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Quantized Dissensus in Networks of Agents

subject to Death and Duplication

D. Bauso, L. Giare, and R. Pesenti

Abstract

Dissensusis a modeling framework for networks of dynamic agents in petition for scarce
resources. Originally inspired by biological cells beluasij it fits also marketing, finance and many
other application areas. Competition is often unstablehim sense that strong agents, those having
access to large resources, gain more and more resources expghnse of weak agents. Thus, strong
agents duplicate when reaching a critical amount of regsnvhereas weak agents die when loosing
all their resources. To capture all these phenomena wednte systems with a discrete time gossip
and unstable state dynamics interrupted by discrete ewadfetsting the network topology. Invariancy
of states and topologies and network connectivity are erglo

Keywords: Consensus Protocols, Quantized Control, Dynamic Progyiagy Network based mar-

keting, Dynamic Pie Diagram.

. INTRODUCTION

Recently, a great interest has been devoted to consensbiempso(see, e.g., [12], [13] and

the literature cited within). Consensus refers to a scenatiere a number of agents with

arXiv:0910.3591v1l [math.OC] 19 Oct 2009

interdependent dynamics converge to a common value. Whisnh#ppens we say that the
agents reach an agreementconsensudf statez; is the resource owned by agentonsensus
means that strong agents, those with large resourcesfergrat of these resources to weak
agents. Interdependency has a “local” flavor, in the seretestiich agent can exchange resources

only with a subset (say meighborhoodl of adjacent agents. In its simplest form the consensus
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problem can be modeled as an autonomous cooperative lips@ns with a Laplacian dynamic
matrix.

In this work, we study a discrete event system ([10], [6])ttbahaves in a complementary
manner with respect to the above system. We model a conweetitenario where strong agents,
gain more and more resources at the expenses of weak onasufi$table dynamics can be
captured by assuming that between two consecutive evdrdssytstem evolves as a discrete
time autonomous linear system as before, but now the dynaraidx is the opposite of a time
dependent Laplacian matrix. Deviation between neighlsieges/resources increases and for this
reason the system is namedmpetitivesystem.

With this premise, it makes sense to assume that when an bpeas all its resources, its
state goes to zero, then it “dies”. The dead agent is thenwvednfvom the system together with
all its connectionsDeathintroduces a discrete event into the system dynamics.

On the contrary, when an agent gains a critical amount ofuress, then itduplicates
The agent, say iparent divides in two new agents, say ahildrens Both the childrens’
initial states and neighborhoods are functions of the pgastate and neighborhood respectively.
Duplication introduces furtherly a second discrete event into the systgnamics. Such a
modeling framework which we formalize in this paper for thestfitime, goes under the name
of DissensusThe law ruling the discrete time evolution will be calldésensus protocol

Dissensus is motivated by applications where multiple tgemmpete for scarce resources. In
marketing, as an example, agents represent firms or congpanderesources are market shares
or number of customers. Competition often results in firmihailarge customer base attracting
more and more customers at the expenses of the smaller fidhs[T1

Death describes a firm abandoning the market for lack of custs. Duplication captures the
situation where a firm expands and then divides into smakersfi

Duplication may be forced by different causes. For examifle, intervention of an anti-
trust authority; the presence of physical constraints igdanfrastructures such as airports; the
departure of apprentices/young partners from the mother tir open a new one, in case of
service businesses or handicraft industry.

Other applications are in biological networks, e.g., agljdccells compete for nutrients [4],
[9]. The state of an agent describes its size, that in turapproximately) proportional to the

amount of nutrients the cell subtracts to its adjacent cells
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Finally, as a theoretical example, let us introduce what alétbe dynamic pie diagramin
a dynamic pie diagram, the amplitude of each slice evolves tme. The larger slices become
ampler and ampler at the expenses of their adjacent sliceen&er the amplitude of a slice
becomes zero, the slice disappears (dies). On the other iduathever the amplitude of a slice
reaches a given angle the slice is partitioned (duplicates)

Resources flows are quantized and involve at each time aespajl of agents selected
according to a gossip rule. Dissensus in continuous timecantinuous/unquantized flows have
been introduced by the same author in [1].

Quantization in consensus problems can be found in [8], [GEbEsip algorithms in consensus
problems have been introduced in [3], [5].

The paper is organized as follows. In Sectiagn I, we preskatdissensus protocol. In Sec-
tion[ITl] we discuss invariancy of the states and networknamtivity. In Sectio IV, we comment
invariancy of topologies under specific death and duplicatiules. Some final comments are

drawn in section V.

[I. THE DISSENSUSPROTOCOL

The system evolves according to a quantized discrete tinmardics interrupted atritical
timesby some discrete events which we will calitical events Between each two consecutive

critical timest, andt,., with t; = 0, the system is made of a set of agents

L(te) ={1,...,n(t)},

whose cardinalityn(t;) is a function of the time instants,. The agents € I'(¢;) are charac-
terized by states; that assume only discrete valueshh The same agents are organized in
a single componentonnection networkG(t,) = (I'(¢x), E(t;)) whose edgesek(t,) includes
all the non oriented pair§, j) € I'(t,) x I'(t,) of agents that bilaterally exchange information
about their respective states. At the occurrence of cligeant both the number of agents and
the topology of the connection network are modified.

We describe how the system state= {z;;i € I'(¢;)} evolves in the following subsection,
whereas we describe how the system structure is modifie@ atitical events in SubsectiénTI}+B.

Hereafter, for each € I'(¢,.), we call the setN;(¢,) = {j : (4,j) € E(t;)} neighborhoodof
agent:. In addition, for the easy of notation, we omit the dependen ¢, when there is no

risk of ambiguity. Then, e.g., we write instead ofn(ty).
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A. Quantized discrete time dynamics

The evolution of each agent state depends on local infoomatieaning that it depends only
on the state of the agent’ neighbors. It is governed yuantized Gossip Algorithf@QGA) in
the spirit of what described [8] for cooperative systems.

At each timer, for any ¢, < r < t,,1, one edge€(i,j) € E is selected, see, e.g., in FIg. 1,

and the states; andz; of agents: andj are updated as follows:

x;(r) if 2;(r) =x;(r) x(r) if x;(r) =x;(r)

ri(r+1) = § @i(r) +0;(r) i wi(r) > a;(r) 5 2 (r41) = @;(r) = 6i(r) i @i(r) > x(r)
xi(r) — 6 (r) if zi(r) < xj(r) xj(r) + 0i5(r) if x;(r) < z;(r)
(1)

for some integep;;(r) such thatl < ¢,;(r) < min{x;(r),z;(r)}.

Dynamics [(1) makes the deviation between neighbor agéntrge meaning that if, e.g.,
x;(r) > z;(r), the greater state tends to incredse< z;(r) < wz;(r + 1), and lower state
tends to decrease;(r) > z;(r + 1) > 0. Also, dynamics[{ll) iszero-summeaning that a
same quantity is gained hy; and lost byz;, thus resulting in the local invariance property
xi(r+1)+x;(r+1) =x;(r) + x;(r). Differently from [8], we additionally require that edges

TP A

Fig. 1. Random selection of links (thick edges) at generiweti- (left) andr + 1 (right).
are selected in a deterministic way according to the nextrapgon.

Assumption 1:There exists a big enough integer valliesuch that, within each time inter-
val T, either each edgg, j) € E is selected at least once or a critical event occurs.

Had we assumed, in line with [8], that each edgéiis selected randomly and with a positive

probability, some of the results in this paper would havel helprobability.

B. Critical events: death and duplication

Upper and lower thresholds are given: the upper threshdlikeipositive integer valu®, the

lower threshold is the value zero. &itical eventoccurs at time,,; = r if an agent; reaches
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a threshold at time — 1, i.e, when either;;(r — 1) = 0 or z;(r — 1) = B. More formally,
tiyr = argmin{r >ty : J el st. z;(r—1)=0 V z;(r —1) = B}.

Hereafter, when it is not stated otherwise, we assume witloga of generality that, within each
interval t, <t < tx,1, the agents are renumbered so that the agent reaching adlueslue
is always agent.

On the occurrence of a critical event, the number of agendstia@ connection network are
modified. In this context, we denote As(respectively€) the set of agents (respectively edges)
involved in a critical event and still present in the netwatkthe end of the event. Aj. ., the
system structure modifies as follows.

o If z,(txi1 —1) = 0, we say that agent diesand is consequently removed from the system.

The agents in the neighborhood mfinherit the connections of as depicted in Fid.]2. In

/'
1/
—
~
'
A 1
el
“\
“\
N

Fig. 2. Death of an agent (gray node - left): a new link (thidge) connects its neighbors (right).

particular, if, for each agente N, (t;), we denote with\; C N, (t;) \ {j}, the set of new

neighbors thay inherits from the dead agent we can write:

N — ] @ DUA; ViENn)
N;(ty) otherwise (2)

Tj(ter1) = zj(te —1) Vj e\ {n}.
Then, in the occurrence of a death, the set of involved agents= N, (t;) and the set of
inherited links is€ = {(i,7) : i € Nu(t) A j € A}
As it will be clearer in SectiofIll, in order to preserve thenoectivity of the network, we
require that i) all neighbors of the dead agent are linkedt tieast one other neighbor, ii)
the set of neighbors of the dead agent, together with theiteddinks, form a connected
subnetwork.Formally,

) A=A, i) (A €) s connected. (3)

jENn(tk)
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Regarding the connection netwoék(¢,. 1), the dead agent is removed from the set of
agentsl'(¢;), all links of the dead agent are removed from the set of edges), finally
the new links in€ are added td(t;):

P(tri) =Tt \{n},  Eltea) = (E()\{(,n):j € Nu(tx)}) UE. (4)

o If z,(ty41 — 1) = B, the parent agent divides producing two children agentsandn + 1.
The two children agents inherit the parent connections aai# §see, e.g., Figl 3). This

Fig. 3. Duplication of one agent (gray node - left): new ageard links are added (thick edges and nodes - right).

means that, if we denote with,, and A,,.; C N, (tx) U {n,n + 1} the new neighbors of

the two children agents andn + 1, we can write:

(

A, forj=n
Apiq forj=n+1
Nj(tes1) = § Ni(tp) U {n} if jeN,, j#n+1,
(Nj(te) \{n}) U{n+1} if j € Appr, j#n
L V() otherwise ®)
( « forj=n
Ti(tey1) = 6] forj=n+1 .
zj(ty+1 — 1) otherwise

Then, in the occurrence of a duplication, the set of involrgents is\ = N,,(t;)U{n,n+1}
and the set of the links to the children agent§ is {(n,7) : i € A, }U{(n+1,7) : i € Apy1}.
In order to preserve the connectivity of the network, we isgthat one of the following

two rules hold
(An U An+1 = A) or (An U An+1 = Nn(tk)a An N An+1 % @) (6)

Furthermore, in order to maintain the sum of the states iamgrwe impose also that the

valuesa and 3 are integers such that > 5 > 0 and
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Regarding the connection netwotk(t,.1), a new agentk, replacing the old one, and an
additional agent.+ 1 are added to the set of ageiiit§;,), all the links to the father agemnt
are removed from the set of edgé$t,) and the sef of new links to the children agents
are added toF(t):

T(tes) = D(t) Uin+ 1}, E(tisn) = (Et)\{(,n):j € No(tn) HUE. (8)

Figure[4 shows the possible evolution of a dynamic pie diagrAn agent/slice divides at

time » = 2, having reached an amplitude 6f= 180° at the previous time instant. Differently,

r=1

r=t,=2 r=3
Fig. 4. The evolution of a dynamic pie diagram.

an agent/slice dies at time= 3.

A

r=t,=0

In the next session, we discuss invariancy and connectgispciated to death and duplication

rules.

IIl. CONNECTIVITY AND INVARIANCY

In this section, we introduce some bounds on the numbey) of agents. To this end,
we initially discuss the connectivity and invariancy prdps that are exploited in the bounds
determination.

Preserving the agents’ connectivity motivates the chacel€ath[(B) and duplication ruldd (6).
Before discussing them in details, we need the followingnikssin.

Definition 1: (Local connectivity G(¢.) is locally connectedf the subnetwork(A, &) is
connected.

Note that we can impose the local connectivityf, 1) exploiting the knowledge o, (tx11),
i.e., the information available to the agenfust before its death or duplication. Conditions for
the local connectivity to imply the connectivity 6f(¢;,,) are established in the next theorem.

Theorem 1:If G(t;) is connected, then both the deaffi (3) and duplication rifgsafe
sufficient conditions for the connectivity af(¢;.,). These rules become even necessary to
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guarantee the connectivity 6f(¢;1) on the basis of the only knowledge of neighborhdgd;)
available to agent: and disregarding any information on other agents’ neigihbods V; ()
for i € I'(ty) \ {n}.

Proof: The proof is based on the following two facts:

« G(t41) differs from G(t;) only in the subnetwork induced by the agentsAin

. both the death{3) and duplication rulg¢s$ (6) guarantee tbal lconnectivity ofG (¢4, 1).

This latter fact hold true by definition of rulel(6) in case ofl@ath. In the case of a duplication,
we note thatA = N, (tx) U {n,n + 1} and that both ruled]6) imply that ea¢he N, (tx) is
connected with eithen or n+ 1. In addition, if the first condition of_{6) holds, then+ 1 € A,
andn € A,.1, hence,€ includes(n,n + 1). If the second condition of{6) holds, then there
existsi € N,(t;) such that £ includes(n,:) and(n+ 1,4). In both cases, we can conclude that
eachi € A is connected ta through the edges ifi. By transitivity (A, £) is connected.

(Sufficiency) AsG(tx) has a single component, we know that,Git,), eachi € T'(t;) \
(N,(tr)U{n}) is connected to at least an agent N, (t;) through a path that does not include
agentn and any other agent iV, (¢, ) different fromj;. These paths connectigvith j; remain
identical inG(tx+1). Then, asV,,(t,) C A, all the agents € I'(t;)\ (N, (tx) U{n}) are connected
in G(tx+1) with at least an agent in. As (A, £) is connected, all the agents iy and hence
the agents in € ['(tx) \ (N.(tx) U {n}), are connected to each othersdfit,. ). Finally, as
the set of the agents i6/(t,1) is I'(try1) = (I'(tk) \ (Nn(tx) U {n})) U A, we can conclude
that G(t1) is connected.

(Necessity) If we have no knowledge of neighborhoddét,) for i € T'(tx) \ {n}, we must
conservatively assume that all the links betweemnd the agentsVv,(¢;) are necessary for
the connectivity ofG(¢,), since G(t,) may be, e.g., a tree. Consequently, to guarantee the
connectivity of G(tx.1), we must guarantee that the edgeséinkeep the agent inV,(t)
connected to each others and to the new agents eventuakyd add, ;. In other words, we
require that(A, £) is connected.

[

Figure[5 left shows that if(6) does not hald(¢, ;) may turn to be disconnected. However,
in general, rules[(3) and](6) are not necessary to the camiteaf G(t;.1). As an example,
in case of a duplication, the connectivity 6f(¢;.;) holds even ifA; = {j} for all j € N, (tx),
if all j € N,(tx) are adjacent to a common agen¥ N, (t;) (see, e.g., Fid.l5 right).
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=~

Fig. 5. Different duplication events. Duplicating agentgray, children agents in thick line. Cases in which rulgs 46

necessary (left networks) and not necessary to the comiteali G(¢,+1) (right networks).

As regards invariancy, we observe that dynamics describd)j (2) and[(b) imply that the
sum of the agents’ states is a constant value over time, i.e.,
Z zi(r) = X 9)
i€l (r)
Invariancy is a necessary condition to avoid that the nundfesgents neither diverges to
infinity nor converges to one. Assume that in consequence cafpdication at timef;, the sum
of the states decreases over time, bet+ 3 < xz,(tx — 1) or that an agent may die having
a stater,(t, — 1) > 0. It is immediate to see, that under these hypotheses eitieesytstem
reaches consensus bmy .., n(t;) = 1. Differently, if the sum of the states increases over
time, which corresponds to saying+ 5 > x,(tx), then either the system reaches consensus or
limy, oo n(tg) = 0.
Invariancy is also used in the next result to establish thatrtumber of agents never goes
above neither below certain bounds.
Theorem 2:Let ¢, be the critical time, possibly infinite, at which the first diaption occurs.

Then the following bounds holds on the number of agents:

X — B + 2, Vtk Z th
2] < nm) < . (10)
X, Vtk <ty

Proof: The lower bound is a straightforward consequence of theiavey (9). As regards
to the upper bounds, we can havg,) = x in the following trivial situation. At the initial time
to = 0 the agents’ states have valugty,) = 1 for all ¢ € I'(¢y). Differently, from ¢, on, the
maximum number of agents can be reached only when a duplicaticurs. In this case, the

agents’ state invariancy imposes

X= Y m(ty) >n(t) —2+a+ B =n(ty) -2+ B. (11)

i€D(ty)
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In (I1), the inequality holds as, after a duplication evetit]east one of the system agents
has state equal ta, a second agent has state equalifand the remaining agents have state
x;(tx) > 1. Finally, the bound in[(10) trivially follows from[(11). [ |

Note that the fact that(¢,), and hence the cardinality df(¢,), is bounded from the above
for all ¢, > 0 guarantees the possibility that the vallieequired by Assumptioh] 1 exists.

Invariancy and connectivity play a critical role when prayithat under a QGA the intervals
between consecutive critical events is finite. Indeed, fdgs holds true unless the agents’ reach
consensusWe say that the agents reach consensus attithall states are equal, i.er;(r) =
x;(r) forall 4,5 € I.

The next lemma is a prtelude to show that the interval betvoeasecutive critical events is
finite.

Lemma 1:Consensus can be reached only at timgdor £ = 0,1, .. ..

Proof: For each time- = ¢;,t, +1,...,t;1 — 1, letimin(r) = arg miner{z;(r)} be the
agent with minimum stateymaxz(r) = arg max,er{z;(r)} be the agent with maximum state.
By definition of QGA we have that the values ©f,;,.)(r), respectivelyr;,,q.(r), may vary
but cannot increase, respectively decreasef ot r < t,,1. AS a consequence, the difference
betweens;,in () and ;mq.¢) () cannot reduce to zero fay, < r < ti 1. [ ]

Theorem 3:Assume that the agents do not reach consensusg, ithen a critical event will
occur in a finite timef; ;.

Proof: We prove the statement by contradiction. In particular, Wewsthat if no critical
event occurs in a finite time the system state diverges. ®oehd, we assume that the agents
have not reached consensus at titpe@nd that no critical event occurs frotp on. Leti, j be
the agents selected by the QGA at the generic timet;, and consider difference

a4+ D)2 = [|o(r)]2 = 20i(r)? + 2035 (r) (wi(r) — @;(r)) = 4 if |z —_xj\ 70

otherwise
In view of Assumptior{1l, we have thafr(s)||* — [[z(tx)]|* > 4 |5%] for all s > ¢, as, if
i) no critical events occurs aftey, ii) G(t;) is connected and iii) the agents have not reached
consensus irt;, within every 7' instants at least a couple of agents with different states is
selected. Then, a$m,_ 4 |*7* | = oo, we have thatim,_., ||z(s)||* = cc. The value of the

latter limit is in contradiction with the fact tha < z;(s) < B must hold for anys > 0. Hence,

either the agents have reached consensug or a critical event occurs afte. [ |
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An immediate consequence of Theorems 2 @hd 3 is that a firdicdtipn event occurs at
time ¢;, after at maximumy — 2 death events. In addition, thg is finite unless the agents reach
consensus at tim& or at one the above death events.

In the rest of this section, we analyze possible scenariarevthe agents reach consensus.

Example 1:Consider systems evolving according a protocol in whichdiglication rule[(b)
requires thaix = § = B/2 and that both the two children inherit all their parent cations
and connect to each other (see, e.g., fulé (16) discussée ineixt section). Such systems may
reach consensus. Note that in this case each duplicaticerages twin agents. Consider, as an
example, the evolution of a system wher@®) = 2 andz,(0) = B/2 andxz,(0) = 3B/4. By
Theorem[ R, we have(t;) > 2 for all t,. We can easily define a QGA such that at time
we havex,(t,) = B/4 andzy(t1) = z3(t;) = B/2. At time t,, the agentl dies (we have not
renumbered the agents for the easy of exposition) and thaimérg two twin agents reach an
equilibrium corresponding to a state value equab &8y/S.

The next theorem establishes some necessary conditiotisef@gents to reach consensus.

Theorem 4:Consensus can be reached provided that,) = x;(t;) = ﬁ < B for all
1,7 € I'. Furthermore,

X - % fortogtk<th

n(tk’) « for t, >t

wheret,, is the critical time of the first duplication event.
Proof: The first part of the theorem is a trivial consequence of tHfentien of consensus
and of the invariancy property.

The first lower bound is true as, foy < ¢, < ¢, we haven(t,+1) = n(tx)—1 and, obviously,
the invariancy property holds. In proving the second loweurid, we observe that, for> ¢,
we havez;,a ) (r) = maXere,){zi(r)} > a. Actually, any QGA prevents:; . (r) from
decreasing between two consecutive critical duplicatients. [ |

A direct consequence of Theorémh 4 is that there exist instialesx(0) such that the agents
will never reach a consensus as stated in the following @oxol

Corollary 1: Let t;, be the critical time of the first duplication event. No corse can be
attained forty, <t < ty, if x is not divisible for some integer less than or equahte,). No
consensus can be attained fpr> ¢, if x is not divisible for some integer greater than or equal

to «.
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Proof: The corollary thesis is an immediate consequence of of EHmi@ and the fact that
both the number of agents that reach consensus and thes statst assume integer valuds.
We conclude this section by observing that trajectof) may become periodic in the long
run when the agent do not reach a consensus. As an examplsitttdtion occurs if the system
evolution evolves according to death/duplication rulest tthepend on the agents’ states and on
the connection network topology and no stochasticity oetolependency is allowed.Indeed, we
can observe that our systems evolve in a space defined by thbemwf agents, their states
and the topologies of their possible connection networkdéth the number of agents and their
states may assume only integer values bounded from abame tile number of topologies of

the possible connection networks is also finite, hence tbsighfollows.

IV. TOPOLOGY INVARIANCY

Let us now investigate conditions on death and duplicatibesrthat result in the invariancy of
specific network topologies like complete, hole or chainnoeks. As we study the asymptotic
evolution of a system, let us initially observe that Theof2nimplies that there always exists a

critical time ¢, an two integer values andn such that, for each satisfying

%WSQSMT‘LSX, (12)

we have an infinite sequence of critical time instantg) = {¢7 : {7 > t,} such that({}) = 7.
In this context, we say that thiensity of the connection netwook a system does not increase
asymptotically if there exists a value> 0 such that for each satisfying condition[(112), the
value|E(t7)| does not increase over the critical timesdiff) and greater than or equal to

We start by considering the duplication rule which equaliyides the parent’s connections

between the two children. Formally,
A, = pick(N,(tx)) U{n+1} and A, = N,(tx) \ A, U {n}, (13)

where functionpick(N,(t;)) returns a random subset OfN, (¢;)|/2| elements ofN,, (t).

With such a rule, ifG(ty) is a hole network, respectively a chain network (see FElg. 6),
then G(t,) are hole network, respectively chain network, for everywhatever death rule is
implemented. Again, this corresponds to saying that hoté @rain networks are invariant as

established in the next theorem. Before giving the theomeeyecall that a networks () is
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a hole, respectively a chain network, if it is connected alhdhe agents have degree two,
respectively all the agents have degree two a part from tvemtagat the extreme of the chain
whose degree is one (see, e.g., Eig. 6).

Theorem 5:Hole and chain networks are invariant under duplicatioe {d3).

Proof: The idea of the proof is that critical events do not changegeneral, the degree
of the agents. This is always true unless the dying or dujrligaagentn is an extreme of the
chain. Actually, when an extreme agent dies, its neighbbigse degree changes from two to
one, becomes the new extreme. Similarly, when an extrem# dgelicates, one children is the

new extreme with degree one, while the other children hasegetgvo as all other agents.m

TP oooos

Fig. 6. A hole network and a chain network.

Consider now the death rulel (2) that assign all the connestid a dead agent to just one of

its neighbors. This can be formally described by a deaththag for eachj € N, (¢;), satisfies:

p = Nl NG i T =5 1
{°} ifJFI

wherej* € N, (ty) is arbitrarily picked.

From a practical point of view, these choices foy are the simplest ones to implement that
guarantee the connectivity of after the removal of the dying agent.

Theorem 6:Under duplication rule[{13) and death rulel(14), both thesdgrand the number
cycles of a connection network cannot increase asymptigtica

Proof: the thesis is trivially true if the agents reach consenstise@ise, it is immediately

to see that, if at, a duplication occurs|E ()| = |E(t,_1)| + 1; if at ¢, a death occurs,
|E(te)] < |E(tr-1)| — 1 (15)

as at least the connecti@n, j*) is not substituted by a new connection. Now, observe that, fo
eachn satisfying condition[(12), an equal number of death and idapbn events must occur

between each two critical timg§ and(” € o(n), with {* > ¢7, henceE(t") < E(t?). Then,
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we can conclude that the density of the connection netwonkaiaincrease over time. Finally,
the observation that the considered duplication and degg!s forbid the creation of new cycles
in the connection network concludes the proof. [ ]

Authors’ computational experiments show that the denditthe connection network usually
indeed decreases unfil presents a single or no cycle at all if the assumptions of fidmed hold
and the agents do not reach consensus. Although no formaf pomfirms such observations,
it appears reasonable to expect that the the connectiororietvyecomes sparser and sparser.
Indeed, inequality[(15) in the proof of Theordh 6 holds $liriin the occurrence of a death
event whenevem, (¢,) N N;«(tx) # 0, situation quite common if the network is not sparse.

Let us now consider the duplication rule which makes bothdobin inherit all the parent
connections and connect to each other:

A, = Nu(ty) U{n+1} and A,y = N,(tx) U {n}. (16)

Observe that the above rule preserves complete conngabivithe subnetwork induced by
the critical set after a duplication event. This also indutiee fact that ifG () is a complete
network thenGG(t;) are complete networks for every, whatever death rule is implemented.
This corresponds to saying that the complete netwonhviariant under the duplication rulé_(16)
as established in the next theorem.

Theorem 7:The complete network igwariant under the duplication rulé_(16).

Proof: AssumeG(t,) is a complete network. If a death occurs at time;, each agent is
already adjacent to all the other agents. If a duplicaticcuc at timet;... , because of rulé (16),
the two new agents are adjacent to each other and to all tlee agjents. [ ]

The authors’ computational experiments show that, for aegersystems withG(t,) not
complete, the density of the connection network usuallygases untilz becomes a complete

network if the rule[(Ib) is applied and the agents do not reamisensus, see [2].

V. FINAL REMARKS

In this paper we have introduced systems of competitive tagexchanging quantized flows
according to a dissensus protocol. We have discussed soamgaimcy properties of the systems
and observed that the number of agents is bounded from beidvalaove over time.

As a future direction of research we are oriented toward #fmition of more general rules for

the inheritance of the connections. Indeed, the main lifnihe current version of the dissensus

January 17, 2014 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, MONH, 200X 15

protocol seems the fact that the inheritance rule of the edions applies only when an agent
dies. In many real competitive systems the larger agents acguire the connections of the
smaller agents when the latter ones are still alive. Condite following two examples. The
number of the cells adjacent to (that is, in the neighborhafpé celli of a tissue is a function
of the size of the cell and not only of the possible occurrence of a death of an aoljaxl.
Similarly, the rules used for the dynamic pie diagram in Eigcannot trivially be extended to

a general dynamic tessellation.
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