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Robust optimality of linear saturated control in uncertain linear

network flows

Fabio Bagagiolo and Dario Bauso

Abstract— We propose a novel approach that, given a linear
saturated feedback control policy, asks for the objective func-
tion that makes robust optimal such a policy. The approach is
specialized to a linear network flow system with unknown but
bounded demand and politopic bounds on controlled flows. All
results are derived via the Hamilton-Jacobi-Isaacs and viscosity
theory.

Keywords: Optimal control, Robust optimization, Inventory
control, Viscosity solutions.

I. INTRODUCTION

Consider the problem of driving a continuous time state

z(t) ∈ IRm within a target set T = {ξ ∈ IRm : |ξ| ≤
ǫ} in a finite time T ≥ 0 with ǫ ≥ 0 a-priori chosen

and keeping the state within T from time T on. Such a

problem is shortly referred to as the ǫ-stabilizability problem

of z(t). Define u(t) ∈ IRm the controlled flow vector,

w(t) ∈ IRn an Unknown But Bounded (UBB) exogenous

input (disturbance/demand) with n < m, and let D ∈ R
n×m

a given matrix, U = {µ ∈ IRm : u− ≤ µ ≤ u+} and

W = {η ∈ R
n : w− ≤ η ≤ w+} be two hyper-boxes with

assigned u+, u−, w+ and w−. Also, let σ be a binary state

such that σ(t) = 0 if z(t) 6∈ T and σ(t) = 1 if z(t) ∈ T .

The robust counterpart of the problem takes on the form

min
u∈U

max
w∈W

J(ζ, u(.), w(.)) =

∫ ∞

0

e−λ(σ)tgσ(z(t), u(t))dt (1)

ż(t) = u(t) − Dw(t), z(0) = ζ for all t ≥ 0 (2)

z(t) ∈ T for all t ≥ T , (3)

where we denote by U = {u : [0, +∞[→ U} and by

W = {w : [0, +∞[→ W} the sets of measurable controls

and demands respectively. From a game theoretic standpoint

we will consider two players, player 1 playing u and player

2 playing w. The state z(t) has initial value ζ and integrates

the discrepancy between the controlled flow u(t) and Dw(t)
as described in (2). Controls u(t) and demand w(t) are

bounded within hyperboxes by their definitions. Condition

(3) guarantees the reachability of the target set from time T
on. Among all controls satisfying the above conditions (call it

admissible controls or solution), we wish to find the one that

minimizes the objective function (1) under the worst demand.

The objective function is defined on an infinite horizon with

discount factor e−λ(σ)t depending on σ. The reason for such

a dependency on σ will be clearer later on. The integrand
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in (1) is a function of z and u and its structure depends on

σ as follows

gσ(z(t), u(t)) =

{

g̃(z(t), u(t)) if σ = 0 (z(t) 6∈ T )

ĝ(z(t), u(t)) if σ = 1 (z(t) ∈ T )
(4)

where g̃(.) and ĝ(.) have to be designed as explained below.

In a previous work [2], it has been shown that under certain

conditions on the matrix D (recalled below), the following

(linear) saturated control policy drives the state z within T :

u(t) = sat[u−,u+](−kz(t)) :=
:=

(

sat[u−,u+](−kz1(t)), ..., sat[u−,u+](−kzn(t))
)

∈ IRn,
(5)

with k > 0 and where

sat[α,β](ξi) =







β, if ξi > β,
ξi, if α ≤ ξi ≤ β,
α, if ξi < α.

Then, we deduce that the saturated control policy returns an

admissible solution for problem (1)-(3). In the light of this

consideration, we focus on the following problem.

Problem 1: We wish to design the integrand gσ(.) of the

objective function (1) in (4) such that the saturated control

turns optimal for the min-max problem (1)-(3).

A. Literature and main results

In this work, we add new results concerning the optimality

of the saturated control policy, which is proved to solve the

ǫ-stabilizability problem in [2]. Our interest for the saturated

control is also due to the fact that it represents the simplest

form of a piece-wise linear control [6]. The idea of modeling

the demand as unknown but bounded variable is in line

with some recent literature on robust optimization [3], [5],

[10] though the “unknown but bounded” approach has a

long history in control [4]. The conservative approach of

Section V reminds the Soyster decomposition [12], used

in robust linear programming. Also, the notion of feedback

in control, present in this work, reminds the notion of

recourse used in robust optimization [7]. Concerning the

nature of the problem, we wish to emphasize our reversed

perspective: given a solution (the saturated control policy) we

ask for the objective function that makes the solution optimal.

Similarly to the dual mode control in [11] we provide a

solution approach which decomposes the problem into two

subproblems, within and without a predefined neighborhood

of the origin. All results are derived via the Hamilton-

Jacobi-Bellman and Hamilton-Jacobi-Isaacs equations and

the related viscosity solutions theory (see Bardi-Capuzzo

Dolcetta [1] as a general reference).



B. Some basic facts about Hamilton-Jacobi equations, opti-

mal control and differential games

A Hamilton-Jacobi equation is a first order partial differ-

ential equation of the form

F (x, v(x),∇v(x)) = 0 in Ω,

where Ω ⊆ IRm, is open, F : Ω × IR × IRm → IR is

continuous. A viscosity solution of it is a continuous function

v : Ω → IR such that, for every x ∈ Ω and for every

differentiable function ϕ : Ω → IR, the following holds

i) x is local max for v − ϕ ⇒ F (x, v(x),∇ϕ(x)) ≤ 0;
ii) x is local min for v − ϕ ⇒ F (x, v(x),∇ϕ(x)) ≥ 0.

The idea is hence to substitute the derivatives of v, which

usually do not exist, with the derivatives of the test function

ϕ, and to require that the equation is ”semi-verified” in

the point of maximum for v − ϕ and (oppositely) ”semi-

verified” in the point of minimum for v − ϕ. If a function

satisfies i) only (for every test functions) then it is called a

subsolution, whereas it is called a supersolution in the other

case. Such a notion of solution goes back to Crandall-Evans-

Lions [8]. Obviously, this is a weak definition of solution,

and in particular, if a function v is a classical solution (i.e. it

is differentiable and satisfies the equation by equality), then

it is also a viscosity solution.

Let us consider an optimal control problem

max
β

J(x, β)

(

= max
β

∫ ∞

0

e−tℓ(y(t), β(t))dt

)

,

subject to ẏ(t) = f(y(t), β(t)), y(0) = x,

where β : [0,+∞[→ B is the measurable control, with B
a compact set. Under rather general hypotheses, the value

function of the problem, U(x) = supβ J(x, β), is a viscosity

solution of the Hamilton-Jacobi-Bellman equation

U(x) + min
b∈B

{−f(x, b) · ∇U(x) − ℓ(x, b)} = 0.

Such an equation holds in the whole IRm if the control

problem is without state-constraints (i.e. the state y(·) is free

to move in IRm); otherwise, if the problem is confined in the

closure Ω of an open set Ω, the equation must be coupled

with suitable boundary conditions on ∂Ω, usually given by

an exit cost ψ from Ω. The problem is then

max
β

J(x, β)
(

= maxβ

∫ tx(β)

0
e−tℓ(y(t), β(t))dt+

+e−tx(β)ψ(y(t))
)

,

where tx(β) is the first exit time from Ω for the trajectory

starting from x with control β (with the convention tx(β) =
+∞ if the trajectory never exit from Ω).

Under some hypotheses on the regularity of ∂Ω and

on the existence of inner suitable fields on the points of

the boundary, the value function turns out to satisfy the

boundary condition U = ψ in the so-called ”viscosity

sense”. This means that on the point x of the boundary

which are of local maximum (respectively local minimum)

for U − ϕ (when restricted to the closure of Ω), we must

have U(x) ≤ ψ(x) (resp. U(x) ≥ ψ(x)) or U(x) +
minb∈B {−f(x, b) · ∇ϕ(x) − ℓ(x, b)} ≤ 0 (resp. ≥ 0), i.e.

the equation holds with the ”right” sign.

Under general hypotheses (on the regularity of Ω, and

some ”compatibility conditions” for the exit-cost ψ), the

value function is characterized as the unique bounded uni-

formly continuous viscosity solution of the boundary value

problem for the Hamilton-Jacobi-Bellman equation (note that

if Ω is IRm, then there are not boundary conditions).

Now we consider a differential game with state equation

y′(t) = f(y(t), α(t), β(t)), y(0) = x,

and cost functional

J(x, α, β) =

∫ +∞

0

e−tℓ(y(t), α(t), β(t))dt,

for the infinite horizon case (i.e. without restriction to Ω), or

J(x, α, β) =
∫ tx(α,β)

0
e−tℓ(y(t), α(t), β(t))dt+

+ e−tx(α,β)ψ(y(t)),
(6)

for the exit-time problem. The measurable control α ∈ A =
{α : [0, +∞[→ A, measurable} is governed by the first

player who wants to minimize the cost, whereas and the

second player, by choosing the measurable control β ∈ B =
{β : [0,+∞[→ B, measurable}, wants to maximize the

cost. We define the non-anticipative strategies (see, e.g., [9])

for the first player

Γ =
{

γ : B → A, β 7→ γ[β]
∣

∣

∣
β1 = β2 in [0, s] =⇒

γ[β1] = γ[β2] in [0, s]} .
(7)

Hence the (lower) value function for the minimiza-

tion/maximization problem is defined as

V (x) = min
γ∈Γ

max
β∈B

J(x, γ[β], β).

Under rather general hypothesis, the value function V is the

unique bounded uniformly continuous viscosity solution of

the following Hamilton-Jacobi-Isaacs equation

V (x) + min
b∈B

max
a∈A

{−f(x, a, b) · ∇V (x) − ℓ(x, a, b)} = 0,

which also in this case must be coupled with appropriate

boundary conditions for the exit-time problem.

II. SOLUTION APPROACH

We will pursue the idea of decomposing the infinite

horizon (1) into a finite horizon problem with σ(t) = 0
and an infinite infinite horizon problem with σ(t) = 1 as

expressed below

J(ζ, u(.), w(.)) = [
∫ T

0
g̃(z(t), u(t), w(t))dt+

∫ ∞

T
e−tĝ(z(t), u(t), w(t))dt].

(8)

We can do such a decomposition as once the state enters the

target T it will remain in it for the rest of the time [2].

Let us now explain more in details the notion of optimality

of a saturated control mentioned in Problem 1. Let U and

W be the sets of measurable controls and demands as in the



Introduction (after equation (3)), and let Γ be the set of non-

anticipative strategies for the player 1 (see (7), replacing B
by W , A by U , and β by u). The (lower) value function for

the differential game is then

V (ζ) = inf
γ∈Γ

sup
w∈W

J(ζ, γ[w], w),

where ζ is the initial state. Now, V must be the unique vis-

cosity solution of the Hamilton-Jacobi-Isaacs (HJI) equation

σV (ζ) + H(ζ,∇V (ζ)) = 0, (9)

where the Hamiltonian H is, for every (ζ, p) ∈ IRm × IRm:

H(ζ, p) := min
ω∈W

max
µ∈U

{−(µ − Dω) · p − gσ(ζ, µ, ω)}. (10)

Observe that the above equation depends on function gσ(.)
and on σ. Hence when dealing with the infinite horizon σ =
1 and so in the left hand side of the equation there is the

presence of the addend +V (ζ). We can look at the saturated

control as a special non anticipative strategy γ0, namely, for

every w ∈ W we define

γ0[w](t) = sat[u−,u+](−kz),

where z is the state trajectory of (2) under the saturated

control as choice for u and under the choice of w. Given

this, we wish to find a function gσ(.) such that the worst cost

returned by the saturated control equals the value function

V . This corresponds to imposing

Ṽ (ζ) := sup
w∈W

J(ζ, γ0[w], w) = V (ζ),

i.e. we get the robust optimality of the saturated control if

Ṽ = V, (11)

where Ṽ is obtained by maximizing over w

J̃(ζ, w) =

∫ T

0

e−σ(t)tgσ(z(t), sat[u−,u+](−kz(t)), w(t))dt,

(in the infinite horizon the extremes are T and ∞) subject

to the controlled dynamics

ż(t) = sat[u−,u+](−kz(t))−Dw(t), z(0) = ζ (or z(T ) = ζ).

Now, Ṽ must be the unique viscosity solution of the

Hamilton-Jacobi-Bellman (HB) equation:

σṼ (ζ) + H̃(ζ,∇Ṽ (ζ)) = 0, (12)

where the Hamiltonian H̃ is, for every (ζ, p) ∈ IRm × IRm

H̃(ζ, p) := minω∈W{−(sat[u−,u+](−kζ) − Dω) · p+
−gσ(ζ, sat[u−,u+](−kζ), ω)}.

In the following, we will look for suitable cost g in

order to get the optimality of the saturated control for the

corresponding problems. We will prove such an optimality

(i.e. (11)) in two different ways: i) directly computing the

functions V , Ṽ and checking their equality, 2) writing the

two corresponding Hamilton-Jacobi equations and checking

they have the same unique solution.

Remark 1: A trivial choice is gσ(ζ, µ, ω) = |sat(−kζ)−
µ|. It penalizes any control u different from the saturated

control. However, such a choice makes the game (and the

mathematical problem) without interest.

III. MINIMUM TIME PROBLEM OUTSIDE THE TARGET SET

Let us start by observing that we can always choose g̃(.)
big enough in comparison with ĝ(.) such that, for all u and

w, the second contribution
∫ ∞

T
ĝ(z(t), u(t), w(t))dt in (1)

can be neglected if compared with the first contribution
∫ T

0
g̃(z(t), u(t), w(t))dt. In particular this is true if we

choose g̃(ζ, µ, ω) = M with M > 0 big enough. With the

above choice the problem outside the target T is equivalent

to a minimum time problem with g̃(ζ, µ, ω) ≡ 1. With this in

mind, take without loss of generality U = {µ ∈ IRm
∣

∣

∣
− 1 ≤

µi ≤ 1 ∀i = 1, ..,m}, W = {ω ∈ IRn
∣

∣

∣
− 1 ≤ ωj ≤ 1 ∀j =

1, ..., n}, and D an m × n matrix satisfying U ⊃ DW .

We denote by Dij the entries of the matrix. The target

is T = {ξ ∈ IRm
∣

∣

∣
|ξi| ≤ (1/k) ∀i = 1, ...,m}, and the

saturated control policy is u(t) = sat[−1,1](−kz(t)). Hence,

the two Hamiltonians become, for all ζ, p ∈ IRm (recall that

we are considering g̃ ≡ 1),

H(ζ, p) = −

n
∑

j=1

∣

∣

∣

∣

∣

m
∑

i=1

piDij

∣

∣

∣

∣

∣

+

m
∑

i=1

|pi| − 1,

H̃(ζ, p) = −

n
∑

j=1

∣

∣

∣

∣

∣

m
∑

i=1

piDij

∣

∣

∣

∣

∣

−

m
∑

i=1

sat[−1,1](−kζi)pi − 1

(13)

By our hypotheses, the controllable set is IRn \ T , and

hence V and Ṽ are, respectively, the unique solutions of

{

H(ζ,∇V (ζ)) = 0 in IRn \ T
V = 0 on ∂T ;

{

H̃(ζ,∇Ṽ (ζ)) = 0 in IRn \ T

Ṽ = 0 on ∂T ;

(14)

The question is then to prove that such two problems have

the same solution (note that we do not a priori know V and

Ṽ ). Anyway, in this case, due to the structure of the system

and to other hypotheses, we can easy guess that the saturated

control is an optimal choice for player 1. Indeed, since,

whatever w(t) is, for every i-th component, (Dw(t))i cannot

change the sign of sat[−1,1](−kzi(t))− (Dw(t))i (when the

initial point satisfies |ζi| > (1/k)), and since that is the “good

sign” for steering ζ to the target, then any controller will use

such a control (or non anticipative strategy).

In the light of the above considerations, for the value

function, it is reasonable to consider the following expression

V (ζ) = max
i=1,...,m

{

max
{

0, |ζi| −
1
k

}

1 −
∑n

j=1 |Dij |

}

. (15)

That is V is the time requested for steering all the compo-

nents in the interval [−1/k, 1/k], under the worst scenario

concerning the demand w.

Let i∗ be the solution of the above maximization (the last

component to reach the target set), the generic component

of the costate is pi∗ = 1
1−

∑

n
j=1 |Di∗j |

and pj = 0 for all

j 6= i∗. The optimal choice for w is wj = sign(Di∗j).
It is easy to check that the two Hamilton-Jacobi problems

in (14) are both satisfied by (15) where such a function is



differentiable. On the other hand, on the points where it is

not differentiable (i.e. the point where the maximizing index

in (15) changes), the definition of viscosity solution applies.

We can also note that, on such points of non-differentiability

(which are located on some portion of hyperplanes), we can

only have test function ϕ such that V − ϕ has a minimum,

and also that the i-th component of the gradient ∇ϕ has the

same sign of ζi. Hence the left-hand side of the equations in

(14) are the same (see also (13)).

It must be noted that while the saturated control is unique

optimal for the component i∗, this is no longer true for all

the other components j 6= i∗. Actually, all zj with j 6= i∗

once reached the target may exit and enter again several times

following an infinite number of different trajectories and this

until also zi∗ reaches the target set.

IV. A “QUADRATIC COST” WITHIN THE TARGET SET

Within the target set we consider the following quadratic

cost depending on ζ, µ, ω for fixed k > 0:

ĝ(ζ, µ, ω) =
k + 1

2
‖ζ+

Dω

k
‖2+

1

2k
‖µ−Dω‖2+C‖D(ω−ω̄)‖2,

where, ‖ · ‖ is the euclidean norm in IRn, ω ∈ W is a

generic vertex, a-priori chosen, of W and C ≥ 0 is a suitable

constant, which will be fixed later. Our guess is that, inside

the target T , the saturated control is the unique optimal

strategy for the min-max problem related to the cost ĝ(.),
and suitable exit-cost from the closed set T .

Since we are decoupling the initial problem in two prob-

lems, outside and inside the target T , in this section we may

consider the infinite horizon problem with initial time T = 0.

First of all, let us consider the maximization problem over

w ∈ W , with control u equal to the linear saturated one:

Ṽ (ζ) = sup
w∈w

∫ ∞

0

e−tĝ(z(t),−kz(t), ω),

subject to ż(t) = −kz(t) − Dω, z(0) = ζ ∈ T .
(16)

Note that here we are not imposing an exit cost from T .

Indeed, it is without meaning in this case since, whichever

the control w is, the trajectory can not exit from T .

We now specialize the constant C ≥ 0 in the definition of

the cost ĝ. We choose a vertex ω of W , and C ≥ 0 such that,

for all ζ ∈ T , the maximum over ω ∈ W of the expression

2k + 1

2

∥

∥

∥

∥

ζ +
Dω

k

∥

∥

∥

∥

2

−ζ ·
Dω

k
+

Dω

k
·
Dω

k
+C‖D(ω− ω̄)‖2,

(17)

is always taken in −ω (note that the first addendum of such

expression is just the sum of the two first addenda of g when

µ = −kζ). This is possible by choosing ω equal to one of

the two opposite vertices which strictly maximize the norm

of Dω (which exist since we may suppose the matrix D have

positive entries), and then taking C such that

C ≥ maxζ∈T ,ω∈vertW,ω 6=−ω

2k+1
k

(

‖ζ+ Dω
k ‖

2
−‖ζ−Dω

2 ‖
2
)

+

4‖Dω‖2−‖Dω−Dω‖2

−ζ·(Dω+Dω)+
Dω·(Dω+Dω)

k2 .
(18)

Now, if we fix w(t) ≡ −ω for all t, then, since u(t) =
−kz(t), the trajectory is given by

z(t) = e−kt

(

ζ −
Dω

k

)

+
Dω

k
.

Hence, the cost associated to such a choice of w is (after

simple calculation)

J̃(ζ) =
1

2

∥

∥

∥

∥

ζ −
Dω

k

∥

∥

∥

∥

2

+ 4C‖Dω‖2,

We guess, not surprisingly, that J̃ is indeed the value

function Ṽ of the maximization problem. This can be done,

for instance, by proving that J̃ solves the corresponding

Hamilton-Jacobi equation

J̃(ζ)+min
ω∈W

{

−(−kζ − Dω) · ∇J̃ω(ζ) − ĝ(ζ,−kζ, ω)
}

= 0.

(19)

This can be easily checked, since J̃ is differentiable and

hence a classical solution of (19) (when we put the gradient

of J̃ inside the equation, by the hypothesis about the max-

imization of (17) we immediately get that the minimum in

the left-hand side is reached in −ω, and hence we conclude).

By uniqueness of the solution of (19), J̃ must coincide with

the value function Ṽ .

We now consider the differential game, subject to (2), with

running cost ĝ, and exit-cost from T given by

ψ(ζ) =
1

2
‖ζ −

Dω

k
‖2 + 4C‖Dω‖2,

Following the solution approach explained in Section II,

we guess that the (lower) value function V for such a

problem, coincides with the function Ṽ = J̃ already found.

By the general results, as explained in the Introduction,

the lower value function V is the unique bounded continuous

viscosity solution of the boundary value problem











V (ζ) + min
ω∈W

max
µ∈U

{−(µ − Dω) · ∇V (ζ)+

−ĝ(ζ, µ, ω)} = 0 in T ,
V = ψ on ∂T ,

(20)

where the boundary condition are in the viscosity sense.

If now we specialize a little bit more the constant C ≥ 0
in the definition of ĝ, we may get that Ṽ is also a solution

of (20) (note that it satisfies the boundary condition in the

classical way, and hence also in the viscosity sense). This is

possible by the following observations. Let us put Ṽ (which

is differentiable) and its gradient in (20). For every ω ∈ W ,

let µω ∈ U reach the maximum in the left-hand side. Now,

note that our condition on C is only a lower bound. Hence

we may take C larger than its lower bound. In particular,

since, for every ζ ∈ T , µ ∈ U , ω ∈ W , the difference

|ĝ(ζ,−kζ, ω) − ĝ(ζ, µ, ω)|, which is

1

2k

∣

∣

∣
‖kζ + Dω‖

2
− ‖µ − Dω‖

2
∣

∣

∣
,



is small of order 1/k, we can take C a little bit larger than

its lower bound such that it is also true that, for every ζ ∈ T ,

the minimum with respect to ω ∈ W of the expression

−(µω − Dω) · ∇V (ζ) − g(ζ, µω, ω),

is taken in −ω. But, as standard calculations show, the only

possibility is µ−ω = −kζ and hence Ṽ solves (20). By

uniqueness, we then get Ṽ = V , and u(t) = −kz(t) is

the unique possibility for optimality.

Remark 2: Argument of future works is searching a suit-

able running cost ĝ which leaves the demand free to switch

(at least) between two opposite vertices.

V. A CONSERVATIVE APPROXIMATION

In this section, we propose a conservative approach that

allows us to solve the original problem without decomposing

it into the finite an infinite horizon problem. Let us split

the demand w(t) into m independent demands w(i)(t) each

one acting on a different component. This corresponds to

considering m decoupled one-dimensional dynamics of type

żi(t) = ui(t) −
n

∑

j=1

Dijw
(i)
j (t).

In the rest of the section, we focus on the one dimensional

version of our problem and drop the index i where possible.

In the one dimensional context, it is natural to think (and

we will prove it in the sequel, for a suitable cost) that the

optimal choice for the player 2 is to use

w(t) = −sign(z(t)) arg max
ω

|

n
∑

j=1

Dijωj | ∈ [−1, 1]n, (21)

where, if z(t) = 0, then w(t) may be any value from

[−1, 1]n. Now, consider the following objective function

g(ζ, µ) = max{|sat[−1,1](−kζ)|, |µ|},

and the corresponding infinite horizon game with cost

J(ζ, u(.), w(.)) =

∫ ∞

0

e−tg(z(t), u(t))dt,

where e−t is a given discount term. We want to show that

the saturated strategy, is the optimal one for the first player.

Hence, first of all, let us prove the (non surprising) optimality

of (21) for the second player in the corresponding maximiz-

ing optimal control problem when u(t) = sat[−1,1](−kz(t)),
that is when the cost is just equal to |sat[−1,1](−kz(t))|.
Defining c =

∑n
j=1 |Dij |, the system is (recall 0 < c < 1)

ż(t) = sat[−1,1](−kz(t))+ c(sign(z(t))), z(0) = ζ. (22)

Let us suppose −(1/k) ≤ ζ < 0. Then the trajectory is

(recall that if z(t) ∈ [−(1/k), 0[, then sat[−1,1](−kz(t)) =
−kz(t), and sign(z(t)) = −1)

z(t) = e−kt
(

ζ +
c

k

)

−
c

k
∀t ≥ 0

Note that such a trajectory is always negative and hence it

is exactly the solution of the system (22) with the second

member given by −kz(t) − c. Moreover, observe that it is

increasing if ζ < −(c/k) and decreasing if −(c/k) < ζ <
0. Hence, in any case, it converges (for t → +∞) to the

equilibrium −(c/k). Note that such an equilibrium point is

just obtained from (cωζ)/k when ωζ = −1, that is when ωζ

solves the problem ωζ(cζ) = maxω∈[−1,1] ω(cζ). The cost

of such a controlled trajectory is

Ṽ (ζ) =

∫ ∞

0

e−t(−kz(t))dt =
k(c − ζ)

k + 1

Let us note that Ṽ has a continuous derivative in

[−()1/k), 0[, given by the negative constant Ṽ ′(ζ) ≡
−k/(k + 1). Moreover we have that Ṽ (ζ) → kc

k+1 , for

ζ → 0− and Ṽ (ζ) → kc+1
k+1 , for ζ → −

1 k.

If instead ζ ≤ −(1/k), then the system has the right hand

side equal to 1 − c until z reaches the value −(1/k) and

after, again, equal to −kz − c. Since the reaching time is

τ = −(kζ + 1)/(k − kc), dividing the system in the two

intervals of time [0, τ ] (with initial point ζ), and [τ, +∞]
(with initial point −(1/k)), we obtain the trajectory

z(t) =







ζ + (1 − c)t 0 ≤ t ≤ τ,

e−kt+kτ

(

c − 1

k

)

−
c

k

Again, such a trajectory is increasing and converges to

−(c/k). The corresponding cost and cost derivative in ] −
∞,−(1/k)[ are

Ṽ (ζ) = −e−τ (1 − c)
k

k + 1
+ 1, Ṽ (ζ)′ = e−τ k

k + 1
.

Note that Ṽ is then continuous and derivable, since Ṽ (ζ) →
kc+1
k+1 , for ζ → − 1

k

−
and Ṽ (ζ)′ → − k

k+1 , for ζ → − 1
k

−
.

If instead ζ > 0, a similar analysis as before gives

Ṽ (ζ) = k
k+1 (ζ + c) 0 < ζ < (1/k)

Ṽ (ζ) = −e−τ (1 − c)
k

k + 1
+ 1 (1/k) ≤ ζ,

where τ = (1 − kζ)/(k − kc) is the reaching time of the

value 1/k. Also in this case c/k is an attracting equilibrium

point. Then, the value Ṽ is continuous and derivable in ] −
∞, 0[∪]0, +∞[. Moreover, it is continuous in ζ = 0 where

it is equal to kc/(k + 1) but is not derivable in ζ = 0.

The left limit of derivatives is −k/(k +1) whereas the right

limit is k/k+1. Hence, in the view of the viscosity solutions

approach, we can say that there are not test functions ϕ such

that Ṽ − ϕ has a local maximum in ζ = 0, whereas the set

of the derivatives in ζ = 0 of all test functions ϕ such that

Ṽ − ϕ has a local minimum in ζ = 0 is exactly the interval

[−k/(k + 1), k/(k + 1)].
The function Ṽ is the optimal value for the problem of

maximizing, among w ∈ W , the following cost

J̃(ζ, w(.)) =

∫ ∞

0

|sat[−1,1](−kz(t))|dt,

subject to the dynamics

ż(t) = sat[−1,1](−kz(t)) − cw(t), z(0) = ζ,



if and only if it is a viscosity solution in IR of the problem

Ṽ (ζ) + min
ω∈[−1,1]

{−(sat[−1,1](−kζ) − cω)Ṽ (ζ)′ +

−|sat[−1,1](−kζ)|} = 0

Here we do not have boundary conditions since the problem

is not restricted to a subset, but it is treated in the whole

IR. A direct calculation shows that Ṽ is a viscosity solution.

Now we guess that Ṽ is also a viscosity solution of the Isaacs

equation for the differential game given by the cost

J(ζ, u(.), w(.)) =

∫ ∞

0

e−t max{|sat[−1,1](−kz(t))|, |u(t)|}dt

subject to the dynamics (2). Hence, we have to prove that Ṽ
is a viscosity solution of

Ṽ (ζ)+ minω∈[−1,1] maxµ∈[−1,1]{−(µ − cω)Ṽ (ζ)′ +

−max(|sat[−1,1](−kζ)|, |µ|)} = 0

and hence we will get, by uniqueness, that it is equal to the

lower value function of the game.

To this end, we have to split the analysis in the following

cases: a) ζ < −(1/k), b) −(1/k) ≤ ζ < 0, c) ζ = 0, d)

0 < ζ ≤ 1/k, e) ζ > 1/k. A careful analysis of all these

cases brings the desired result, and also the fact that the linear

saturated control is the unique optimal choice for the first

player. In particular, outside the target, the optimal choice

for the first player is µ = 1 if ζ < 0 (µ = −1 if ζ > 0)

which is exactly the linear saturated control, and corresponds

to the optimal choice for a minimum time problem.

VI. NUMERICAL ILLUSTRATIONS

Consider dynamics ẋ = Bu−w where B is the incidence

matrix of the network with n = 5 nodes and m = 9 arcs

in Fig. 1. Table I lists the upper bounds on u (lower bounds
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3

Fig. 1. Example of a system with 5 nodes and 9 arcs.

are all 0), the demand bounds, and the long–term average

demands. Now, given the nominal demand w̄ = [0 1 2 1 1]
and the nominal balancing flow ū = [1 1 1 0 0 1 1 3 2]′ ∈ U
(which is w̄ = Bū) we translate the variables by setting

δu
.
= u − ū and δw = w − w̄. We choose matrix D as

in (40) of [2], obtained via constraint generation, (see [2]

Section 5.2). We simulate the system under the saturated

linear state feedback control (5) (we initialize x(0) = 0,

y(0) = 0, and set k = 4). The time plot of z(t) in Fig. 2

shows that z(t) converges to the interval [−δu+/k,−δu−/k]
(dotted line in Fig. 2).

arcs 1 2 3 4 5 6 7 8 9

upper bounds 3 2 3 3 3 3 3 5 5

nodes 1 2 3 4 5

upper bounds 0 2 3 2 2

averages 0 1 2 1 1

TABLE I

CONTROLLED FLOWS CONSTRAINTS AND DEMAND BOUNDS
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Fig. 2. The variable z(t) with saturated linear feedback control (5) with
k = 4.
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