cases in the example, the system converges
to χ̂(x(0))1 only if α > 0 (for the harmonic mean only if
α < 0). Dealing with means different from the arithmetic
one we must also assume that xi(0) > 0 for all i ∈ Γ.

IV. SUFFICIENT CONDITIONS FOR CONVERGENCE

In the previous section, we find a family of protocols
as in (5) that guarantees the time invariancy of χ̂(x(t)).
In this section, we determine sufficient conditions on the
structure of functions g(.) and φ(.) such that a protocol of
type (5) makes the system converge to χ̂(x(0))1 for any
function χ̂(.) and initial state x(0). In particular, we prove
that the system converges when the function g(.) is strictly
increasing and the function φ(.) is defined as follows:

φ(xj , xi) = αφ̂(ϑ(xj)− ϑ(xi)), (6)

where α > 0, function φ̂ : < → < is continuous, locally
Lipschitz, odd and strictly increasing, and function ϑ : < →
< is differentiable with dϑ(xi)

dxi
locally Lipschitz and strictly

positive.
Putting together (5) and (6) the resulting protocol is

ui(xi, x
(i)) = α

1
dg
dxi

∑
j∈Ni

φ̂(ϑ(xj)−ϑ(xi)), for all i ∈ Γ.

(7)
Initially, we study the stability of the system under

protocol (7). To this aim, we consider the space of the edge
variables ηji = ϑ(xj) − ϑ(xi). It is straightforward that
one point in the space of the edge variables maps infinite
pairs (ϑ(xj), ϑ(xi)) in the space of the state variables.
We define η as the stack vector of the edge variables, i.e,
η = {ηij : (i, j) ∈ E}. In the following lemma, we prove
that η = 0 is a unique equilibrium point in the space of the
edge variables.

Lemma 2: (Uniqueness) Consider a network G = (Γ, E)
of dynamic agents with first-order dynamics and implement
a distributed and stationary protocol u(.) whose components
have the feedback form (7). Then point η = 0 is a unique
equilibrium point in the space of the edge variables.

We are now ready to prove that η = 0 is an asymptotically
stable equilibrium point, when function g(.) is strictly
increasing, i.e., dg(y)

dy > 0 for all y ∈ <.

Theorem 2: (Asymptotical Stability) Consider a network
G = (Γ, E) of dynamic agents with first-order dynamics
and implement a distributed and stationary protocol whose
components have the feedback form (7). If function g(.) is
strictly increasing, point η = 0 is an asymptotically stable
equilibrium point in the space of the edge variables.

The above theorem proves that protocol (7) makes even-
tually the agents’ trajectories align, i.e., limt→∞ xi(t) −
xj(t) = 0, for any possible couples of agents i and j. The
next corollary shows that the trajectory alignment and the
time invariancy of χ̂(x(t)) imply that trajectories converge
to the desired group decision value χ̂(x(0)).

Corollary 1: Assume all the conditions in Theorem 2
hold. Then, limt→∞ xi(t) = χ̂(x(0)) for all i ∈ Γ, which
means that protocol (7) solves the consensus problem with
respect to the group decision value χ̂(x(0)).

It is possible to partially relax the assumptions of The-
orem 2 concerning the monotonicity of function g(.). The
reason is evident from the following theorem establishing
that all agents’ state trajectories are bounded.

Theorem 3: Assume all the conditions in Theorem 2
hold. Then, condition (6) implies that for all i ∈ Γ and
t ≥ 0

min
j∈Γ
{xj(0)} ≤ xi(t) ≤ max

j∈Γ
{xj(0)}. (8)

Furthermore, any state x̃i within the above range is reach-
able under protocol (7).

Trivially, condition (8) holds even if g(y) is
strictly increasing only in the subset of < defined by
minj∈Γ{xj(0)} ≤ y ≤ maxj∈Γ{xj(0)}, since the agents’
state trajectory values are bounded within the same set.
The boundedness of the agents’ state trajectories allows us
to partially relax the assumptions of Theorem 2 concerning
the monotonicity of function g(.). Theorem 2 still holds
if g(.) is strictly increasing in only a subset X ∈ <.
However, in this case, it must be true that xi(t) ∈ X , for
all t ≥ 0 and for all i ∈ Γ. Theorem 3 proves that the latter
condition is certainly satisfied if X is a connected subset
and xi(0) ∈ X for all i ∈ Γ. Theorem 2 holds even if g(.)
is strictly decreasing. However, in this case, α in (6) must
be strictly negative instead of positive.
An immediate consequence of the above considerations
is the following. Since the means introduced in Tab. I
have the component g(.) strictly increasing except the
harmonic mean, if we consider the linear function
φ(xj , xi) = α(xj − xi), the system converges to χ̂(x(0))1
for α > 0 except for the harmonic mean where we need
α < 0. Dealing with means different from the arithmetic
one we also need that xi(0) > 0 for all i ∈ Γ, since g(y)
is strictly monotone for y > 0 but not in y = 0.

V. SIMULATION STUDIES: ALIGNMENT MANEUVER FOR
UAVS

We consider a team of 4 UAVs in longitudinal flight and
initially at different heights. Each UAV controls the vertical
rate without knowing the relative position of all UAVs but
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Fig. 1. The information flow in a network of 4 agents

only of neighbors according to the communication graph
topology depicted in Fig. 1. For instance, the 4th UAV
knows the position of only the 1st UAV, and the 1st UAV
knows the position of the 4th and 2nd UAV and so on.
In the above partial information context, we are interested
in determining a suitable distributed vertical rate control
strategy that allows the UAVs to align their paths according
to the path of a virtual leader, the formation center. In any
of the four simulated alignment maneuvers, the position
of the formation center is computed with respect to the
positions of all UAVs respectively as the i) arithmetic mean,
ii) geometric mean, iii) harmonic mean, iv) mean of order 2.
The initial height is x(0) = [5, 5, 10, 20]′. We stress once
again that the challenging aspect is that the UAVs know the
heights of only their neighbors and are required to align
their paths according to the path of the formation center,
which in turns depend on the unknown position of all UAVs.
In case i), (see e.g., [1], [2]) the UAVs implement the linear
protocol

u(xi, x
(i)) =

∑
j∈Ni

(xj − xi) (9)

to asymptotically align on the arithmetic mean of x(0).
Figure 2 shows the simulation of the longitudinal flight
dynamics.
In case ii) the UAVs implement the protocol
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Fig. 2. Longitudinal flight dynamics converging to a) the arithmetic
mean under protocol (9); b) the geometric mean under protocol (10);
c) the harmonic mean under protocol (11); d) the mean of order 2 under
protocol (12).

u(xi, x
(i)) = xi

∑
j∈Ni

(xj − xi) (10)

to asymptotically align on the geometric mean of x(0).
Figure 2(a)) shows the simulation of the longitudinal flight
dynamics. In case iii) the UAVs implement the protocol

u(xi, x
(i)) = −x2

i

∑
j∈Ni

(xj − xi) (11)

to asymptotically align on the harmonic mean of x(0).
Figure 2(b)) shows the simulation of the longitudinal flight
dynamics. Finally, in case iv) the UAVs implement the
protocol

u(xi, x
(i)) =

1

2xi

∑
j∈Ni

(xj − xi) (12)

to asymptotically align on the mean of order 2 of x(0).
Figure 2(c)) shows the simulation of the longitudinal flight
dynamics.
Protocols (9)-(12) are characterized by different converging
times (see Figs. 2). These differences are due to the fact that
the protocols multiply the common term

∑
j∈Ni

(xj − xi)
for different powers of xi, respectively 1, xi, −x2

i and
1
2x
−1
i . Being xi ≥ 1 for all i ∈ Γ and t ≥ 0, the lower

the power, the higher the converging time. Consider the
alignment to the mean of power 2. To obtain a converging
time comparable with the one of the alignment to the
arithmetic mean, we modify the protocol so that it turns
to be a ratio between polynomials whose numerator is of
an order greater than the denominator as in the arithmetic
mean case. As an example, in Fig. 3(a)) results are reported
with the protocol (12) modified as

u(xi, x
(i)) =

1

2xi

∑
j∈Ni

(x2
j − x2

i ). (13)

An analogous result can be obtained if we multiply the
protocol (12) by twice an upper bound of maxi∈Γ{xi(0)}.
The resulting scaled protocol is

u(xi, x
(i)) =

maxi∈Γ{xi(0)}
2xi

∑
j∈Ni

(xj − xi) (14)

and the corresponding longitudinal dynamics is displayed
in Fig. 3 (b)). Observe that to implement protocol (14) the
UAVs must have an a-priori knowledge or at least a bound
of maxi∈Γ{xi(0)}.
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Fig. 3. Longitudinal flight dynamics converging to the mean of order 2:
a) under protocol (13); b) under protocol (14).

An example of alignment maneuver under protocol (14)
is displayed in Fig. 4.
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Fig. 4. Alignment to the mean of order 2 on the vertical plane.
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VI. APPENDIX

Proof of Lemma 1 Assume by contradiction that χ̂(x(t))
is not time invariant under protocol u(.) and initial state
x(0) = a. The consensus protocol makes the system
converge to χ̂(a). Let be x(t0) = b the state at the first
time instant t0 > 0 with χ̂(a) 6= χ̂(b). Denote as ū(t) the
realization of the protocol for all t ≥ 0. Now consider the
different situation in which the protocol u(.) is implemented
starting from the initial state x(0) = b. In this case, the
consensus protocol makes the system converge to χ̂(b).
Denote as ũ(t) the realization of the protocol for all t ≥ 0
in this second situation. As for each agent i, the control
depends only on xi(t) and x(i)(t) and no other information
on the current or past system state, it holds ũ(t) = ū(t+t0),
for all t ≥ 0. Then, we obtain the following contradictory
result. In the two above situations, the same controls applied
starting from state b make the system converge to two
different group decision values, χ̂(a) and χ̂(b).

Proof of Theorem 1 A sufficient condition for χ̂(x(t))
being time invariant is that its argument

∑
i∈Γ g(xi(t)) is

time invariant, too. The latter condition implies∑
i∈Γ

dg(xi(t))

dt
=
∑
i∈Γ

dg(xi)

dxi
ẋi =

∑
i∈Γ

dg(xi)

dxi
ui = 0.

It is immediate to verify that protocol (5) satisfies condition∑
i∈Γ

dg(xi)
dxi

ui = 0 since the antisymmetry of φ guarantees
that

∑
i∈Γ

∑
j∈Ni

φ(xj , xi) = 0.
Proof of lemma 2
Sufficiency. Since φ̂(.) is odd and strictly increasing, then

φ̂(ηij) = 0 if and only if ηij = 0. So when η = 0, the
control ui is null for all i ∈ Γ. Thus, the point η = 0 is an
equilibrium point.
Necessity. Assume that there exists an equilibrium point
η̄ 6= 0. We prove that such an assumption implies the
existence of at least one agent i with ui < 0, but this
last result contradicts the definition of equilibrium for η̄.
Define the set of agents with maximum ϑ(.), namely,
I = {i ∈ Γ : ϑ(xi) ≥ ϑ(xj), ∀j ∈ Γ}. Trivially, I is
included but not equal to Γ, as η̄ 6= 0 implies that i and
j with (i, j) ∈ E such that ϑ(xi) 6= ϑ(xj) exist. Since
the network G is connected we can always choose i ∈ I
such that there exists j ∈ Ni with ϑ(xj) < ϑ(xi). Now
observe that, since φ̂(.) is an odd and strictly increasing



function, then
∑
j∈Ni

φ̂(ϑ(xj) − ϑ(xi)) < 0. Actually, all
the terms of the sum are non positive and at least one is
strictly negative. Since it also holds that α 1

dg
dxi

6= 0, the

contradiction is proved.
Proof of theorem 2
We follow a line of reasoning similar to the one in [1],

[19]. We prove the asymptotical stability of the equilibrium
point η = 0 by introducing a candidate Lyapunov function
V (η) = 1

2

∑
(i,j)∈E(ψ(ηji) +ψ(ηij)), where ψ : < → < is

ψ(y) =
∫ y

0
φ̂(s)ds. Since φ̂ is an odd and strictly increasing

function, then ψ(y) = 0 if and only if y = 0, otherwise
ψ(y) > 0. As a consequence, it is immediate to verify that:
a) V (η) = 0 if and only if η = 0; b) V (η) > 0 for all
η 6= 0. It remains to prove that V̇ (η) < 0 for all η 6= 0.

V̇ (η) =
1

2

∑
(i,j)∈E

(φ̂(ηji)η̇ji + φ̂(ηij)η̇ij) = (15a)

=
1

2

∑
(i,j)∈E

(φ̂(ηji)(
dϑ(xj)

dxj
ẋj −

dϑ(xi)

dxi
ẋi) (15b)

+φ̂(ηij)(
dϑ(xi)

dxi
ẋi −

dϑ(xj)

dxj
ẋj)) = (15c)

= −
∑
i∈Γ

dϑ(xi)

dxi
ẋi
∑
j∈Ni

φ̂(ηji) = (15d)

= −
∑
i∈Γ

1

α

dg(xi)

dxi

dϑ(xi)

dxi
ẋi

α
dg(xi)
dxi

∑
j∈Ni

φ̂(ηji) =(15e)

= −
∑
i∈Γ

1

α

dg(xi)

dxi

dϑ(xi)

dxi
u2
i (15f)

In the above expression, to obtain (15c) from (15a) we
simply express the derivative of the edge variables in terms
of the state variables and their derivatives. To get (15d)
from (15c), we reorder the terms and exploit the fact that
ηij = −ηji and hence φ̂(ηij) = −φ̂(ηji). To derive (15e)
from (15d) we divide and multiply each term of the external
sum by dg(xi)

dxi
, which is always different from zero by

hypothesis. To obtain (15f) from (15e), we observe that
both ẋi and α

dg(xi)

dxi

∑
j∈Ni

φ̂(ηji) correspond to ui. Finally,

from (15f) we have V̇ (η) ≤ 0 for all η, since dg(xi)
dxi

> 0

and dϑ(xi)
dxi

> 0 for all xi. In particular V̇ (η) = 0 only for
η = 0, since by Lemma 2 η = 0 if and only if ui = 0, for
all i ∈ Γ.

Proof of Corollary 1. From Theorem 2, we can consider,
without loss of generality, trajectory {x1(t), t ≥ 0} of agent
1 as a limit trajectory and prove that limt→∞ x1(tk) =
χ̂(x(0)). Limit trajectory means that, for all ε > 0 there
always exists a time instant t̄(ε) after which all trajectories
{xi(t), t ≥ 0}, with i ∈ Γ, i 6= 1 deviate from {x1(t), t ≥
0} less than ε, i.e.,

∀ε > 0, ∃t̄(ε) : |x1(t)− xi(t)| < ε, ∀t ≥ t̄(ε), ∀i ∈ Γ.
(16)

Now, assume by contradiction that limt→∞ x1(t) 6=
χ̂(x(0)). Since χ̂(.) enjoys the fixed point prop-

erty, the previous condition is equivalent to imposing
limt→∞ χ̂(x1(t)1) 6= χ̂(x(0)) that, in turn, implies that we
can determine a value δ > 0 such that there exists an infinite
sequence of time instants {tk}, with limk→∞ tk =∞, such
that |χ̂(x1(tk)1) − χ̂(x(0))| > δ. The latter condition and
the continuity of function χ̂(.) entails the existence of an
ε̄ > 0 such that χ̂(x) 6= χ̂(x(0)) for all x with |x1(tk)1−
x| < ε̄ for any tk in {tk}. As we can always choose an
instant ts in {tk} that satisfies condition (16) for ε = ε̄, i.e,
such that ts ≥ t̄(ε̄), we obtain that χ̂(x(ts)) 6= χ̂(x(0)) in
contradiction with the time invariancy of χ̂(x(t)).

Proof of Theorem 3. Consider an arbitrary value ε > 0
and assume by contradiction that there exists a time instant
t̄ = inf{t ≥ 0 : (maxj∈Γ{xj(t)} ≥ maxj∈Γ{xj(0)} +
ε) or (minj∈Γ{xj(t)} ≥ minj∈Γ{xj(0)} − ε)}, namely,
t̄ is the first time instant in which (or immediately af-
ter which) either maxj∈Γ{xj(t)} is at least ε greater
than maxj∈Γ{xj(0)} or minj∈Γ{xj(t)} is at least ε less
than minj∈Γ{xj(0)}. Here, we assume that the first of
the two conditions occurs, namely, maxj∈Γ{xj(t)} ≥
maxj∈Γ{xj(0)} + ε and we prove that t̄ cannot exist.
Symmetric argument holds if the second condition occurs.
Initially, we show that t̄ > 0 since t̄ = 0 is contradictory
with the fact that, since
maxj∈Γ{xj(0)} < ∞, all the components of u(0) are
bounded by definition (7). Next, we observe that all xi(t)
are continuous and differentiable with bounded deriva-
tives, for 0 ≤ t ≤ t̄, since both maxj∈Γ{xj(t)}
and minj∈Γ{xj(t)} are bounded and then all the com-
ponents u(t) are bounded too. Consequently, y(t) =
maxj∈Γ{xj(t)} is a continuous function, for 0 ≤ t ≤ t̄,
and cannot present a discontinuity between t̄ and t̄+, then
y(t̄) = maxj∈Γ{xj(0)}+ ε.
Now define as switching instants 0, t̄ and all the instants
tk, 0 ≤ tk ≤ t̄, such that
argmaxj∈Γ{xj(tk)} 6= argmaxj∈Γ{xj(t+k )}, where the
latter function always returns the minimum index that
satisfies the maximality condition. In other worlds, tk are
time instants in which a trajectory xi(t) loses its maximality.
Consider the generic i such that i = maxj∈Γ{xj(t)}
between two consecutive switching instants tk, tk+1. In this
case, ui(t) ≤ 0 by definition (7) for all tk ≤ t ≤ tk+1.
Hence the continuity and differentiability of xi(t) implies
y(tk) = xi(tk) ≥ xi(tk+1) = y(tk+1). In this context,
define δk = xi(tk+1) − xi(tk). Finally, observe that, as
y(t) is continuous, we can write y(t̄) = y(0)+

∑
k:tk∈T δk,

where T is the set of the switching instant different from
t̄. As all δk ≤ 0, we obtain the contradictory result that
y(0) + ε ≤ y(t̄) ≤ y(0). Hence, y(t̄) and t̄ cannot exist.
To complete the prove note that the above arguments hold
for any value of ε > 0. It is left to show that any state
x̃i within the above range is reachable under protocol (7).
But this is easy to see since x̃i can be expressed as convex
combination of xj(0) for all j ∈ Γ. Hence, it is sufficient
to choose χ = x̃i =

∑
j∈Γ αjxj(0) with 0 ≤ αj ≤ 1 for

all j ∈ Γ.


