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Lyapunov stochastic stability and control of

robust dynamic coalitional games with

transferable utilities

Dario Bauso, P. Viswanadha Reddy, Tamer Başar,

Abstract

This paper considers a dynamic game with transferable utilities (TU), where the characteristic

function is a continuous-time bounded mean ergodic process. A central planner interacts continuously

over time with the players by choosing the instantaneous allocations subject to budget constraints.

Before the game starts, the central planner knows the natureof the process (bounded mean ergodic),

the bounded set from which the coalitions’ values are sampled, and the long run average coalitions’

values. On the other hand, he has no knowledge of the underlying probability function generating

the coalitions’ values. Our goal is to find allocation rules that use a measure of the extra reward

that a coalition has received up to the current time by re-distributing the budget among the players.

The objective is two-fold: i) guaranteeing convergence of the average allocations to the core (or a

specific point in the core) of the average game, ii) driving the coalitions’ excesses to ana priori given

cone. The resulting allocation rules arerobust as they guarantee the aforementioned convergence

properties despite the uncertain and time-varying nature of the coaltions’ values. We highlight three

main contributions. First, we design an allocation rule based on full observation of the extra reward

so that the average allocation approaches a specific point inthe core of the average game, while

the coalitions’ excesses converge to ana priori given direction. Second, we design a new allocation

rule based on partial observation on the extra reward so thatthe average allocation converges to the
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core of the average game, while the coalitions’ excesses converge to ana priori given cone. And

third, we establish connections to approachability theory[9], [18] and attainability theory [4], [19].

Keywords Coalitional games with transferable utilities; allocation processes; approacha-

bility theory; Lyapunov stochastic stability.

I. INTRODUCTION

Coalitional games with transferable utilities (TU), introduced first by Von Neuman and

Morgenstern [25], have recently sparked much interest in the control and communication

engineering communities [21]. In essence, coalitional TU games are comprised of a set of

players who can form coalitions and a characteristic function associating a real number with

every coalition. This real number represents the value of the coalition and can be thought of

as a monetary value that can be distributed among the membersof the coalition according to

some appropriate fairness allocation rule. The value of a coalition also reflects the monetary

benefit demanded by a coalition to be a part of the grand coalition.

This paper considers adynamic TU game, where the characteristic function is a bounded

mean ergodic process. Bounded means that the characteristic function takes values in a convex

set according to an unknown probability distribution. Meanergodic means that the expected

value of the coalitions values at each time coincides with the long term average. With the

dynamic game we associate adynamic average gameobtained by averaging over time the

coalitions’ values, and assume that the core of the average game is nonempty on the long run.

Given the above dynamic TU game, a central planner interactscontinuously over time with

the players by choosing the instantaneous allocations subject to budget constraints. Before

the game starts, the central planner knows the nature of the process (bounded mean ergodic),

the bounded set and the long run average coalitions’ values.On the other hand, he has no

knowledge of the underlying probability function generating the instantaneous coalitions’

values. Our goal is to find allocation rules that use a measureof the extra reward that a

coalition has received up to the current time by re-distributing the budget among the players.

The objective is two-fold: i) guaranteeing convergence of the average allocations to the core

(or a specific point in the core) of the average game, ii) driving the coalitions’ excesses

to an a priori given cone. The resulting allocation rules arerobust as they guarantee the

aforementioned convergence properties despite the uncertain and time-varying nature of the

coaltions’ values.
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In the context of coalitional TU games,robustnessanddynamicsnaturally arise in all the

situations where the coalitions values are uncertain and time-varying, see e.g., [7]. Robustness

has to do with modeling coalitions’ values as unknown entities and this is in spirit with some

literature on stochastic coalitional games [23], [24]. However, we deviate from the latter works

since the probability function generating the random coalitions values is unknown, and this is

more in line with the concept of Unknown But Bounded (UBB) variables formalized in [8].

It is worth to mention that this formulation shares some common elements with the recent

literature on interval valued games [1], where the authors use intervals to describe coalitions

values quite similar to what is done in this paper. The interval nature of coalitions’ values

arises generally due to the optimistic and pessimistic expectations of the coalitions [11] when

cooperation is achieved from a strategic form game. We also note some differences in that

we focus here more on the time-varying nature of the coalitions’ values. In doing so, we also

link the approach to the set invariance theory [10] and stochastic stability theory [20] which

provides us somenice tools for stability analysis (see, e.g., the use of a Lyapunov function

in the proof of Theorem 4.1).

Bringing dynamical aspects into the framework of coalitional TU games is an element in

common with other papers [13], [16], [17]. The main difference with those works is that

the values of coalitions are realized exogenously and no relation exists between consecutive

samples.

Convergence conditions together with the idea that allocation rules use a measure of the

extra reward that a coalition has received up to the current time by re-distributing the budget

among the players are a main issue in a number of other papers [2], [12], [15], [18], [22] as

well. However, this paper departs from the aforementioned ones mainly in that dynamics in

those works is captured by a bargaining mechanism with fixed coalitions’ values while we

let the values be time-varying and uncertain. This last element adds some robustness to our

allocation rule which has not been dealt with before.

The main contribution of this paper is captured by the following three results. First, we

design an allocation rule based on full observation of the extra reward so that the average

allocation approaches a specific point in the core of the average game, while the coalitions’

excesses converge to ana priori given direction. Second, we design a new allocation rule

based on partial observation on the extra reward so that the average allocation converges
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to the core of the average game, while the coalitions’ excesses converge to ana priori

given cone. Convergence of both allocation rules is proved via Lyapunov stochastic stability

theory. And third, we establish connections of the Lyapunovstochastic stability theory to the

approachability theory [9], [18] and attainability theory[4], [19].

A few other contributions of the paper are the definition of average game, whose role

becomes fundamental when the coalitions’ values variations are known with delay by the

planner; the reformulation of the problem as a network flow control problem, where the

allocation rule turns into a robust control policy is a novelaspect, with the importance of

such a reformulation lying in the fact that we can prove the convergence of the allocations

using the strong tools of the Lyapunov stochastic stabilitytheory; and finally, the idea of

turning a coalitional TU game set up into a control theoreticproblem is a novel one, which

represents, by far, the main characteristics of this work.

The paper is organized as follows. In Section II, we formulate the problem. In Section III,

we present the basic idea of our solution approach. In Section IV we state the three main

results of this work and postpone the derivation of such results to Section V. In Section VI,

we provide some numerical illustrations. Finally, in Section VII, we draw some concluding

remarks.

Notation. We view vectors as columns. For a vectorx, we usexi or [x]i to denote itsith

coordinate component. For two vectorsx and y, we usex < y (x ≤ y) to denotexi < yi

(xi ≤ yi) for all coordinate indicesi. We let xT denote the transpose of a vectorx, and

‖x‖n denote itsn-norm. For a matrixA, we useaij or [A]ij to denote itsijth entry. We use

|aij| to denote the absolute value of scalaraij . Given two setsU andS, we write U ⊂ S

to denote thatU is a proper subset ofS. We use|S| for the cardinality of a given finite

set S. Let Φ be a closed and convex set inRm, we useP (y) to denote the projection of

any pointy ∈ R
m onto Φ (closest point toy in Φ). We also denote by∂Φ the boundary of

Φ and ny the outward normal for anyy ∈ ∂Φ. We usedist(y,Φ) to denote the euclidean

distance between pointy and setΦ. Given a setN of players and a functionη : S 7→ R

defined for each nonempty coalitionS ⊆ N , we write< N, η > to denote the transferable

utility (TU) game with the players’ setN and the characteristic functionη. We let ηS be

the valueη(S) of the characteristic functionη associated with a nonempty coalitionS ⊆

N . Given a TU game< N, η >, we useC(η) to denote the core of the game,C(η) =
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{

x ∈ R
|N |

∣
∣
∣
∑

i∈N xi = ηN ,
∑

i∈S xi ≥ ηS for all nonemptyS ⊂ N
}

. Also, R+ denotes the

set of nonnegative real numbers. Given a random vectorξ the notationE[ξ] denotes its

expected value. Given a random process{v(t)} we denote bỹv(t) =
∫ t

0
v(τ)dτ , its integral

and v̄(t) = ṽ(t)
t

its average up to timet.

II. M ODEL AND PROBLEM FORMULATION

In this section, we formulate the problem in its generic formand elaborate on the role of

information. LetN = {1, . . . , n} be a set of players andS ⊆ N the set of all (nonempty)

coalitions arising among these players. Denote bym = 2n − 1 the number of possible

coalitions. We assume that time is continuous and uset ∈ R+ to index the time slots.

We consider adynamic TU game, denoted< N, {v(t)} >, where{v(t)} is a continuous

flow of characteristic functions. The flow{v(t)} describes a bounded mean ergodic process.

By bounded we mean that given a bounded convex setV ∈ R
m and a probability function

P ∈ ∆(V), where∆(V) is the set of probability functions onV, then for all t ∈ R+ each

random variablev(t) takes values inV ∈ R
m according to probabilityP as expressed in (1);

by mean ergodic we mean that its expected value coincides with the long term average as in

(2):

v(t) ∈ V ⊂ R
m, for all t ∈ R+ (1)

E[v(t)] = limτ→∞v̄(τ), for all t ∈ R+. (2)

Thus, in the dynamic TU game< N, {v(t)} >, the players are involved in a sequence of

instantaneous TU games whereby, at each timet, the instantaneous TU gameis < N, v(t) >

with v(t) ∈ V for all t ≥ 0. Further, we letvS(t) denotethe value assigned to a nonempty

coalition S ⊆ N in the instantaneous game< N, v(t) >.

With the dynamic game we associate adynamic average game< N, {v̄(t)} > and an

instantaneous average game at timet ≥ 0, < N, v̄(t) >.

The motivation of formalizing the above dynamic TU games is in that such games represent

a stylized model of all those scenarios where the coalitions’ values vary with time.

We assume that the core of the average game is nonempty on the long run. We will see

that without this assumption the problem under study has no solution. Thus, denote byvnom

the (long run) average coalitions’ values, namely,vnom := limt→∞ v̄(t) and letC(vnom) be

the core of the average game.

April 24, 2012 DRAFT
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Assumption 1:(balancedness) The core of the average game is nonempty in the limit:

C(vnom) 6= ∅.

We can view the above assumption as introducing some steady-state (average) conditions on

a game scenario subject to instantaneous fluctuations. However, note that we do not make

assumptions regarding the balancedness of the instantaneous games which is the case with

[7]. Thus, the core of the instantaneous game can be empty at some timet.

Given the above dynamic TU game, a central planner interactscontinuously over time with

the players by choosing the instantaneous allocations denoted bya(t) ∈ R
n. We assume that

the allocations are subject to the following budget constraints.

Assumption 2:(bounded allocation) The instantaneous allocation is bounded within a

hyperbox inRn

a(t) ∈ A := {a ∈ R
n : amin ≤ a ≤ amax},

with a priori given lower and upper boundsamin, amax ∈ R
n.

As regards the information availablea priori (before the game starts) to the central planner,

we assume that he knows the nature of the process{v(t))} (bounded mean ergodic), the

bounded setV and the long run average coalitions’ valuesvnom. The latter is the same as

saying that he knows the expected coalitions’ values for allt ∈ R+. On the other hand, he

has no knowledge of the underlying probability functionP.

Assumption 3:(on available information) The planner knowsvnom.

Beside this, during the game the central planner also observes the extra reward of the

coalitions up tot and for all t ∈ R+. Given this, and in line with a number of other papers

[2], [12], [15], [18], [22], our goal is to find allocation rules that use a measure of the extra

reward that a coalition has received up to the current time byre-distributing the budget among

the players. To do this, a first step is to define excesses for the coalitions. For any coalition

S ⊆ N , we defineexcess (extra reward) at timet ≥ 0 as theexcess at timet = 0 plus the

difference between the total integral reward, given to it, and the integral value of the coalition

itself, i.e.,

ǫS(t) =
∑

i∈S

ãi(t)− ṽS(t) + ǫS(0).

Furthermore, assuming without loss of generalityǫS(0) = 0, we say thatS is in excess at

time t ≥ 0 if the excess is nonnegative, i.e.,
∑

i∈S ãi(t) ≥ ṽS(t). Let ǫ(t) represent the vector

April 24, 2012 DRAFT
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of coalitions’ excesses, formally given as:

ǫ(t) = {ǫS(t)}N⊇S 6=∅ .

We are interested in answering two main questions for this class of games.

• Question 1: Are there allocation rules such that the average allocations converge? If

yes, let us denote byA0 the set where the average allocations converge to. Can we

make it converge to the core of the average gameA0 ⊆ C(vnom)? Can we guarantee the

convergence to a specific point of the core, call it nominal allocationanom, that we have

a priori selected?

• Question 2: Are there allocation rules such that the coalitions’ excesses ǫ(t) converge

to an a priori given coneΣ0, say for instance the nonnegativem-dimensional orthant

R
m
+ , or any directionαt for t ≥ 0 with fixed α ∈ R

m
+?

To motivate the above questions think of a situation where the objective of the central

planner is to maintain the stability of grand coalition in anaverage sense, while controlling

the coalitions’ excesses at each timet ∈ R+.

We are now in the position of providing a formal and generic statement of the problem.

Henceforth, we use the symbol w.p.1 to mean “with probability one”.

Problem 2.1:Find an allocation rulef : Rm → A ∈ R
n, such that ifa(t) = f (ǫ(t)) then

i) limt→∞ ā(t) ∈ A0 ⊆ C(vnom) w.p.1, and ii)limt→∞ ǫ(t) ∈ Σ0 ⊆ R
m
+ w.p.1.

Observe that because of the random nature of the coalitions’valuesv(t), both the excesses

ǫ(t) and the allocationsa(t) are random and as such we look at the convergence ofā(t) w.p.1.

Essentially, we require that the probability ofā(t) converging in the limit toA0 ⊆ C(vnom)

is 1. Similarly for ǫ(t) and Σ0. This type of convergence is also known asalmost sure

convergence [20].

We will show that if the planner has full observation ofǫ(t) at every timet then the above

problem is solvable even under the very strict condition ofA0 = anom andΣ0 = αt t ≥ 0

with fixed α. Conversely, if the planner has partial observation ofǫ(t) in that he only knows

the sign of each component ofǫ(t), then the problem is still solvable but under the relaxed

condition ofA0 = C(vnom) andΣ0 ⊆ R
m
+ .

April 24, 2012 DRAFT
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A. Motivations

Dynamic coalitional games capture coordination in a numberof network flow applications.

Network flows model flow of goods, materials, or other resources between different produc-

tion/distribution sites [3]. We next provide a supply chainapplication that justifies the model

under study.

A single warehousev0 serves a number of retailersvi, i = 1, . . . , n, each one facing a

demanddi(t) unknown but bounded by pre-assigned valuesdmin
i ∈ R anddmax

i ∈ R at any

time periodt ≥ 0. After demanddi(t) has been realized, retailervi must choose to either

fulfill the demand or not. The retailers do not hold any private inventory and, therefore, if they

wish to fulfill their demands, they must reorder goods from the central warehouse. Retailers

benefit from joint reorders as they may share the total transportation costK (this cost could

also be time and/or players dependent). In particular, if retailer vi “plays” individually, the

cost of reordering coincides with the full transportation costK. Actually, when necessary a

single truck will serve only him and get back to the warehouse. This is illustrated by the

dashed cycles(v0,v8,v0), (v0,v9,v0), and(v0,v10,v0) in the network of Figure 1. The cost

of not reordering is the cost of the unfulfilled demanddi(t).

v3

v4

v1

v0 v2
v5

v6

v7

v8

v9

v10

(a) Five trucks (cycles) leavingv0 and serving coalitions

{v1, . . . ,v4}, {v5, . . . ,v7}, {v8}, {v9}, and {v10} re-

spectively.

v3

v4

v1

v0 v2
v5

v6

v7

v8

v9

v10

(b) One single truck (cycle) leavingv0 and serving coali-

tion {v1, . . . ,v10}.

Fig. 1. Example of a distribution network

If two or more retailers “play” in a coalition, they agree on ajoint decision (“everyone

reorders” or “no one reorders”). The cost of reordering for the coalition also equals the total

transportation cost that must be shared among the retailers. In this case, when necessary a

single truck will serve all retailers in the coalition and get back to the warehouse. This is il-

lustrated, with reference to coalition{v1, . . . ,v4} by the dashed cycle(v0,v4,v1,v2,v3,v0) in

April 24, 2012 DRAFT
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Figure 1(a). A similar comment applies to the coalition{v5,v6,v7} and the cycle(v0,v5,v6,v7,v0)

in Figure 1(a). The network topology in Figure 1(a) describes the existing coalitions. This

is clear if we look at the subgraph induced by the vertex-set{v1, . . . ,v10} (all vertices

exceptv0) and observe that such a subgraph has 5 connected components, i.e., {v1, . . . ,v4},

{v5, . . . ,v7}, {v8}, {v9}, and {v10} and that each component corresponds to an existing

coalition. The cost of not reordering is the sum of the unfulfilled demands of all retailers.

How the players will share the cost is a part of the solution generated by the bargaining

process.

Conversely, the subgraph induced by{v1, . . . ,v10} in Figure 1(b) has a single connected

component which means that all retailers “play” in the grandcoalition and as such one single

truck (cycle) will leavev0 and serve all of them before returning tov0. This is represented

by the dashed cycle(v0,v4, . . . ,v10) in the same figure.

The cost scheme can be captured by a game with the setN = {v1, . . . ,vn} of players

where the cost of a nonempty coalitionS ⊆ N is given by

cS(t) = min

{

K,
∑

i∈S

di(t)

}

.

Note that the bounds on the demanddi(t) reflect into the bounds on the cost as follows: for

all nonemptyS ⊆ N and t ≥ 0,

min

{
∑

i∈S

K, dmin
i

}

≤ cS(t) ≤ min

{

K,
∑

i∈S

dmax
i

}

. (3)

To complete the derivation of the coalitions’ values we needto compute the cost savings

vS(t) of a coalitionS as the difference between the sum of the costs of the coalitions of the

individual players inS and the cost of the coalition itself, namely,

vS(t) =
∑

i∈S

c{i}(t)− cS(t).

Given the bound forcS(t) in (3), the valuevS(t) is also bounded, as given: for anyS ⊂ N

and t ≥ 0,

vS(t) ≤
∑

i∈S

min {K, dmax
i } −min

{

K,
∑

i∈S

dmin
i

}

.

Thus, the cost savings (value) of each coalition is bounded uniformly by a maximum value.

Introducing time aspects into a static TU game opens the possibility for modeling aspects

such as intertemporal transfers, patience and expectations of players/coalitions. A generic

April 24, 2012 DRAFT
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dynamic coalitional game description should capture thesefeatures. In a repeated joint replen-

ishment game as the one discussed above, allocation rules having the properties formalized

in Problem 2.1, encouragepatient retailers to “play” in the grand coalition, to coordinate

their replenishment policies and therefore to reduce totaltransportation costs. We saypatient

retailers since condition i) in Problem 2.1 guarantees convergence to core on the long-run,

i.e., in an average sense. Condition ii) has the meaning of bounding the excesses during the

transient (before convergence occurs).

III. FLOW TRANSFORMATION BASED DYNAMICS

The basic idea of our solution approach is to recast the problem into a flow control one.

To do this, consider the hyper-graphH with vertex setV and edge setE as:

H := {V,E}, V = {v1, . . . ,vm}, E := {e1, . . . , en}.

Figure 2 depicts an example of hypergraph for a 3-player coalitional game. The vertex setV

has one vertex per each coalition whereas the edge setE has one edge per each player. A

v1

v2

v3

v4

v5

v6

v7

e1

e3

e2

Fig. 2. HypergraphH := {V, E} for a 3-player coalitional game.

generic edgei is incident to a vertexvj if the player i is in the coalition associated tovj .

So, incidence relations are described by matrixBHwhose rows are the characteristic vectors

cS ∈ R
n. We recall that the components of a characteristic vectorcSi = 1 if i ∈ S andcSi = 0

if i /∈ S. The flow control reformulation arises naturally if we view allocation ai(t) as the

flow on edgeei and the coalition valuevS(t) of a generic coalitionS as the demand in the
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corresponding vertexvj . In view of this, allocation in the core translates into over-satisfying

the demand at the vertices. Specifically,

a(t) ∈ C(v(t)) ⇔ BHa(t) ≥ v(t), (4)

with the last inequality satisfied with the equal sign due to the efficiency condition of the

core, i.e,
∑

i=1 ai(t) = vm(t), wherevm(t) denotes themth component ofv(t) and is equal

to the grand coalition valuevN(t). Now, sincev(t) is unobservable by the planner at timet,

we need to introduce some allocation error dynamics which accounts for the derivatives of

the excesses. Sinceǫ(t) represents the coalition excess, we have:

ǫ̇(t) = BHa(t)− v(t), v(t) ∈ V. (5)

Note that the above differential equation admits a solutionat least in the sense of Filippov

[14]. From (4) and by averaging and taking the limit in (5), wecan reformulate Problem 2.1

as a flow control problem where a controller wishes to drive the quantitylimt→∞
ǫ(t)−ǫ(0)

t
to

the target setT , defined below, w.p.1 (see, e.g., Fig. 3):

T := {τ ∈ R
m : τm = 0, τj ≥ 0, ∀j = 1, . . . , m− 1}.

Note, τm = 0 due to efficiency of allocations.

τm

T

ǫ(t)−ǫ(0)
t

Fig. 3. Trajectory forǫ(t)−ǫ(0)
t

.

April 24, 2012 DRAFT
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Remark 3.1:Driving the average allocations to a particular pointanom ∈ A0 ⊆ C(vnom) re-

sults in reaching a specific point in the target setT . To see this, note that whenlimt→∞ ā(t) =

anom we haveT ∋ BHanom − vnom ≥ 0 due to the property of the core. Thus, we also have

that limt→∞
ǫ(t)−ǫ(0)

t
is driven to the pointBHanom − vnom ∈ T .

The inequality condition in (4) is transformed into equality type by introducing, from standard

LP techniques,m−1 surplus variables (one per each coalition other than the grand coalition).

This increases the dimension of the control space of the planner fromm to n +m − 1 and

the dynamics (5) can be rewritten as follows:

ẋ(t) = Bu(t)− v(t), v(t) ∈ V (6)

whereB =



BH

∣
∣
∣
−Im−1

0



 ∈ R
m×n+m−1. Variablex(t) represents the state of the system

and captures deviation from the balanced system, i.e., the system characterized byanom and

vnom. We introduce the set of feasible controls as:

U :=
{
u(t) ∈ R

n+m−1 : u(t) = [aT (t) sT (t)]T , a(t) ∈ A, s(t) ≥ 0
}
. (7)

Toward the reformulation of the problem as a stochastic stabilizability one, we introduce the

following preliminary result.

Lemma 3.1:If the variablex(t) is asymptotically stable almost surely, i.e., (8) holds true,

then the average allocations converge to the core of the average game w.p.1. as expressed by

(9), and the excesses converge to the coneR
m
+ w.p.1. as described in (10):

lim
t→∞

x(t) = 0, w.p.1. (8)

lim
t→∞

ā(t) ∈ C(vnom), w.p.1 (9)

lim
t→∞

ǫ(t) ∈ R
m
+ , w.p.1. (10)

Proof: To see why (8) implies (9), observe that iflimt→∞ x(t) = 0 w.p.1. thenlimt→∞
x(t)−x(0)

t
=

0 w.p.1. and therefore, by integrating and dividing byt in (6) alsolimt→∞Bū(t)− v̄(t) = 0

w.p.1. The latter can be rewritten aslimt→∞ Bū(t) = vnom w.p.1, and as from (7)̄s(t) =

BHā(t)−v̄(t) ≥ 0 andvnom is balanced by Assumption 2 then we conclude thatlimt→∞ ā(t) ∈

C(vnom) w.p.1.

To see why (8) implies (10), observe that iflimt→∞ x(t) = 0 w.p.1., from (7) and under

the assumptionx(0) = ǫ(0) = 0, then limt→∞ ǫ(t) = limt→∞ s̃(t) ≥ 0 and (10) is proved.
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It is worth noting that condition (9) is part of Problem 2.1. In other words when solving

Problem 2.1 we always guarantee (9). If this is clear then, wecan use the above lemma to

rephrase Problem 2.1. In doing this we need to make a partial distinction between cases i)

and ii). More specifically, case ii) whereA0 = C(vnom) can be restated as follows:

Find u(t) := φ(x(t)) ∈ U such that lim
t→∞

x(t) = 0 w.p.1. (11)

Note that if we wish to reach a specific pointanom then the condition (9) is only necessary

and the resulting problem is a stricter version of (11).

IV. M AIN RESULTS

In this section we present the three main results of this work. The first one relates to the

case where the planner has full observation onx(t) in which case the average allocation

can be driven to a specific point in the Core of the average game. The second result applies

to the case where the planner has partial observation onx(t), and convergence to the Core

can still be guaranteed but not to a specific point of the Core.The third result highlights

connections of the implemented solution approach to the approachability principle [9], [18]

and attainability principle [4], [19].

A. Full information case

In this section, we solve Problem 2.1 withA0 = anom andΣ0 = αt, t ≥ 0 with fixed α

under the assumption that the planner has full observation of the excessesǫ(t) and therefore

x(t) as well. We recall that inferringx(t) from ǫ(t) is possible as the surpluss(t) is selected

by the planner. As we have said before, the problem that we solve is a stricter version of (11).

This version derives from augmenting the state of dynamics (6) as explained in the rest of this

section. Before introducing the augmentation technique let us assume that the fluctuations of

the coalitions’ values around the meanvnom are independent of the statex(t). We formalize

this in the next assumption where we denote by∆v(t) = v(t)− vnom the above fluctuations.

Assumption 4:The statex(t) and the coalitions’ values fluctuations∆v(t) are independent.

Introducing the fluctuations∆v(t) allows us to rewrite dynamics (6) in a more convenient

way. To do this, note first that, asu(t) = [a(t)T s(t)T ]T and fromBunom = vnom, if anom

is fixed thensnom ∈ R
m−1
+ and therefore alsounom = [aTnom sTnom]

T are fixed. Let us denote
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∆u(t) = u(t)− unom. Dynamics (6) can be rewritten as follows:

ẋ(t) = Bu(t)− v(t) = Bu(t)− (vnom + (v(t)− vnom)) = Bu(t)− vnom −∆v(t)

= B (u(t)− unom)−∆v(t) = B∆u(t)−∆v(t)

We mentioned before that we will focus on a stricter version of (11). We do this by augmenting

the state as shown next. First, denote byB† a generic pseudo inverse matrix ofB and complete

matricesB andB† with matricesC andF such that




B

C





[

B† F
]

= I. (12)

Then, building upon the new square matrix




B

C



, let us consider the augmented system

ẋ(t) = B∆u(t)−∆v(t)

ẏ(t) = C∆u(t).
(13)

Here we assume thatv(t) is independent ofy(t) as well. After integrating the above system

(see (14), right) we define a new variablez(t) as follows:

z(t) =
[

B† F
]




x(t)

y(t)



 ,




x(t)

y(t)



 =




B

C



 z(t). (14)

It turns out that to drivex(t) to zero w.p.1, and obtainunom as average allocation on the

long run, we can rely on a simple function̂φ(.), which depends onz(t). Before introducing

this function, for future purposes observe that the dynamics for z(t) satisfies the first-order

differential equation:

ż(t) =
[

B† F
]




ẋ(t)

ẏ(t)





=
[

B† F
]




B

C



∆u(t)−
[

B† F
]




∆v(t)

0





= ∆u(t)− B†∆v(t).

(15)

Let ∆umin and ∆umax be the minimal and maximal values of∆u(t) for the following

constraints to hold true:u(t) = unom + ∆u(t) ∈ U . Then, let us formally definêφ(z(t))
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ẋ(t) = B∆u(t)−∆v(t)

ẏ(t) = C∆u(t)

v(t)

u(t)

φ̂(z(t))

z(t) =
[

B† F
]




x(t)

y(t)





Fig. 4. Dynamical System

as:

φ̂(z(t)) := unom +∆u(t) ∈ U, ∆u(t) = sat[∆umin, ∆umax](−z(t)), (16)

where with sat[a,b](ξ) we denote the saturated function that, given a generic vector ξ and

lower and upper boundsa and b of same dimensions asξ, returns

sat[a,b](ξ)
.
=







bi for all i ξi > bi

ai for all i ξi < ai

ξi for all i ai ≤ ξi ≤ bi

.

Now, taking the controlu(t) = φ̂(z(t)), we obtain the dynamic systeṁz(t) = Bφ̂(z(t))−v(t)

as displayed in Fig. 4. With the above preamble in mind, we areready to state the following

convergence property.

Theorem 4.1:Using the controller̂φ(z(t)), as in (16), we havelimt→∞ z(t) = 0 w.p.1 and

thereforelimt→∞ ū(t) = unom.

In the next corollary, we use the previous result to provide an answer to Problem 2.1.

Corollary 4.1: The statex(t) is driven to zero w.p.1 as expressed in (11), the average

allocation converges to the nominal allocation i.e.,limt→∞ ā(t) = anom, w.p.1 and the excesses

converge to the directionΣ0 = αt with α = snom, i.e., limt→∞ ǫ(t) ∈ Σ0.

Proof: This is a direct consequence of the result proved in the previous theorem. From

(14), and[B† F ] being a non singular matrix, we havelimt→∞ x(t) = 0 w.p.1. From the
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previous theorem we also havelimt→∞ ū(t) = unom. Sinceu(t) = [aT (t) sT (t)]T , we have

that limt→∞ ā(t) = anom and limt→∞ ǫ(t) = s̃(t) = snomt.

To summarize, in the full information case, the controlleru(t) defined by (16) induces an

allocation sequencea(t) such that the averagēa(t) converges toA0 = anom and the excesses

approachsnomt.

B. Partial information case

In the previous section we observed that if the planner has full observation of the excesses

and therefore ofx(t) then he can design an allocation rule so that the average allocations

are driven toanom and the excesses approachsnomt. In this section, we solve Problem 2.1

with A0 = C(vnom) and under the assumption that the planner has partial observation of

x(t). In particular, we assume that the planner observes the signof x(t) for all t ∈ R+. An

information structure based on the sign ofx(t) has an oracle-based interpretation which we

discuss in detail in Subsection IV-B1.

Similarly to the previous section, suppose that we know a particular allocationanom in

the coreC(vnom), and let us study the convergence properties of the average allocations.

In particular, using an allocation ruleu(t) = φ(x(t)), we require thatx(t) satisfying the

dynamicsẋ(t) = Bφ(x(t)) − v(t), converge to zero in probability. In this section, we state

the second main result of this work which provides a solutionto Problem 2.1 with partial

information structure. To do this, let us denote again byB† a generic pseudo inverse matrix

of B and take a feasible allocationunom such that

Bunom = vnom := lim
t→∞

v̄(t), unom ∈ U.

Also, for future purposes, define a function̂φ(.), which depends only on the sign ofx(t), as

follows:

φ̂(sgn(x(t))) := unom +∆u(t) ∈ U, ∆u(t) = −δB†sgn(x(t)). (17)

Now, taking the controlu(t) = φ̂(sgn(x(t))), we obtain the dynamic systeṁx(t) = Bφ̂(sgn(x(t)))−

v(t) as displayed in Fig. 5. Now, we state the following convergence property.

Theorem 4.2:Using the controlleru(t) = φ̂(sgn(x(t))) as in (17) we havelimt→∞ x(t) = 0

w.p.1.

Corollary 4.2: The average allocation converges to the core of the average game as in (9)

and the excessesǫ(t) converge toRm
+ as in (10).
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ẋ(t) = B∆u(t)−∆v(t)

v(t)

u(t)

φ̂(sgn(x(t)))

sgn(x(t))

Fig. 5. Dynamical System

Proof: Direct consequence of Theorem 4.2 and Lemma 3.1.

1) Oracle-based interpretation:In this subsection we elaborate more on the partial infor-

mation structure. In particular, we highlight how the feedback on statex(t) can be reviewed

as the result of an oracle-based procedure. To see this, assume that the planner knows the

sign of x(t). Sincex(t) = (ǫ(t)− s̃(t)) − (ǫ(0)− x(0)), sgn(x(t)) reflects over-satisfaction

of coalitions with respect to the threshold̃s(t). In particular, take without loss of generality

ǫ(0), x(0) = 0, then with reference to componentj, the sign ofxj(t) yields:

sgn (xj(t)) :=







1 ǫj(t) > s̃j(t)

0 ǫj(t) = s̃j(t)

−1 ǫj(t) < s̃j(t).

(18)

To summarize, we can think of a situation where the planner approaches an oracle that tells

him the sign ofx(t). Sinces(t) is chosen by the planner for everyt, the accumulated surplus,

s̃(t), is given as an input to the oracle. The oracle returns “yes” if the actual excess is greater

thans̃(t) and “no” otherwise. The use of an oracle is an element in common with the ellipsoid

method in optimization and with a large literature [26] on cutting planes.

Recall that nonnegativeness of the threshold has its roots in the feasibility conditionu(t) ∈

U for all t ≥ 0 with feasible setU as in (7).

Nonnegativeness of the threshold provides us with a furthercomment on the information

available to the planner. Actually, from the first conditionin (18), we can conclude that

coalitions associated to a positive statex(t) are certainly in excess. This is clear if we observe

that sgn (xj(t)) = 1 implies ǫj(t) > s̃j(t) ≥ 0. We can then summarize the information
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content available to the planner as follows, whereS is the generic coalition associated with

componentj:

sgn (xj(t)) :=







1 then coalitionS in excess

−1, 0 nothing can be said.

Trivially, the development in the full information case in Section IV-A, which is all based

on control strategy (16), fits the case wherex(t) is revealed completely. In this last case, the

fact that the planner knowsx(t) implies that he knowsǫ(t) as well. Also, it is intuitive to

infer that in this last set up, exact knowledge ofx(t) can only influence positively the planner

in terms of speed of convergence of allocations to the core ofthe average game.

Remark 4.1:As the planner knows a priori the nominal game and a corresponding nominal

allocation vector, a natural question that arises is why onehas to design an allocation rule

as given by (16) and (17) instead of a stationary ruleφ̂(.) = unom. The rules given by (16)

and (17) intuitively translate to meeting the demands of coalitions in an average sense. This

feature reflects patience aspect of coalitions in a dynamic setting, i.e., even if a demand is

not met instantaneously a coalition is willing to wait and stay in the grand coalition as the

demand is fulfilled in an average sense.

C. Connections to Approachability and Attainability

1) Approachability: Approachability theory was developed by Blackwell in 1956 [9] and

is captured in the well known Blackwell’s Theorem. Along thelines of Section 3.2 in [18],

we recall next the geometric (approachability) principle that lies behind Blackwell’s Theorem.

The goal of this section is to show that such a geometric principle shares striking similarities

with the solution approach used in the previous sections.

To introduce the approachability principle, letΦ be a closed and convex set inRm and let

P (y) be the projection of any pointy ∈ R
m (closest point toy in Φ). Also denote bȳyk the

average ofy1 . . . , yk, i.e., ȳk =
∑

k

t=0 yt

k
and letdist(ȳk,Φ) be the euclidean distance between

point ȳk and setΦ.

Lemma 4.1:(Approachability principle [18]) Suppose that a sequence of uniformly bounded

vectorsyk in R
m satisfies condition (19),

[ȳk − P (ȳk)]
T [yk+1 − P (ȳk)] ≤ 0, (19)

then limk→∞ dist(ȳk,Φ) = 0.
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Now, to make use of the above principle in our set up, let us consider the discrete time

analog of the excess dynamics (6):

xk+1 = xk +B∆uk −∆vk,

and define a new variableyk = xk − xk−1 so that we can look at the sequence ofyk in R
m.

Likewise, consider the discrete time version of control (17) as displayed below:

φ̂(sgn(xk)) := unom +∆uk ∈ U, ∆uk = −δB†sgn(xk − x0). (20)

We are now in a position to state the main result of this section.

Theorem 4.3:Using the controlleruk = φ̂(sgn(xk − x0)) as in (20) we have that

i) the vector0 is approachable by the sequenceȳk,

lim
k→∞

ȳk = 0, w.p.1, (21)

and therefore

ii) the average allocations converge to the core of the average game,

lim
k→∞

āk ∈ C(vnom), w.p.1. (22)

The strength of the above result is in that it sheds light on how the convergence problem

dealt with in this work has a stochastic stability interpretation as well as an approachability

one.

Remark 4.2:(Continuous-time approachability) We can reformulate Theorem 4.3 in the

continuous time. To see this, let us first definey(t) := ẋ(t). Next we need to derive the

continuous time version of (19). To this aim, lett → r(t) be a differentiable continuous time

variable and letz(t) = r(t)−r(0)
t

, so tż(t) + z(t) = ṙ(t). Discrete time versions are given as

zk = 1
k
rk andzk+1 =

1
k+1

rk+1. The approachability principle is given as

[zk − P (zk)]
T [φ− P (zk)] ≤ 0

whereφ = (k + 1)zk+1 − kzk. In continuous time the above condition translates to

[z(t)− P (z(t))]T [φ− P (z(t))] ≤ 0

and φ = (t + ∆t)z(t + ∆t) − tz(t) = t (z(t +∆t)− z(t)) + ∆tz(t + ∆t). We see that
φ

∆t
= tz(t+∆t)−z(t)

∆t
+ z(t+∆t). Further, as∆t → 0 we havelim∆t→0

φ

∆t
= tż(t)+ z(t) = ṙ(t).

The approachability principle in continuous time can then be reproposed as

[z(t)− P (z(t))]T [ṙ(t)− P (z(t))] ≤ 0, (23)
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which constitutes the continuous time version of (19). IfΦ = {0} we haveP (z(t)) = 0

and zT (t)ṙ(t) ≤ 0. Now, takingr(t) = x(t) we see thatz(t) is the average ofy(t). Then

condition (23) guarantees thatz(t) converges to zero as well as̄y(t). But this implies that

limt→∞
x(t)−x(0)

t
= 0 and therefore from Lemma 3.1 we arrive at (9) which represents the

continuous time version of (22).

2) Attainability: Attainability is a new notion developed in [4], [19] in the context of

2-player continuous-time repeated games with vector payoffs. Attainability finds its roots in

transportation networks, distribution networks, production networks applications. The main

question is the following one: “Under what conditions a strategy for player 1 exists such that

the cumulative payoff converges (in the lim sup sense) to a pre-assigned set (in the space of

vector payoffs) independently of the strategy used by player 2”.

Attainability shares similarities with two main notions inrobust control theory [10]. The first

notion is calledrobust global attractivenessand refers to the property of a set to “attract”

the state of the system under a proper control strategy and independently of the effects

of the disturbance. The second notion is referred to asrobustly controlled invarianceand

describes the property of a set to bound the state trajectoryunder a proper control strategy

and independently of the effects of the disturbance. Both notions are used in the following

formalization of the attainability principle. The principle is accompanied by a sketch of the

proof but no formal proof is reported as attainability is themain focus of another paper

and here it is just auxiliary to the solution of our main problem and also because the

aforementioned two notions are well known in robust controltheory. We refer the readers to

[10] and [4], [19] for further details.

Let Φ be a closed and convex set inRm and consider a differentiable continuous-time

variablet 7→ y(t) taking value inRm for all t ≥ 0.

Lemma 4.2:(Attainability principle [4], [19]) Suppose that the differentiable continuous-

time variablet 7→ y(t) satisfies conditions (24)-(25),

[y(t)− P (y(t))]T [ẏ(t)− P (y(t))] < 0, y(t) 6∈ Φ (24)

nT
y(t) [ẏ(t)− P (y(t))] ≤ 0, y(t) ∈ ∂Φ, (25)

then limt→∞ dist(y(t),Φ) = 0.

Essentially, condition (25) is strictly related to thesubtangentiality conditionsas formulated

by Nagumo in 1942 and surveyed in [10]. Such conditions are proven to characterize robustly
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controlled invariant sets. We provide a geometric perspective on such a condition in Fig. 7(b).

Consider a 2 player continuous-time repeated game and lety(t) be the cumulative payoff up

to time t. Denote byY the set of possible instantaneous vector payoffs, call themẏ(t), for a

fixed strategy of player 1 and for varying strategy of player 2. Condition (25) is equivalent

to Y ⊂ H− := {y ∈ R
m|ny(t)ẏ(t) ≤ 0} and guarantees that the cumulative payoff up to time

t+ dt (dt is the infinitesimal time interval)y(t+ dt) does not quitΦ.

As regards condition (24), suppose without loss of generality thatΦ := {x ∈ R
m| V (x) ≤

κ̂} for a fixed scalarκ. Condition (24) establishes that the setΦ = {x ∈ R
m| V (x) ≤ κ̂}

for any scalar̂κ satisfyingκ̂ > κ is a contractive set. By contractive set we mean that it is

invariant and, whenever the state is on the boundary, the control can “push it towards the

interior”. This is illustrated in Fig. 7(a). LetY and y(t) have the same meaning as before.

Condition (24) establishes thatY ⊂ H− := {y ∈ R
m| [y(t) − P (y(t))]T ẏ(t) < 0} which

implies thatdist(y(t+ dt),Φ) < dist(y(t),Φ) and thereforeΦ is robustly attractive.

y(t)

y(t + dt)

ẏ(t)

Φ

H−

H+

Y

P (y(t))

(a) Robust global attractiveness: condition (24).

y(t)

y(t + dt)

ẏ(t)

Φ

H−

H+

Y

ny(t)

(b) Robust control invariance: condition (25).

Fig. 6. Geometric representation of conditions (24) and (25).

Based on the above lemma, we can rephrase Theorem 4.2 as follows.

Theorem 4.4:Using the controlleru(t) = φ̂(sgn(x(t))) as in (17) we have that the vector

0 is attainable byx(t).
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V. DERIVATION OF THE MAIN RESULTS

A. Proof of Theorem 4.1

This proof is derived in the context of Lyapunov stochastic stability theory [20]. We start

by observing that usingu(t) = φ̂(z(t)) we have:

ż(t) = Bφ̂(z(t))− v(t). (26)

Consider a candidate Lyapunov functionV (z(t)) = 1
2
zT (t)z(t). The idea is to show that

E[V̇ (z(t))] < 0 1 for all t ≥ 0. Actually, the theory establishes that if the last condition holds

true, thenV (z(t)) is a supermartingale and therefore by the martingale convergence theorem

limt→∞ V (z(t)) = 0 w.p.1 (almost surely). To see thatE[V̇ (z(t))] < 0 is true, observe that

from (15) we have

E[V̇ (z(t))] = E[zT (t)ż(t)]

= E[zT (t)∆u(t)]− E[zT (t)B†∆v(t)]

= E[zT (t)sat(−z(t))] < 0,

where conditionE[zT (t)B†∆v(t)] = 0 is a direct consequence2 of the assumption that∆v(t)

is independent ofx(t) and y(t). But the above condition implies thatlimt→∞ V (z(t)) = 0

w.p.1 and therefore alsolimt→∞ z(t) = 0 w.p.1. So far we have proved the first part of the

statement, i.e., that the dynamic system (26) converges to zero w.p.1. For the second part,

after integrating dynamics (15), we have

lim
t→∞

∫ t

0
[∆u(τ)−B†∆v(τ)]dτ

t
= lim

t→∞

z(t)− z(0)

t
= 0.

This last condition together with the assumptionvnom := limt→∞ v̄(t) yields

lim
t→∞

∫ t

0
B†∆v(τ)dτ

t
= lim

t→∞

∫ t

0
∆u(τ)dτ

t
= 0

from which we can concludelimt→∞ ū(t) = limt→∞

∫
t

0
unom+∆u(τ)dτ

t
= unom as claimed in

the statement.

1Stochastic stability involves time derivative of the expectation of V (x(t)). However, sinceV (.) is non-negative and

smooth, the limit and expectation can be interchanged by using the dominated convergence theorem [27].

2If ∆v(t) is independent ofx(t) andy(t) thenC∆v(t) is independent ofz(t) = Ax(t) +By(t).
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B. Proof of Theorem 4.2

Consider a candidate Lyapunov functionV (x(t)) = 1
2
xT (t)x(t). The idea is to show that

E[V̇ (x(t))] < 0 for all t ≥ 0. For this to be true, it must be

E[V̇ (x(t))] = E[xT (t)ẋ(t)]

= E[xT (t)Bu(t)]− E[xT (t)v(t)]

= E[xT (t)Bunom] + E[xT (t)B∆u(t)]− E[xT (t)vnom]− E[xT (t)∆v(t)]
︸ ︷︷ ︸

=0

= E[xT (t)B∆u(t)] < 0.

where conditionE[xT (t)∆v(t)] = 0 is a direct consequence of Assumption 4. But the above

conditionE[xT (t)B∆u(t)] < 0 is satisfied sinceB∆u(t) = −δsgn(x), which in turn implies

E[xT (t)B∆u(t)] = E[−δ‖x(t)‖1] < 0.

Then we obtain thatlimt→∞ V (x(t)) = 0 w.p.1 and therefore alsolimt→∞ x(t) = 0 w.p.1 and

this concludes the proof.

C. Proof of Theorem 4.3

We first prove that (21) implies (22). Invoking the discrete time reformulation of Lemma 3.1,

we can infer thatlimk→∞
xk−x0

k
= 0 w.p.1. implieslimk→∞ āk ∈ C(vnom), w.p.1. Observing

that ȳk = xk−x0

k
then we can conclude thatlimk→∞ ȳk = 0 w.p.1 implies limk→∞ āk ∈

C(vnom), w.p.1.

We now prove that using the controlleruk = φ̂(sgn(xk)) as in (20) then (21) holds true. To

see this, let us invoke the approachability principle in Lemma 4.1 and observe that a sufficient

condition for approachability of̄yk to 0 is ȳTk yk+1 ≤ 0 for all k. This is evident if we take set

Φ including only the zero vector,Φ = {0}, and thusP (ȳk) = 0 in (19). For the present case,

using the definition ofyk, condition ȳTk yk+1 ≤ 0 would be 1
k
(xk − x0)

T (xk+1 − xk) ≤ 0,

which implies(xk −x0)
TB∆uk − (xk −x0)

T∆vk ≤ 0 for all k. Taking the expectation, from

Assumption 4 we know thatE[(xk − x0)
T∆vk] = 0 and so we can write

E[(xk − x0)
TB∆uk − (xk − x0)

T∆vk] = E[(xk − x0)
TB∆uk]

= E[(xk − x0)
TB(−δB†sgn(xk − x0))] ≤ 0.

From the above condition we derive thatȳTk yk+1 ≤ 0 w.p.1 for all k and this concludes our

proof.

April 24, 2012 DRAFT



24

D. Proof of Theorem 4.4

Let us invoke the attainability principle in Lemma 4.2 and observe that a sufficient condition

for x(t) to attain0 w.p.1 is that

E[xT (t)ẋ(t)] < 0, x(t) 6= 0 (27)

E[ẋ(t)] = 0, x(t) = 0. (28)

This is evident if we take setΦ including only the zero vector,Φ = {0}, and thusP (x(t)) = 0

in (24) and (25). Now, observe that condition (27) is equivalent to conditionE[V̇ ] < 0 used

in the proof of Theorem 4.2. Condition (28) is also satisfied as sgn(0) = 0 and this concludes

our proof.

VI. NUMERICAL ILLUSTRATIONS

Consider a3 player coalitional TU game, som = 7, with values of coalitions in the

following intervals:

v({1}) ∈ [0, 4], v({2}) ∈ [0, 4], v({3}) ∈ [0, 4],

v({1, 2}) ∈ [0, 4], v({1, 3}) ∈ [0, 6],

v({2, 3}) ∈ [0, 7], v({1, 2, 3}) ∈ [0, 12].

The convex setV is then a hyperbox characterized by the above intervals. From Assumption

3, the planner knows the long run average game, i.e.,limt→∞ v̄(t) = vnom. Without loss of

generality we take the balanced nominal game be asvnom = [1 2 3 4 5 6 10]T . In other words,

during the simulations we randomize the instantaneous games v(t) ∈ V so that it satisfies the

average behavior given by:

lim
t→∞

1

t

∫ t

0

v(τ)dτ = vnom. (29)

Next, we describe an algorithm to generateP ∈ ∆(V) and thereforev(t) ∈ V such that the

above condition holds true.

By construction,vnom is in the relative interior of the convex hull generated by the columns

of the matrixR. If an instance of the gamev(t) is chosen asri with probabilitypi from the pair

(R, p), Assumption 3 is satisfied. For simulations we ran the algorithm10 times to generate10

(R, p) pairs inV. Further, from each pair(R, p) we take100, 000 random selections (using
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Algorithm

Input: SetV and valuevnom.

Output: Probability functionP ∈ ∆(V) to generatev(t) ∈ V.

1 : Initialize Generatem random points,ri ∈ V ⊂ R
m, i =

1, 2, · · · , m,

2 : SolveR.p = vnom, with R = [r1, r2, · · · rm],

3 : If p ≥ 0 and1Tp > 0, then go to (4) else go to (1),

4 : RescaleR asR =
(
1
Tp

)
R andp asp = p

(1T p)
,

5 : If ri ∈ V, i = 1, 2, · · · , m, then go to (6) else go to (1).

6 : STOP

Matlab randsrc function) to realizev(t). The step size is set to∆ = 0.05. The results

are averaged over the10 pairs. The nominal choice of allocations and surplus is taken as

unom = [2.5 3 4.5 1.5 1 1.5 1.5 2 1.5]T . It can be verified thatBunom = vnom.

Full information case: The saturation thresholds∆umin and ∆umax are chosen so as to

ensureu(t) ∈ U . This condition translates intoUmin ≤ unom + sat[∆umin, ∆umax] ≤ Umax.

Denote1 as a vector with all entries equal to 1. For the instantaneousgame a negative

allocation/surplus is not allowed, soUmin ≥ 0 · 1. Further, an allocation/surplus greater than

the value of grand coalition is not allowed, soUmax ≤ vnom(N) · 1. For the given game

parameters, we see that the lower and upper thresholds for the saturation function are−1

and 5.5, respectively. Next, we present the performance results ofthe robust control law

given by equation (16). From Theorem 4.1,limt→∞ z(t) converges to zero w.p.1 and as

a result limt→∞
x(t)−x(0)

t
converges to zero. Fig. 7(a) illustrates this behavior for the first

component of coalition{1, 2}. Further, by Corollary 4.1, the same control law ensures that

the average allocations converge to the nominal allocations in the long run, in other words

limt→∞ ā(t) = anom and Fig. 7(b) illustrates this behavior.

Partial information case: The choice ofδ is crucial so as to ensureu(t) ∈ U . This condition
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translates toUmin ≤ unom + δB†sgn(x) ≤ Umax. We observe−
∑

j |B
†
ij | ≤

(
B†sgn(x)

)

i
≤

∑

j |B
†
ij |. A conservative estimate ofδ is obtained asUmin ≤ unom ± δmaxi{

∑

j |B
†
ij|} ≤

Umax. For m = 7, we havemaxi{
∑

j |B
†
ij|} = 2.11. For the instantaneous game a negative

allocation/surplus is not allowed, soUmin ≥ 0.1. Furthermore, an allocation/surplus greater

than the value of grand coalition is not allowed, soUmax ≤ vnom(N).1. We choseδ = 1,

which satisfies the above stated requirements. Next, we present performance results of the
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robust control law given by equation (17). From Theorem 4.2,x(t) converges to zero in

probability with a specific choice of control law and as a result limt→∞
x(t)−x(0)

t
converges

to zero. Fig. 8(a) illustrates this behavior for the first component of coalition{1, 2}. Further,

by Corollary 4.2, the same control law ensures that the average allocations converge to the

core C(vnom) and from equation (17) it is clear that the instantaneous allocations lie in a

neighborhood of nominal allocations. As a result there is uncertainty in the convergence of

average allocations towards nominal allocations on the long run and Fig. 8(b) illustrates this

behavior.

VII. CONCLUSIONS

In this paper we studied dynamic cooperative games where at each instant of time the

value of each coalition of players is unknown but varies within a bounded polyhedron.

With the assumption that the average value of each coalitionin the long run is known with

certainty, we presented robust allocations schemes, whichconverge to the core, under two

informational settings. We proved the convergence of both allocation rules using Lyapunov

stochastic stability theory. Furthermore, we establishedconnections of Lyapunov stability

theory to concepts of approachability and attainability. The control laws or allocation schemes

are derived on the premise that the GD knows a priori, the nominal allocation vector. If this

information is not available then the problem can be treatedas a learning process where

the GD is trying to learn the (balanced) nominal game from theinstantaneous games. The

allocation rules designed in this paper assure stability ofthe coalitions in average, and as a

result capture patience and expectations of the players in an integral sense. The modeling

aspects of generic dynamic coalitional games are open questions at this point of time.
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