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Abstract

In this paper we consider multi–inventory systems in presence of uncertain demand. We assume that i) demand is unknown
but bounded in an assigned compact set and ii) the control inputs (controlled flows) are subject to assigned constraints.
Given a long–term average demand, we select a nominal flow that feeds such a demand. In this context, we are interested
in a control strategy that meets at each time all possible current demands and achieves the nominal flow in the average. We
provide necessary and sufficient conditions for such a strategy to exist and we characterize the set of achievable flows. Such
conditions are based on linear programming and thus they are constructive. In the special case of a static flow (i.e. a system
with 0–capacity buffers) we show that the strategy must be affine. The dynamic problem can be solved by a linear-saturated
control strategy (inspired by the previous one). We provide numerical analysis and illustrating examples.

Key words: Inventory control, Robust control, Bounded disturbances, Manufacturing systems, Linear programming.

1 Introduction

Multi–inventory systems [12,26] are formed by buffers,
where raw materials/subassemblies/finished products
are stored, connected by processing links, along which
items are produced or transported. Such systems are
met in several different contexts, such as manufacturing
[2,7,8,14,16,20,21], network routing [13], communica-
tions [9], water distribution [15], logistics and traffic
control [18]. Hence, their control is of relevant economic
interest. The control concerns storage and processing
operations and aims at meeting the external demand of
finished products [10,12].

In the literature, there are many contributions on the
design, and possibly the optimization, of the system con-
trols with respect to static criteria in the assumption
that the demand is known in advance (see, e.g., [24]).
Unfortunately, many real systems work in uncertain and
time–varying conditions. Thus, a feedback approach is

⋆ This paper was not presented at any IFAC meeting. Cor-
responding author F. Blanchini. Tel. +39 0432 558466. Fax
+39 0432 558499.
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preferable [1,13,14,19] to assure robustness against un-
certain events such as failures or unknown demand rate.
In this context, several authors deal with the problem
of transient optimality (see, e.g., [2,17,19,22]) and near-
optimality (see, e.g., [25]). However, few of them explic-
itly consider uncertainties in the demand or supply flows
(see, e.g., [4,6,7]).

We pursue a deterministic approach by assuming that
the external input (we will name it for brevity “the
demand”) is unknown–but–bounded within given con-
straint sets. Under this assumption, the basic problem
we are investigating is the stability of the multi-retailer
system. In a context of fluid models, the stability of the
system consists in keeping the buffer levels within as-
signed constraints or driving them to prescribed levels [4]
[6]. In those references it is shown that for continuous–
time models there exists a strategy assuring convergence
to any target buffer level if a certain “control dominance”
necessary and sufficient condition is satisfied. Some op-
timality criteria for the transient are considered in [3].

In this paper, we are considering, in some sense, a mixed–
type problem. We start from the observation that, in
a typical production/distribution system, there are dif-
ferent values of the controlled flows, satisfying the con-
straints, that face a same fixed level of demand (this is
a peculiar situation in which the controlled process ma-
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trix is a “large one”). Therefore we have a degree of free-
dom in choosing, at each time, the workload distribution
among controlled links that satisfies at each time the
current demands. Beside satisfying at each time the cur-
rent demand, we are also concerned with the long–term
utilization of the system. At a certain time, a generic
link may be requested to work harder, than expected in
the average, or to be underutilized due to demand fluc-
tuations. However, the average utilization of the links
should be adapted to the “average” behavior of the de-
mand and possibly determined by a (steady–state) op-
timality criterion. This problem is important because in
many context, balancing between links is fundamental
since over–utilization of some links may cause failures or
produce high costs.

In this work we simultaneously consider the two follow-
ing aspects.

• Instantaneous fluctuations — These are assumed un-
known due to the large number of unpredictable fac-
tors that influence the demand. The control must face
all possible variations, within prescribed limits, in or-
der to meet the demand. So, these fluctuations can
require a control flow which is, instantaneously, com-
pletely unbalanced with respect to the nominal one.

• Long term information — Forecasts about long–term
average demand values are generally much more re-
liable. Quite accurate statistics over long–time hori-
zons are often available. Besides, long–term values are
sometimes fixed (for instance established by contract).
The long–termaverage demand, henceforth also called
nominal demand, should be faced, in the average, by
the nominal flow, whenever possible.

Therefore we are seeking for a stabilizing strategy capa-
ble of balancing the flow in the long run. A basic ques-
tion is the following. Given the system structure and the
controlled flows constraints and assumed that the de-
mand has a known (deterministic) average value, can we
find a stabilizing strategy which assures, in the average
a prescribed controlled value? As we will see by means
of a trivial examples such a strategy does not exists even
if the nominal flow is feasible and feeds the nominal de-
mand in steady–state. It will be apparent that this fact
is due to the simultaneous presence of flow constraints
and demand uncertainties.

We will refer to controlled process matrix that, in gen-
eral, may not be the incidence matrix of graph. In this
sense, a main contribution of the paper is in the gener-
ality of the topology of the systems, which are not nec-
essary networks. The main results of the paper are re-
ported next.

• We first consider static strategies (i.e. we assume 0–
capacity buffers). We provide necessary and sufficient
conditions for the existence of a strategy which is able

to meet all the possible demands and assures the de-
sired flow average, whenever the demand meets its
nominal average. Such conditions are based on linear
programming and are constructive.

• We characterize the set of all flows corresponding to
the nominal demand which can be achieved in the
average.

• We show that, if the necessary and sufficient condi-
tions are satisfied, then the static strategy is affine.
Such an affine function characterizes the actual aver-
age flows even in the cases in which the demand aver-
age is different from the nominal one.

• We show that the very conditions, valid in the static
case, are sufficient for the existence of a dynamic strat-
egy, based on the feedback of the buffer levels. These
conditions are also necessary under appropriate, quite
general, assumptions.

• We show that the proposed feedback strategy is a
linear-saturated dynamic control. The introduced dy-
namics is, basically, an integrator that gets rid of the
load unbalancing. The control synthesis is based on
the mentioned linear programming conditions.

• We prove that the problem of establishing whether a
nominal flow is achievable or not is an easy problem.
Actually, this is done through a polynomial algorithm
that selects a candidate strategy and verifies the men-
tioned conditions at each iteration.

The paper will finally present applications and discus-
sion of the proposed theory.

2 Problem Formulation

Consider the following continuous time system

ẋ(t) = Bu(t) − w(t), (1)

where x(t) ∈ IRn is a vector whose components are the
buffer levels, u(t) ∈ IRm is the controlled flow vector,
B is the controlled process matrix and w(t) ∈ IRn is
an exogenous (uncontrolled) input, typically modeling
demand, whose value is externally determined. To model
backlog x(t) may be less than zero.

We assume that u and w are subject to the next con-
straints

u(t) ∈ U = {u : u− ≤ u ≤ u+}, (2)

where u− and u+ are assigned vectors and the expression
is to be intended component-wise. We assume that w is
constrained as follows

w(t) ∈ W, (3)

where W is a polytope. We also introduce the following
assumptions.
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Assumption 1 Matrix B has full row rank.

If the above assumption is not satisfied, the system is
unreachable. As we will see soon, the problem becomes
trivial if B is square therefore we will consider the case
in which B is a “fat matrix”.

Given a vector function of time f : IR+ → IRn we intro-
duce the following notation

Av[f ] = lim
T→∞

1

T

T∫

0

f(t) dt. (4)

Function Av[f ] will be referred to as the deterministic
average of f , henceforth the average, and we will always
assume that such a value exists whenever considered.

Assumption 2 The set W includes w̄ = Av[w] in its
relative interior 1 .

We will consider static and dynamic stabilizing policies
for the system according to the following definitions.

Definition 3 The function Φ : IRn → IRm is a static
balancing strategy if for u(t) = Φ(w(t)),

Bu(t) = w(t),

and u(t) ∈ U , for all w(t) ∈ W, for all t ≥ 0.

If a static balancing strategy is applied, as a consequence
we have ẋ(t) = 0. Therefore (from a ideal point of view)
the buffer level remains bounded since the system meets
at each time the current demand. Clearly this is not a
feedback strategy and the resulting system is not stabi-
lized 2 .

Our ultimate goal is solving the dynamic problem of
steering the system buffer to the neighborhood of a pre-
scribed level.

Definition 4 Given ǫ > 0 and a reference value x̄, an ǫ-
stabilizing strategy is a feedback control for which there
exists a continuous positive function φ(t), monotonically
decreasing and converging to 0 as t→ ∞ such that for all
w(t) ∈ W and for all x(0), the conditions u(t) ∈ U and

‖x(t) − x̄‖ ≤ max{‖x(0)‖φ(t), ǫ}

hold true.

1 we mean that w̄ is an interior point of W with respect to
the smallest linear subspace including it, for instance given a
vector v 6= 0, 0 is in the relative interior of a segment joining
v and −v

2 indeed infinitesimal perturbations on w may cause buffer
overflow

We introduce the following basic conditions [4] as a pre-
liminary result.

Theorem 5 For the considered system

i there exists a static balancing strategy as in Definition 3
if and only if

W ⊆ BU ; (5)
ii there exists a feedback stabilizing strategy as in Defi-

nition 4 if and only if

W ⊆ int{BU}. (6)

Henceforth, we assume that the appropriate necessary
and sufficient condition is met (depending on which kind
of strategy we are considering). Assume to apply either a
balancing or an ǫ-stabilizing strategy. As a consequence,
x(t) remains constant or bounded. Then, by integrating
(1) we have that, necessarily,

lim
T→∞

1

T

T∫

0

[Bu(t) − w(t)] dt = lim
T→∞

1

T
[x(t) − x(0)] = 0,

which implies that the average value of w is equal to the
average value of Bu

B Av[u(t)] = Av[w(t)]. (7)

Given a nominal average flow w̄, unless B is square (the
problem would be trivial in this case) there are several
possible vectors (average controlled flows) ū = Av[u(t)]
such that Bū = w̄. By exploiting this redundancy, we
are actually interested in selecting a nominal flow ū that
supports the average of the demand Av[w] whenever
Av[w] = w̄ ∈ W.

Formally, the problem is the following.

Problem 6 Assume that the average w̄ ∈ W is given.
Consider the feasible flow ū ∈ U such that

Bū = w̄.

Provide a yes–no answer to the question: does there ex-
ist a static balancing (or dynamic ǫ–stabilizing) strategy
such that whenever Av[w] = w̄ then Av[u] = ū? In the
case of a positive answer we will say that ū is achievable.

We stress that, given w̄ ∈ W, not all the vectors û such
that Bû = w̄ can be achieved as average flows, as shown
next.

Example 7 Consider the scalar system

ẋ(t) = u1(t) + u2(t) − w(t),

3
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Fig. 1. The achievable averages

where

0 ≤ u1 ≤ 5, 0 ≤ u2 ≤ 3, 1 ≤ w ≤ 7.

Assume that Av[w] = 4. The all candidate average flows
are those such that

ū1 + ū2 − 4 = 0,

precisely those on the central line A–B in Fig. 7. Now
the feasible flows to meet the demand u1 + u2 = w = 1
are those on the line C–D, while the feasible flows to
meet the demand u1 + u2 = w = 7 are those on the
line E–F . Now, if the demand periodically jumps from 1
to 7 as follows: w(t) = 1 for kT ≤ t < kT + T/2 and
w(t) = 7 for kT + T/2 ≤ t < (k + 1)T then its average
is w̄ = 4 but it can be faced only by points of the type
ua and ub respectively. It is therefore clear that the only
suitable average values are those on the line A–B which
are included between the two dashed lines (segment G–
H). Actually it is not difficult to see that, for a generic
w̄ the achievable average flows ū for this problem are all
the points on the line ū1 + ū2 = w̄ confined between such
dashed lines (i.e. such that −1 ≤ 2ū2 − ū1 ≤ 1).

In the following sections we will solve constructively the
problem for both static and dynamic strategies.

3 Achievable average: the static case

In this section we consider the case in which the con-
trolled flow is a function of the demand w so that
Bu(t) = w(t). Note that this control strategy can not
stabilize the queue lengths since the time derivative of
the queue lengths is made zero. This situation occurs
in several problems (for instance in power supply). This
section has to be considered as a prelude to the dynamic
case in which we will use the necessary and sufficient
conditions derived here.

For the simple notations we work under the following
assumption.

Assumption 8 The nominal average “demand” is zero,
i.e. w̄ = Av[w] = 0 ∈ W.

This is not a restriction because under the conditions
(5) or (6) there exists u0 (we will assume equal to ū for
convenience) such that Bu0 = w̄, the nominal average.
Then we can translate the problem by writing the new
model

ẋ(t) = B(u(t) − u0) − [w(t) − w̄] = Bδu(t) − δw(t)

and by translating the constraints as

u− − u0 ≤ δu(t) ≤ u+ − u0, δw(t) ∈ W − w̄.

where Av[δw] = 0. If we assume u0 = ū the question
is weather a static balancing strategy exists such that
any null average demand implies a null average flow.
The following theorem, whose proof will be given later,
provides an answer.

Theorem 9 Under Assumption 1 and 2 let condition (5)
be satisfied. Then there exists a static balancing strategy
that achieves the average Av[u] = 0 whenever Av[w] = 0
if and only if there exists a “tall” matrix D m × n such
that

BD= I (8)

u− ≤Dw(i) ≤ u+, i = 1, . . . , s. (9)

where w(i) are the vertices of W. Moreover, if such nec-
essary and sufficient conditions are satisfied, then the
static strategy is linear

u(t) = Dw(t). (10)

The previous theorem allows us to check a single candi-
date ū we fixed to zero. We can now characterize the set
of achievable average flows, namely the set of all vectors
such that Av[w] = 0 implies Av[u] = ū ∈ U .

Corollary 10 The set of all achievable average flows,
provided that a suitable static balancing strategy is ap-
plied, is made up by all the vectors ū ∈ ker[B] such that
there exists a matrix D, m× n, with

BD= I (11)

u− ≤Dw(i) + ū ≤ u+, i = 1, . . . , s. (12)

In this case the static strategy is affine

u = Dw + ū.

PROOF. It follows immediately from the theorem by
applying the translation u− ū. 2
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We have seen that as long as a strategy achieving the
average exists, this has to be linear (or affine taking into
account possible translations on w). As a consequence
of the linearity we have the following property.

Corollary 11 If the necessary and sufficient condi-
tions (8) and (9) are satisfied, then the average con-
straints are satisfied not only on the infinite horizon, but
on every finite horizon as well, in the sense that for all
T > 0

1

T

T∫

0

w(t)dt = 0 implies
1

T

T∫

0

u(t)dt = 0.

Remark 12 It should be noticed that, if the demand av-
erage is not the nominal one, but Av[w] = ŵ, then the
corresponding average flow is characterized by

Av[u] = DAv[w].

This means that D may be thought of as a “partitioning
law” for the workload Av[u] and thus chosen via some
optimality criterion.

3.1 Proof of the theorem

To prove the theorem we need the next lemma.

Lemma 13 Consider a convex cone C ⊂ IRn centered
in 0 with a non–empty interior. Consider two subspaces
Y and Z ⊂ IRn and define

Ŷ
.
= Y

⋂
C, Ẑ

.
= Z

⋂
C.

Assume that Ŷ includes an element interior to C, y ∈
int{C}. Then Ŷ ⊆ Ẑ implies Y ⊆ Z.

PROOF. We initially observe that, since Y and Z
are subspaces, we can prove the lemma by showing
that dim(Y

⋂
Z) = dim(Y). To this end, note that,

as C is not empty, dim(C) = n; as C and Y are poly-
topes, y ∈ int{C} implies that there exists δ > 0 such

that y + δe(i) ∈ Ŷ, for each vector e(i) belonging to
a basis of the subspace Y. Hence, dim(Ŷ) = dim(Y).

Finally, as Y
⋂
Z ⊇ Y

⋂
Z

⋂
C, then Ŷ ⊆ Ẑ im-

plies Y
⋂
Z ⊇ Ŷ. Hence, dim(Y

⋂
Z) ≥ dim(Y).

As dim(Y
⋂
Z) ≤ min{dim(Y), dim(Z)} we obtain

dim(Y
⋂
Z) = dim(Y). 2

We can now prove the theorem.

Sufficiency. We assume that (8) and (9) hold and
prove that (10) is the desired strategy. Indeed, strategy
(10) is static and balancing, since u(t) = Dw(t) implies

Bu(t) = BDw(t) = w(t). In addition, for all w ∈ W, we
have that w =

∑
αi w

(i),
∑
αi = 1, αi ≥ 0, then

u = Dw =
∑

αi Dw
(i) ∈ U .

Strategy (10) also achieves the average Av[u] = 0 when-
everAv[w] = 0, since u(t) = Dw(t) implies also Av[u] =
Av[Dw] = DAv[w].

Necessity. We assume that there exists a static balanc-
ing strategy u = Φ(w) such that u ∈ U for all w ∈ W
and such thatAv[w] = 0 implies Av[u] = 0 and we prove
that (8) and (9) hold. Given the nonnegative unit–sum
vector α = [α1 α2 . . . αs], α ≥ 0, 1̄Tα = 1 consider a
periodic demand w(t) of period T defined as follows

w(t) = w(k),

k−1∑

i=0

αiT ≤ t ≤

k∑

i=0

αiT,

for k = 1, 2, . . . , s, with α0 = 0 Namely, w(t) assumes
the vertex value w(i) for the portion of period αiT . This
demand is feasible and its average is

Av[w] =

s∑

i=1

αi w
(i).

Now, no matter how the αi are chosen, the above static
balancing strategy feeds any possible demand w(i)

through a controlled flow u(i) = Φ(w(i)) which verifies

BΦ(w(i)) = w(i).

As a consequence the average flow is

Av[u] =

s∑

i=1

αi Φ(w(i)) =

s∑

i=1

αi u
(i).

Denote byW = [w(1) w(2) . . . w(s)] the matrix including
the vertices of W and by U = [u(1) u(2) . . . u(s)] the
corresponding input values (note that this means BU =
W ). In view of the assumption, we have that Av[w] = 0
implies Av[u] = 0, which can be written as

Wα = 0, ⇒ Uα = 0, (13)

(actually Wα = 0 iff Uα = 0). Therefore the positive
kernel of W , precisely the intersection of ker[W ] with
the positive hortant, is included in the positive kernel of
U .

We remind now that 0 belongs to the relative interior of
W by Assumption 2.

Then in the α space, there exists a positive vector α̂ > 0,
1̄T α̂ = 1 such that Wα̂ = 0. Then we can apply the
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lemma and claim that

ker[W ] ⊆ ker[U ].

On the other hand we have, by construction that W =
BU and then Uα = 0 implies Wα = BUα = 0, so that
ker[U ] = ker[W ].

This means that the columns of U can be generated as
linear combination of the columns of W and vice-versa
and therefore the two matrices have the same row rank.
Therefore, there exists a matrix D̂ m× n such that

U = D̂W.

Then

W = BU = BD̂W.

Now, if W has full row rank, this implies BD̂ = I and
then (8). Actually, the equation implies that BD̂, is the
identity within the subspace generated by the column
of W . We show now that we can always find a right

inverse of B, precisely a matrix D such that BD̂ = I.
Assume thatW has not full row rank and take the matrix
Q = P−1 such that

QW =

[
W̃1

0

]
and let

[
D̃1 D̃2

]
.
= D̂ P

with W̃1 full row rank equal to ρ. Consider the equa-

tion BD̂W = W and premultiply both its sides by Q as
QBD̂W = QBD̂PQW = QW we achieve by substitu-
tion

QB
[
D̃1 D̃2

] [
W̃1

0

]
=

[
W̃1

0

]
,

where D̃1 has necessarily full column rank (equal to ρ).

Note that we can replace D̃2 by a tall matrix ∆ (with
n− ρ columns)

QB
[
D̃1 ∆

] [
W̃1

0

]
=

[
W̃1

0

]

Take ∆ such that QB∆ =
[

0 I
]T

(this is possible be-

cause QB has full row rank) and augment the previous
equation as follows

QB
[
D̃1 ∆

] [
W̃1 0

0 I

]
=

[
W̃1 0

0 I

]
.

Note that the rightmost matrix has full row rank. By
multiplying on the left by P we achieve

B
[
D̃1 ∆

]
Q

︸ ︷︷ ︸
.
=D

P

[
W̃1 0

0 I

]

︸ ︷︷ ︸
.
=[W W∗]

= BD[W W ∗] =

= P

[
W̃1 0

0 I

]
= [W W ∗]

with [W W ∗] of full row rank. As previously observed,
this means that BD = I. Now we have to show that
U = DW . This is easy

DW =
[
D̃1 ∆

]
Q P

[
W̃1

0

]
=

[
D̃1 ∆

] [
W̃1

0

]
=

=
[
D̃1 D̃2

] [
W̃1

0

]
=

[
D̃1 D̃2

]
Q P

[
W̃1

0

]
= D̂W = U.

Then, for each row w(k) of W Dw(k) = u(k) = Φ(w(k))
and thus (9) is automatically satisfied. 2

Example 14 (Example 7 cont’d) Let us briefly consider
again the simple system of Example 7. Since the long–
term average demand is w̄ = 4 we can select a nominal
flow ū = [2.5 1.5]′. By translating the axes to the origin
u0 = ū, we have the new model

ẋ(t) = (u1(t) − 2.5) + (u2(t) − 1.5) − (w(t) − 4)

= δu1(t) + δu2(t) − δw(t),

where−2.5 ≤ δu1(t) ≤ 2.5, −1.5 ≤ δu2(t) ≤ 1.5, and
−3 ≤ δw(t) ≤ +3. Now, there exist a variety of matri-
ces D that verify conditions (8) and (9). As an example,

we can chooseD =
[

2
3

1
3

]′
. The resulting static strategy

for the translated problem is then

δu(t) =

[
2/3

1/3

]
δw(t),

which in the original axes takes on the form

u(t) = Dδw + u0 =

[
2/3

1/3

]
δw(t) +

[
2.5

1.5

]
.

There are counterexamples which prove that Theorem 9
does not hold when 0 6∈ rel int{W}, (in general when
w̄ 6∈ rel int(W)) in the sense that the provided condi-
tions become sufficient only.
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4 Achievable average flows with dynamic
strategies

Here we show how to achieve an average flow by a dy-
namic stabilizing strategy. The main results of the sec-
tion is Theorem 19, which basically states that the con-
ditions for the existence of a dynamic strategy which,
achieves a certain average are the same of the static case.
We will first show, in the next subsection, that condi-
tions (8) and (9) are sufficient for the existence of a dy-
namic ǫ–stabilizing strategy of the form

ẏ(t) = f(y(t), x(t), w(t))

u(t) = g(y(t), x(t), w(t)).
(14)

To provide results about necessity of (8) and (9) we need
to better characterize the class of dynamic strategies by
additional assumptions. This will be done in the subse-
quent subsection.

4.1 Sufficiency of the conditions

Let assumptions (8) and (9) be satisfied and consider the
corresponding matrixD. Equation (8) means thatD is a
right inverse of B and it is a standard property of linear
algebra that this is equivalent to the existence of two
matrices C and F which “square” B and D producing
two matrices inverse to each other, namely such that

[
B

C

] [
D F

]
= I. (15)

Consider the following augmented system

ẋ(t) = Bu(t) − w(t)

ẏ(t) = Cu(t).
(16)

The additional dynamic variable ẏ(t) = Cu(t) has the
goal of keeping trace of the load unbalancing with respect
to the desired average 0.

The first step is to show that under (8) and (9), the ex-
tended system (16) satisfies the stabilizability conditions
(6) as well (in the extended state–space), precisely for
all w ∈ W there exists u ∈ U such that

[
w

0

]
=

[
B

C

]
u,

or equivalently that, for all w ∈ W, there exists u ∈ U
such that

u =
[
D F

] [
w

0

]
= Dw.

The existence of such u is an immediate consequence of
(9). Indeed, it is easy to verify that, if W ∈ int{BU},
then the uwhich corresponds tow is in the interior of the
extended set. Then the problem can be solved as follows.

• Determine D such that (8) and (9) are satisfied.
• Determine C and F such that (15) is satisfied.
• Design a control which stabilizes (16).

Observe that Theorem 5 applied to the extended sys-
tem (16) guarantees the existence of such a stabilizing
control.

Here we propose a new strategy based on a variable
transformation. In the following we exploit (for the first
time) the structure of the set U . Consider the new vari-
able z(t) defined as

z(t) =
[
D F

] [
x(t)

y(t)

]
,

[
x(t)

y(t)

]
=

[
B

C

]
z(t)

This variable satisfies the equation

ż(t) = u(t) −Dw(t). (17)

The new system (17) is decoupled in its state variable,
precisely it is equivalent to

żi(t) = ui(t) −Diw(t), (18)

where we have denoted byDi the ith row ofD and where
u−i ≤ ui ≤ u+

i . Denote by

ρ−i = min
w∈W

Diw,

ρ+
i = max

w∈W
Diw,

The stabilizability conditions are equivalent to the fact
that for all w ∈ W

u−i < ρ−i < ρ+
i < u+

i .

Henceforth, without restriction, we consider the single–
buffer case, namely the scalar system

ż(t) = u(t) − r(t),

with

ρ− ≤ r(t) ≤ ρ+, u− ≤ u(t) ≤ u+.

Define the saturated control (see Fig. 2)

u(t) = sat[u−,u+](−κz(t)) (19)

7



with κ > 0 and where

sat[α,β](ζ) =






β, if ζ > β,

ζ, if α ≤ ζ ≤ β,

α, if ζ < α.

We will use the same notation (19) for the multi–input
control derived applying the formula component–by–
component. Note that this control function is Lipschitz

+
u

u

u /κ
+

κu /

u

z

Fig. 2. The function (19)

continuous. For κ → ∞, the control (19) converges to
the bang bang control

bb[u−,u+](ζ) =






u+, if ζ > 0,

0, if ζ = 0,

u−, if ζ < 0,

which is of the type considered in [4].

Theorem 15 The variable z(t) with the control (19)
converges to the interval [−u+/κ,−u−/κ] (which in-
cludes 0 as an interior point). Therefore the global sys-
tem converges to the corresponding hyper–box (i.e. that
delimited by −u+

i /κ ≤ zi ≤ −u−i /κ, i = 1, 2, . . . ,m).

PROOF. The proof derives from the fact that, for z ≥
−u−/κ, we have that the control is saturated to its lower
level u = u−, then

ż = u− − r ≤ u− − ρ− < 0. (20)

Conversely for z ≤ −u+/κ we have that u = u+, then

ż = u+ − r ≥ u+ − ρ+ > 0. (21)

Therefore z(t) reaches the interval in finite time and is
ultimately confined in it. 2

As a consequence of the previous theorem we have that,
choosing κ large enough, we can bound z in an arbitrar-
ily small interval. Therefore we achieve ǫ–stability. We

have now to show that the controller so obtained sat-
isfies the average requirement. Indeed variable z(t) re-
mains bounded so ‖z(t)−z(0)‖ ≤ ξ. By integrating (17)
we have that

1

T

T∫

0

u(t)dt−
1

T

T∫

0

Dw(t)dt =
z(T )− z(0)

T
→ 0

as T → ∞. This yields

Av[u] = Av[Dw],

that is all we need to claim that sufficiency of (8) and
(9) is proved.

We briefly consider now the case in which the control is
allowed to be discontinuous. This case is important in
all the systems in which several controlled arcs are of the
switching (on–off) type.

Corollary 16 The system equipped with the bang–bang
control u = bb[u−,u+](z) is such that z(t) → 0. The origin
is reached in finite time which is equal to

τmax = max
i

max{
zi(0)

−u−i − ρ−i
,
−zi(0)

u+
i + ρ+

i

}.

PROOF. It is an easy consequence of the fact that the
derivative can be bounded for z > 0 as in (20) and for
z < 0 as in(21). 2

Remark 17 The proposed strategy works under mea-
surement errors. Bounded measurement errors on x(t)
imply bounded errors on z(t). By reasoning component-
wise we achieve systems of the form

ż = sat[u−,u+](−κ(z + δz)) − r

whose state remains bounded as long as the error δz is
such. Precisely via elementary analysis it can be shown
that if |δz| ≤ δmeas then z will be ultimately confined in
the interval [−(ǫ+ δmeas), (ǫ+ δmeas)].

4.2 Proof of necessity

In this section we show the necessity of conditions (8)
and (9) for the existence of ǫ–stabilizing strategy in the
general class that satisfy the next assumption.

Assumption 18 The strategy must assure

• Boundedness of compensator variables: (along with
those of the plant) there exists µ > 0, ν > 0 and t̄ such
that for any arbitrary t0, the conditions ‖x(t0)−x̄‖ ≤ ν
and ‖y(t0)‖ ≤ µ imply ‖x(t)− x̄‖ ≤ ν and ‖y(t)‖ ≤ µ,
for all t > t0 + t̄.
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• Uniqueness at steady state: For each vertex w(k) of W
there exists a corresponding u(k) such that for w(t) ≡
w(k) and for all initial condition in t0 as above

∣∣∣∣∣∣
1

τ

t0+τ∫

t0

(u(σ) − u(k))dσ

∣∣∣∣∣∣
≤ ψ(τ),

where ψ(τ) is a positive monotonically decreasing con-
tinuous function converging to 0 as τ → ∞.

The assumption means that i) the additional dynam-
ics represented by variable y(t) must be bounded under
bounded disturbances w “at least after some time”; and
that ii) for a constant w(k) the strategy replies with a
unique vector u(k) in the average. In the case of a con-
tinuous control this just means that, at steady state,
w(k) is faced by a precise flow vector u(k). The strange
formulation is due to the fact that for some discontinu-
ous strategies the value u(k) may be a value not actually
achieved at any time. For instance consider the system

ẋ = u− w

with the control u = −bb[−1,1](x). If w is constant equal
to 1/2, then the corresponding u = 1/2, but the value is
never achieved.

We show now that under Assumptions 1 and 2, if there
exists an ǫ–stabilizing strategy which satisfies also As-
sumption 18 and which meets the average value Av[u] =
0 whenever Av[w] = 0 for all w(t) ∈ W, then (8) and (9)
must be satisfied.

Consider the matrixW made up by the vertices ofW and
fix a positive vector α such thatWα = 0 and

∑s

i=1 αi =
1 (the fact that α can be positive is due to Assumption
2). Given T > 0 consider again the demandw(t) periodic
of period T , defined as follows

w(t) = w(k), Tk ≤ t ≤ Tk+1 where Tk =

k−1∑

i=0

αiT,

where α0 = 0, having average Av[w] = Wα. Let x̄ = 0
and ‖x(t0)‖ ≤ ν and ‖y(t0)‖ ≤ µ for t0 = 0. For T
large enough these bounds are true, by assumption, for
any t0 chosen as any“switching time” of w (just take
Tαi ≥ t̄ for all i). Assume that for Av[w] = 0 Av[u] =
0. Then the control average on [0, T ] is (noticing that
[Ti+1 −Ti]/T = αi) is the limit of the following function

h(T )
.
=

1

T

T∫

0

u(t)dt =
1

T

s∑

k=1

Tk+1∫

Tk

u(t)dt =

=
1

T

s∑

k=1

αku
(k) +

1

T

s∑

k=1

Tk+1∫

Tk

u(t)dt−

s∑

k=1

Tk+1 − Tk

T
u(k) =

=
1

T

s∑

k=1

αku
(k) +

1

T

s∑

k=1

Tk+1∫

Tk

[
u(t) − u(k)

]
dt =

=
1

T

s∑

k=1

αku
(k) +

s∑

k=1

αk

1

Tk+1 − Tk

Tk+1∫

Tk

[
u(t) − u(k)

]
dt

︸ ︷︷ ︸
→0, as T→∞

.

The fact that the rightmost quantity converges to 0 as
T → ∞, follows from Assumption 18. Since also h(T ) →
0, we have that

1

T

s∑

i=1

αiu
(k) = 0.

Since α > 0, we have proved condition (13). The re-
maining part of the proof proceeds exactly as the proof
of Theorem 9 so necessity is proved.

We can then formalize the result as follows.

Theorem 19 Under Assumptions 1 and 2, let the sta-
bilizability condition (6) be satisfied. Then there exists
a control, in the class of strategies satisfying Assump-
tion 18, which achieves the average 0 wheneverAv[w] = 0
if and only if there exists a “tall” matrix D m × n such
that (8) and (9) are satisfied.

Remark 20 The provided theory can be easily applied
to systems with production/transportation delays along
the lines proposed in [5] for discrete–time systems. The
extension to the continuous–time case is simple as we
show next. Consider the model

ẋ(t) = B0u(t) +
s∑

k=0

Bku(t− τk) − w(t)

where τk are known delay (see [5] for details). Consider
the variable “inventory position”

xip(t) = x(t) +

s∑

k=1

t∫

t−τk

Bk u(σ)dσ

By differentiating xip we derive the following equation

ẋip(t) = Bu(t) − w(t)

where we have defined B
.
=

∑s

k=0Bk. Since u(t) is
bounded, x(t) is bounded if and only if xip(t) is bounded.
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Then the exposed theory applies without modifications if
we deal with the problem of keeping xip(t) bounded.

Note that this strategy provides boundedness, but not
epsilon-stabilization (except when ε is larger than∑

k τk maxu∈U ||Bku||). Achieving regulation would re-
quire controller design which takes into account delays.
This is a challenging problem, especially when the delays
are unknown and/or time-varying (which is usually the
case in practice). An attempt to solve this problem in the
case of communication networks has been made by [23].

5 Existence of achievable average flows

In this section, we show that verifying whether a given
average flow is achievable is an easy problem. This can
be accomplished in polynomial time by an algorithm
that iteratively selects a candidate control strategy and
checks if the necessary and sufficient conditions are sat-
isfied. The algorithm stops when the conditions are sat-
isfied returning a possible strategy, or establishes that no
strategy exists such that the average flow ū is achievable.
To study the difficulty of such a problem, henceforth we
assume that W is known through its external represen-
tation, i.e., it is described by means of the inequalities
defining its facets.

We initially determine whether a given flow ū ∈ U is
achievable. More formally we face the following prob-
lems.

Problem 21 Assume that a feasible flow ū ∈ U∩ker[B],
and a matrix D ∈ IRm×n, such that BD = I, are given.
Provide a yes–no answer to the question whether ū is
achievable with the strategy u = Dw + ū.

Problem 22 Assume that a feasible flow ū ∈ U∩ker[B]
is given. Provide a yes–no answer to the question whether
there exists a matrixD ∈ IRm×n such that ū is achievable
with the strategy u = Dw + ū.

Observe that, in general, an achievable flow may not ex-
ist. This fact is due to the simultaneous presence of con-
trol constraints and input uncertainty. Indeed it is triv-
ial to see that, when the demand set W is a singleton,
any flow u ∈ U such that Bu = w is achievable. On the
other hand, if the control is unbounded, i.e., u+ = +∞
and u− = −∞, conditions (11) and (12) in Corollary
10 hold trivially. Therefore the following questions are
natural: given W, which is the “smallest” box U for
which an achievable value exists? Or, given U , which is
the “largest” uncertainty set W for which an achievable
value exists? These questions are stated more formally
in the following optimization problems.

Problem 23 Assume that a set W ⊂ IRn, a matrix B ∈
IRn×m, and a cost vector c = [c+|c−]′ ∈ IR2m are given.

Find vectors u+ ∈ IRm+, u− ∈ IRm−, of minimum cost
c+′u+ + c−′u− such that there exist a matrix D ∈ IRm×n

and a vector ū ∈ ker[B] for which conditions (11) and
(12) in Corollary 10 hold.

Problem 24 Assume that a set U ⊂ IRm, a set Ŵ ⊂
IRn, a matrix B ∈ IRn×m are given. Find the maximum
scalar α such that there exist a matrix D ∈ IRm×n and a
vector ū ∈ ker[B] for which conditions (11) and (12) in

Corollary 10 hold for W = αŴ .

In the following subsections, we show that we can solve
all the above problems through linear programming. The
resulting linear programming formulations may present
an exponential number of constraints, proportional to
the number of vertices of W. Nevertheless we show that
Problem 21 can be easily solved by a polynomial time
procedure and that we can use such a procedure as an
oracle for solving the remaining problems by constraint
generation [11].

5.1 Solution of Problem 21

We can give a positive answer to Problem 21 if and only
if ū and D satisfy conditions (12) in Corollary 10. Con-
ditions (12) may be exponential in number. However,
we can easily answer Problem 21 by solving 2m linear
programming problems. In particular let xk denote the
component k of the generic vector x. Then, to provide a
positive answer to Problem 21, we have to verify whether
maxw∈W (Dw)k + ūk (respectively, minw∈W (Dw)k + ūk)
is less than or equal to u+

k (respectively, greater than or

equal to u−k ) for each k = 1, . . . ,m. Note that, when a
verification fails, the solution of the corresponding lin-
ear programming returns a vertex w(i) of W for which
condition (12) does not hold. In the following we refer
to such a vertex as the violating vertex for Problem 21.

5.2 Solution of Problem 22

To provide a positive answer to Problem 22 we have to
determine whether a feasible solution D to the linear
programming problem defined by conditions (11) and
(12) exists. We can solve the linear programming prob-
lem in polynomial time by constraint generation [11],
i.e., generating iteratively only the constraints that are
necessary to identify the desired solution. In particular,
we can use the following algorithm that has the vector
ū as input:

(1) Let I be a subset of the indices denoting the vertices
of W. Go to step 2.

(2) Solve the linear programming problem defined by
the conditions (11) and the conditions (12) corre-
sponding to the vertices with indices in I. If the lin-
ear programming problem has no feasible solution,
exit and provide a negative answer to Problem 22;

10



otherwise let D̂ be the feasible solution obtained
and go to step 3.

(3) Solve Problem 21 for ū and D̂. If Problem 21 has a
positive answer, exit and provide a positive answer
to Problem 22, D̂ is the desired matrix; otherwise
let w(i) be the violating vertex, set I = I ∪{i} and
go to step 2.

Problem 22 becomes particularly easy if W is a box
and we introduce the additional requirement that the
u(w) − ū ≥ 0 when w ≥ 0, in other words, if we desire
that the control strategy reacts with a positive pertur-
bation to a positive perturbation of the demand. This
additional assumption implies that matrix D must have
all its entries non negative. Assume, by contradiction,
that a generic entry dpq ofD is negative and the strategy
u = Dw + ū is applied. Is this case, the component p of
perturbation u − ū is negative for any positive demand
w such that wk > 0 for k = p and wk = 0 otherwise.

If the above additional hypotheses hold, we can answer
Problem 22 by determining whether the following linear
programming problem has a feasible solution.

u− ≤Dw− + ū ≤ u+, (22)

u− ≤Dw+ + ū ≤ u+, (23)

D≥ 0. (24)

In particular, note that imposing the feasibility of the
control reactions to demands corresponding to the two
vertices w− and w+ of W is sufficient to guarantee that
the same strategy is feasible for the remaining 2m − 2
vertices and hence for all the demands in W. Define as

∆w(p) =

{
w+

k − w−

k , if p = k

0, otherwise
, for p = 1, . . . , n. It is

immediate to verify that w+ = w− +
∑m

p=1 ∆w(p) and,

in general, that each vertex w(i) of W can be expressed
as w(i) = w− +

∑
p∈I ∆w(p), where I is an appropriate

subset of {1, . . . ,m}. As ∆w(p) ≥ 0 and D∆w(p) ≥ 0,
the following condition holds for all vertex w(i) of W

u− ≤ Dw− + ū ≤ Dw(i) + ū = D(w− +
∑

p∈I

∆w(p)) + ū

≤ D(w− +

m∑

p=1

∆w(p)) + ū = Dw+ + ū ≤ u+.

5.3 Solution of Problem 23

We reformulate Problem 23 as the following linear pro-
gramming problem

min
u−,u+,ū,D

z= c+′u+ + c−′u− (25)

Bū= 0 (26)

BD= I (27)

u− ≤Dw(i) + ū ≤ u+ i = 1, . . . , s (28)

u+ ≥ 0, u− ≤ 0. (29)

Then, we can use an algorithm similar to the one intro-
duced in Subsection 5.2 to solve the above linear pro-
gramming problem by iteratively generating constraints
(28).

5.4 Solution of Problem 24

We reformulate Problem 24 as following

max
α,ū,D

z = α (30)

Bū= 0 (31)

BD= I (32)

u− ≤Dαw(i) + ū ≤ u+ i = 1, . . . , s (33)

α≥ 0. (34)

Although the above problem is not linear, it can be easily
linearized by defining β = 1

α
and û = ū

α
to obtain

min
β,ū,D

z = β (35)

Bû= 0 (36)

BD= I (37)

βu− ≤Dw(i) + û ≤ βu+ i = 1, . . . , s (38)

β ≥ 0. (39)

Now, we can use again an algorithm similar to the one in-
troduced in Subsection 5.2 to solve the above linear pro-
gramming problem by iteratively generating constraints
(33).

The value of α, solution of problem (30) - (34), indicates
to which extent we can expand the set W so that it is
still contained inBU and a linear control strategy exists.
More general formulations of Problem 24 with weaker
constraints on the shape of W could be proposed, but
in general they turn out to be non linearizable. A trivial
exception occurs when no shape constraint is imposed.
In this case, the largest set W is obviously W = BU .

Remark 25 Through the paper, we have used the trans-
lation δu = u− u0 and δw = w−w0 so that Av[δw] = 0
so that δu = Av[δw] is sought in the kernel of B. An in-
teresting problem is to find δu so that the actual average
flow δu+u0 has the smallest component along the kernel
of B, because in this way we minimize useless circulation
in the system. By writing δu+u0 = Mp1 +M⊥p2 where
M is a basis of ker[B] and M⊥ and orthogonal basis, we
can minimize ‖Mp1‖ by solving a quadratic problem.

Example 26 Let us solve Problem 3 for the system de-
picted in Fig. 3 (B is then the incidence matrix of the
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Fig. 3. Example of a system with 5 nodes and 9 arcs.

arcs 1 2 3 4 5 6 7 8 9

upper bounds 3 2 3 3 3 3 3 5 5

Table 1
Controlled flows constraints

nodes 1 2 3 4 5

upper bounds 0 2 3 2 2

averages 0 1 2 1 1

Table 2
Demand bounds

network). Table 1 summarizes the controlled upper flows
constraints (the lower constraints are all set to 0) whereas
Table 2 the demand bounds and the long–term average de-
mands. Now, given the nominal demand w̄ = [0 1 2 1 1]
and the nominal balancing flow ū = [1 1 1 0 0 1 1 3 2]′ ∈
U (which is w̄ = Bū) we have to determine whether ū
is an achievable average flow, namely, it is such that if
Av[w] = w̄ then Av[u] = ū. If we translate the variables
by setting δu

.
= u − ū and δw = w − w̄, according to

the exposed theory this is equivalent to the existence of
a static strategy which can be expressed as δu = Dδw,
where D is a matrix which satisfies conditions (8)(9).
To determine such a matrix, we implement the algorithm
proposed in Section 5.2. First, we give ū as input and ini-
tialize the subset I = {1}. We solve the linear program
defined by conditions (11) and (12) corresponding to the
only vertex w(1) = [0 0 3 0 0]′ and obtain a first matrix

D̂. Observe that the hypercube W has 24 vertices. Solving

Problem 21 with the given ū and D̂ we obtain as violating
vertexw(2) = [0 0 0 0 0]′. We update I = {1, 2} and solve
the linear program with conditions (11) and (12) cor-
responding to the vertices w(1) and w(2). The procedure
stops after 6 iterations returning as violating vertices

w(1) = [0 0 3 0 0]′, w(2) = [0 0 0 0 0]′, w(3) = [0 0 0 0 2]′,

w(4) = [0 2 0 0 0]′, w(5) = [0 0 0 2 0]′, w(6) = [0 2 3 2 0]′

and matrix D = D̂ defined as

D̂ =




0 1 0 0 0

0 0 0.5 0 0

−0.1 0 0.5 0 0

−0.2 0 0 0 0

0 0 0 0 0

0 0 0.5 0 0

0.1 0 0 1 0

0.6 1 1 0 0

0.4 0 0 1 1




. (40)

Basically, the columns of the above matrix establish that
i) the demand at node 2 is satisfied by a flow through arc
8 and 1, ii) the demand at node 3 is satisfied by a flow
through arc 8, which splits in two equal parts, the first
one going through arc 2 and the second one through arc 3
and 6, iii) the demand at node 4 is entirely satisfied by a
flow through arc 9 and 7, iv) finally the demand at node
5 is satisfied by a flow through arc 9. Obviously, the first
column has no particular meaning since the demand at
node 1 is null.

6 Conclusions and Discussion

The problem faced in this paper consists in satisfying
a fluctuating demand while meeting long–term average
specifications. We have provided necessary and suffi-
cient conditions for this problem to be solvable via static
strategies and we have seen that if this condition is met,
then the static strategy is linear. We have then shown
that the same necessary and sufficient conditions still
hold when we consider a wide class of dynamic strategies.
The proposed dynamic stabilizing control is achieved by
introducing the auxiliary buffer variable y(t) which has
the precise meaning of keeping trace of the load unbal-
ancing.

This fact is particularly interesting in the case in which
the controlled arcs may have inactivity periods (for in-
stance in the case of failures). For instance assume that
‖z(0)‖ ≤ ǫ with ǫ arbitrarily small. This last condition
can always be assured. Also, assume that for a certain
period [0, tfail] the control u(t) is not the desired one due
to some failure. Typically this situation can be faced by
adopting “emergency strategies” (see, e.g., [4]) to keep
the real buffer level x(t) bounded. However y(t) might
diverge (this is the case if an arc from which a certain
positive average flow is expected undergoes a failure)
and then z(t) = Dx(t) + Fy(t) might diverge as well.
When the situation is restored (the arc repaired) at time
tfail the value z(tfail) = Dx(tfail) +Fy(tfail) is of fun-
damental importance. Indeed the restored system is as-
sured to reach the ǫ–ball again in finite time so that for

12



some T > tfail the condition ‖z(T )‖ ≤ ǫ is still met. By
integrating over the period [0, T ] we derive

1

T

T∫

0

[u(t) −Dw(t)]dt =
z(T )− z(0)

T

Since ǫ can be made arbitrarily small, we can achieve
the finite average relation ūT = Dw̄T “approximately”
in finite time.

Among the limitation of the paper, we stress that we
have not considered buffer constraints. Actually, these
can be easily taken into account. For instance one may
assume

x− ≤ x(t) ≤ x+, y− ≤ y(t) ≤ y+,

and use a Lyapunov approach as proposed in [4] for the
extended system with these constraints. Note that by
assigning the new bounds y− and y+ we may limit the
“mismatch variable” y(t).

Further developments of this work include the investiga-
tion of special categories of systems, for instance those
in which B is an incidence matrix for which stronger re-
sults could be found. Furthermore, here have considered
the average in a deterministic sense. Facing the problem
assuming a stochastic demand characterization is cer-
tainly of interest. We have seen that, in general, it is not
possible to keep the buffers bounded while meeting the
average in a worst–case setting. Now, our main question
is whether in a stochastic framework the situation is dif-
ferent, namely we can meet the average while assuring
stochastic stability. So far, we have only conjectures but
not sound answers.
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