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Quantized Dissensus in Networks of Agents

subject to Death and Duplication

D. Bauso, L. Giarŕe, and R. Pesenti

Abstract

Dissensusis a modeling framework for networks of dynamic agents in competition for scarce

resources. Originally inspired by biological cells behaviors, it fits also marketing, finance and many

other application areas. Competition is often unstable in the sense that strong agents, those having

access to large resources, gain more and more resources at the expense of weak agents. Thus, strong

agents duplicate when reaching a critical amount of resources, whereas weak agents die when loosing

all their resources. To capture all these phenomena we introduce systems with a discrete time gossip

and unstable state dynamics interrupted by discrete eventsaffecting the network topology. Invariancy

of states and topologies and network connectivity are explored.

Keywords: Consensus Protocols, Quantized Control, Dynamic Programming, Network based mar-

keting, Dynamic Pie Diagram.

I. INTRODUCTION

Recently, a great interest has been devoted to consensus problems (see, e.g., [12], [13] and

the literature cited within). Consensus refers to a scenario where a number of agents with

interdependent dynamics converge to a common value. When this happens we say that the

agents reach an agreement orconsensus. If statexi is the resource owned by agenti, consensus

means that strong agents, those with large resources, transfer part of these resources to weak

agents. Interdependency has a “local” flavor, in the sense that each agent can exchange resources

only with a subset (say itneighborhood) of adjacent agents. In its simplest form the consensus
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problem can be modeled as an autonomous cooperative linear system with a Laplacian dynamic

matrix.

In this work, we study a discrete event system ([10], [6]) that behaves in a complementary

manner with respect to the above system. We model a competitive scenario where strong agents,

gain more and more resources at the expenses of weak ones. This unstable dynamics can be

captured by assuming that between two consecutive events, the system evolves as a discrete

time autonomous linear system as before, but now the dynamicmatrix is the opposite of a time

dependent Laplacian matrix. Deviation between neighbors’states/resources increases and for this

reason the system is namedcompetitivesystem.

With this premise, it makes sense to assume that when an agentlooses all its resources, its

state goes to zero, then it “dies”. The dead agent is then removed from the system together with

all its connections.Death introduces a discrete event into the system dynamics.

On the contrary, when an agent gains a critical amount of resources, then itduplicates.

The agent, say itparent, divides in two new agents, say itchildrens. Both the childrens’

initial states and neighborhoods are functions of the parent state and neighborhood respectively.

Duplication introduces furtherly a second discrete event into the system dynamics. Such a

modeling framework which we formalize in this paper for the first time, goes under the name

of Dissensus. The law ruling the discrete time evolution will be calleddissensus protocol.

Dissensus is motivated by applications where multiple agents compete for scarce resources. In

marketing, as an example, agents represent firms or companies and resources are market shares

or number of customers. Competition often results in firms with a large customer base attracting

more and more customers at the expenses of the smaller firms [14], [7].

Death describes a firm abandoning the market for lack of customers. Duplication captures the

situation where a firm expands and then divides into smaller firms.

Duplication may be forced by different causes. For example,the intervention of an anti-

trust authority; the presence of physical constraints in large infrastructures such as airports; the

departure of apprentices/young partners from the mother firm to open a new one, in case of

service businesses or handicraft industry.

Other applications are in biological networks, e.g., adjacent cells compete for nutrients [4],

[9]. The state of an agent describes its size, that in turn is (approximately) proportional to the

amount of nutrients the cell subtracts to its adjacent cells.
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Finally, as a theoretical example, let us introduce what we call the dynamic pie diagram. In

a dynamic pie diagram, the amplitude of each slice evolves over time. The larger slices become

ampler and ampler at the expenses of their adjacent slices. Whenever the amplitude of a slice

becomes zero, the slice disappears (dies). On the other hand, whenever the amplitude of a slice

reaches a given angle the slice is partitioned (duplicates).

Resources flows are quantized and involve at each time a single pair of agents selected

according to a gossip rule. Dissensus in continuous time andcontinuous/unquantized flows have

been introduced by the same author in [1].

Quantization in consensus problems can be found in [8], [11]. Gossip algorithms in consensus

problems have been introduced in [3], [5].

The paper is organized as follows. In Section II, we present the dissensus protocol. In Sec-

tion III, we discuss invariancy of the states and network connectivity. In Section IV, we comment

invariancy of topologies under specific death and duplication rules. Some final comments are

drawn in section V.

II. THE DISSENSUSPROTOCOL

The system evolves according to a quantized discrete time dynamics interrupted atcritical

timesby some discrete events which we will callcritical events. Between each two consecutive

critical timestk and tk+1, with t0 = 0, the system is made of a set of agents

Γ(tk) = {1, . . . , n(tk)},

whose cardinalityn(tk) is a function of the time instantstk. The agentsi ∈ Γ(tk) are charac-

terized by statesxi that assume only discrete values inN. The same agents are organized in

a single componentconnection networkG(tk) = (Γ(tk), E(tk)) whose edgesetE(tk) includes

all the non oriented pairs(i, j) ∈ Γ(tk) × Γ(tk) of agents that bilaterally exchange information

about their respective states. At the occurrence of critical event both the number of agents and

the topology of the connection network are modified.

We describe how the system statex = {xi; i ∈ Γ(tk)} evolves in the following subsection,

whereas we describe how the system structure is modified at the critical events in Subsection II-B.

Hereafter, for eachi ∈ Γ(tk), we call the setNi(tk) = {j : (i, j) ∈ E(tk)} neighborhoodof

agenti. In addition, for the easy of notation, we omit the dependence on tk when there is no

risk of ambiguity. Then, e.g., we writen instead ofn(tk).

January 17, 2014 DRAFT
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A. Quantized discrete time dynamics

The evolution of each agent state depends on local information meaning that it depends only

on the state of the agent’ neighbors. It is governed by aQuantized Gossip Algorithm(QGA) in

the spirit of what described [8] for cooperative systems.

At each timer, for any tk ≤ r < tk+1, one edge(i, j) ∈ E is selected, see, e.g., in Fig. 1,

and the statesxi andxj of agentsi and j are updated as follows:

xi(r+1) =



















xi(r) if xi(r) = xj(r)

xi(r) + δij(r) if xi(r) > xj(r)

xi(r) − δij(r) if xi(r) < xj(r)

, xj(r+1) =



















xj(r) if xi(r) = xj(r)

xj(r) − δij(r) if xi(r) > xj(r)

xj(r) + δij(r) if xi(r) < xj(r)

,

(1)

for some integerδij(r) such that1 ≤ δij(r) ≤ min{xi(r), xj(r)}.

Dynamics (1) makes the deviation between neighbor agentsdiverge meaning that if, e.g.,

xi(r) > xj(r), the greater state tends to increase0 ≤ xi(r) < xi(r + 1), and lower state

tends to decreasexj(r) > xj(r + 1) ≥ 0. Also, dynamics (1) iszero-summeaning that a

same quantity is gained byxi and lost byxj , thus resulting in the local invariance property

xi(r + 1) + xj(r + 1) = xi(r) + xj(r). Differently from [8], we additionally require that edges

Fig. 1. Random selection of links (thick edges) at generic time r (left) andr + 1 (right).

are selected in a deterministic way according to the next assumption.

Assumption 1:There exists a big enough integer valueT such that, within each time inter-

val T , either each edge(i, j) ∈ E is selected at least once or a critical event occurs.

Had we assumed, in line with [8], that each edge inE is selected randomly and with a positive

probability, some of the results in this paper would have held in probability.

B. Critical events: death and duplication

Upper and lower thresholds are given: the upper threshold isthe positive integer valueB, the

lower threshold is the value zero. Acritical eventoccurs at timetk+1 = r if an agenti reaches

January 17, 2014 DRAFT
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a threshold at timer − 1, i.e, when eitherxi(r − 1) = 0 or xi(r − 1) = B. More formally,

tk+1 = arg min{r > tk : ∃i ∈ Γ s.t. xi(r − 1) = 0 ∨ xi(r − 1) = B}.

Hereafter, when it is not stated otherwise, we assume without loss of generality that, within each

interval tk ≤ t < tk+1, the agents are renumbered so that the agent reaching a threshold value

is always agentn.

On the occurrence of a critical event, the number of agents and the connection network are

modified. In this context, we denote asΛ (respectivelyE) the set of agents (respectively edges)

involved in a critical event and still present in the networkat the end of the event. Attk+1 the

system structure modifies as follows.

• If xn(tk+1−1) = 0, we say that agentn diesand is consequently removed from the system.

The agents in the neighborhood ofn inherit the connections ofn as depicted in Fig. 2. In

Fig. 2. Death of an agent (gray node - left): a new link (thick edge) connects its neighbors (right).

particular, if, for each agentj ∈ Nn(tk), we denote withΛj ⊂ Nn(tk) \ {j}, the set of new

neighbors thatj inherits from the dead agentn, we can write:

Nj(tk+1) =







(Nj(tk) \ {n}) ∪ Λj ∀j ∈ Nn(tk)

Nj(tk) otherwise
,

xj(tk+1) = xj(tk+1 − 1) ∀j ∈ Γ \ {n}.

(2)

Then, in the occurrence of a death, the set of involved agentsis Λ = Nn(tk) and the set of

inherited links isE = {(i, j) : i ∈ Nn(tk) ∧ j ∈ Λi}.

As it will be clearer in Section III, in order to preserve the connectivity of the network, we

require that i) all neighbors of the dead agent are linked to at least one other neighbor, ii)

the set of neighbors of the dead agent, together with the inherited links, form a connected

subnetwork.Formally,

i):
⋃

j∈Nn(tk)

Λj = Λ, ii): (Λ, E) is connected. (3)

January 17, 2014 DRAFT
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Regarding the connection networkG(tk+1), the dead agentn is removed from the set of

agentsΓ(tk), all links of the dead agent are removed from the set of edgesE(tk), finally

the new links inE are added toE(tk):

Γ(tk+1) = Γ(tk) \ {n}, E(tk+1) = (E(tk) \ {(j, n) : j ∈ Nn(tk)}) ∪ E . (4)

• If xn(tk+1 −1) = B, the parent agentn divides producing two children agentsn andn+1.

The two children agents inherit the parent connections and state (see, e.g., Fig. 3). This

Fig. 3. Duplication of one agent (gray node - left): new agents and links are added (thick edges and nodes - right).

means that, if we denote withΛn and Λn+1 ⊆ Nn(tk) ∪ {n, n + 1} the new neighbors of

the two children agentsn andn + 1, we can write:

Nj(tk+1) =







































Λn for j = n

Λn+1 for j = n + 1

Nj(tk) ∪ {n} if j ∈ Λn, j 6= n + 1

(Nj(tk) \ {n}) ∪ {n + 1} if j ∈ Λn+1, j 6= n

Nj(tk) otherwise

,

xj(tk+1) =



















α for j = n

β for j = n + 1

xj(tk+1 − 1) otherwise

.

(5)

Then, in the occurrence of a duplication, the set of involvedagents isΛ = Nn(tk)∪{n, n+1}

and the set of the links to the children agents isE = {(n, i) : i ∈ Λn}∪{(n+1, i) : i ∈ Λn+1}.

In order to preserve the connectivity of the network, we impose that one of the following

two rules hold

(Λn ∪ Λn+1 = Λ) or (Λn ∪ Λn+1 = Nn(tk), Λn ∩ Λn+1 6= ∅). (6)

Furthermore, in order to maintain the sum of the states invariant, we impose also that the

valuesα andβ are integers such thatα ≥ β > 0 and

α + β = B = xn(tk). (7)
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Regarding the connection networkG(tk+1), a new agentn, replacing the old one, and an

additional agentn+1 are added to the set of agentsΓ(tk), all the links to the father agentn

are removed from the set of edgesE(tk) and the setE of new links to the children agents

are added toE(tk):

Γ(tk+1) = Γ(tk) ∪ {n + 1}, E(tk+1) = (E(tk) \ {(j, n) : j ∈ Nn(tk)}) ∪ E . (8)

Figure 4 shows the possible evolution of a dynamic pie diagram. An agent/slice divides at

time r = 2, having reached an amplitude ofB = 180o at the previous time instant. Differently,

an agent/slice dies at timer = 3.

r=t 1=2r=t 0=0 r=1 r=3

Fig. 4. The evolution of a dynamic pie diagram.

In the next session, we discuss invariancy and connectivityassociated to death and duplication

rules.

III. CONNECTIVITY AND INVARIANCY

In this section, we introduce some bounds on the numbern(tk) of agents. To this end,

we initially discuss the connectivity and invariancy properties that are exploited in the bounds

determination.

Preserving the agents’ connectivity motivates the choice for death (3) and duplication rules (6).

Before discussing them in details, we need the following definition.

Definition 1: (Local connectivity) G(tk+1) is locally connectedif the subnetwork(Λ, E) is

connected.

Note that we can impose the local connectivity ofG(tk+1) exploiting the knowledge ofNn(tk+1),

i.e., the information available to the agentn just before its death or duplication. Conditions for

the local connectivity to imply the connectivity ofG(tk+1) are established in the next theorem.

Theorem 1:If G(tk) is connected, then both the death (3) and duplication rules (6) are

sufficient conditions for the connectivity ofG(tk+1). These rules become even necessary to

January 17, 2014 DRAFT
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guarantee the connectivity ofG(tk+1) on the basis of the only knowledge of neighborhoodNn(tk)

available to agentn and disregarding any information on other agents’ neighborhoodsNi(tk)

for i ∈ Γ(tk) \ {n}.

Proof: The proof is based on the following two facts:

• G(tk+1) differs from G(tk) only in the subnetwork induced by the agents inΛ,

• both the death (3) and duplication rules (6) guarantee the local connectivity ofG(tk+1).

This latter fact hold true by definition of rule (6) in case of adeath. In the case of a duplication,

we note thatΛ = Nn(tk) ∪ {n, n + 1} and that both rules (6) imply that eachi ∈ Nn(tk) is

connected with eithern or n+1. In addition, if the first condition of (6) holds, thenn+1 ∈ Λn

and n ∈ Λn+1, hence,E includes(n, n + 1). If the second condition of (6) holds, then there

existsi ∈ Nn(tk) such that E includes(n, i) and(n+1, i). In both cases, we can conclude that

eachi ∈ Λ is connected ton through the edges inE . By transitivity (Λ, E) is connected.

(Sufficiency) AsG(tk) has a single component, we know that, inG(tk), eachi ∈ Γ(tk) \

(Nn(tk)∪{n}) is connected to at least an agentji ∈ Nn(tk) through a path that does not include

agentn and any other agent inNn(tk) different fromji. These paths connectingi with ji remain

identical inG(tk+1). Then, asNn(tk) ⊆ Λ, all the agentsi ∈ Γ(tk)\(Nn(tk)∪{n}) are connected

in G(tk+1) with at least an agent inΛ. As (Λ, E) is connected, all the agents inΛ, and hence

the agents ini ∈ Γ(tk) \ (Nn(tk) ∪ {n}), are connected to each others inG(tk+1). Finally, as

the set of the agents inG(tk+1) is Γ(tk+1) = (Γ(tk) \ (Nn(tk) ∪ {n})) ∪ Λ, we can conclude

that G(tk+1) is connected.

(Necessity) If we have no knowledge of neighborhoodsNi(tk) for i ∈ Γ(tk) \ {n}, we must

conservatively assume that all the links betweenn and the agentsNn(tk) are necessary for

the connectivity ofG(tk), since G(tk) may be, e.g., a tree. Consequently, to guarantee the

connectivity of G(tk+1), we must guarantee that the edges inE keep the agent inNn(tk)

connected to each others and to the new agents eventually added in tk+1. In other words, we

require that(Λ, E) is connected.

Figure 5 left shows that if (6) does not holdG(tk+1) may turn to be disconnected. However,

in general, rules (3) and (6) are not necessary to the connectivity of G(tk+1). As an example,

in case of a duplication, the connectivity ofG(tk+1) holds even ifΛj = {j} for all j ∈ Nn(tk),

if all j ∈ Nn(tk) are adjacent to a common agentv /∈ Nn(tk) (see, e.g., Fig. 5 right).

January 17, 2014 DRAFT
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Fig. 5. Different duplication events. Duplicating agent ingray, children agents in thick line. Cases in which rules (6)are

necessary (left networks) and not necessary to the connectivity of G(tk+1) (right networks).

As regards invariancy, we observe that dynamics described in (1), (2) and (5) imply that the

sum of the agents’ states is a constant value over time, i.e.,

∑

i∈Γ(r)

xi(r) = χ. (9)

Invariancy is a necessary condition to avoid that the numberof agents neither diverges to

infinity nor converges to one. Assume that in consequence of aduplication at timetk the sum

of the states decreases over time, i.e,α + β < xn(tk − 1) or that an agent may die having

a statexn(tk − 1) > 0. It is immediate to see, that under these hypotheses either the system

reaches consensus orlimk→∞ n(tk) = 1. Differently, if the sum of the states increases over

time, which corresponds to sayingα + β > xn(tk), then either the system reaches consensus or

limk→∞ n(tk) = ∞.

Invariancy is also used in the next result to establish that the number of agents never goes

above neither below certain bounds.

Theorem 2:Let th be the critical time, possibly infinite, at which the first duplication occurs.

Then the following bounds holds on the number of agents:

⌈ χ

B

⌉

≤ n(tk) ≤







χ − B + 2, ∀tk ≥ th

χ, ∀tk < th
. (10)

Proof: The lower bound is a straightforward consequence of the invariancy (9). As regards

to the upper bounds, we can haven(t0) = χ in the following trivial situation. At the initial time

t0 = 0 the agents’ states have valuexi(t0) = 1 for all i ∈ Γ(t0). Differently, from th on, the

maximum number of agents can be reached only when a duplication occurs. In this case, the

agents’ state invariancy imposes

χ =
∑

i∈Γ(tk)

xi(tk) ≥ n(tk) − 2 + α + β = n(tk) − 2 + B. (11)

January 17, 2014 DRAFT
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In (11), the inequality holds as, after a duplication event,at least one of the system agents

has state equal toα, a second agent has state equal toβ, and the remaining agents have state

xi(tk) ≥ 1. Finally, the bound in (10) trivially follows from (11).

Note that the fact thatn(tk), and hence the cardinality ofE(tk), is bounded from the above

for all tk ≥ 0 guarantees the possibility that the valueT required by Assumption 1 exists.

Invariancy and connectivity play a critical role when proving that under a QGA the intervals

between consecutive critical events is finite. Indeed, thisfact holds true unless the agents’ reach

consensus. We say that the agents reach consensus at timer if all states are equal, i.e.,xi(r) =

xj(r) for all i, j ∈ Γ.

The next lemma is a prtelude to show that the interval betweenconsecutive critical events is

finite.

Lemma 1:Consensus can be reached only at timestk, for k = 0, 1, . . ..

Proof: For each timer = tk, tk + 1, . . . , tk+1 − 1, let imin(r) = arg mini∈Γ{xi(r)} be the

agent with minimum state,imax(r) = arg maxi∈Γ{xi(r)} be the agent with maximum state.

By definition of QGA we have that the values ofximin(r)(r), respectivelyximax(r)(r), may vary

but cannot increase, respectively decrease, fortk ≤ r < tk+1. As a consequence, the difference

betweenximin(r)(r) andximax(r)(r) cannot reduce to zero fortk < r < tk+1.

Theorem 3:Assume that the agents do not reach consensus intk, then a critical event will

occur in a finite timetk+1.

Proof: We prove the statement by contradiction. In particular, we show that if no critical

event occurs in a finite time the system state diverges. To this end, we assume that the agents

have not reached consensus at timetk and that no critical event occurs fromtk on. Let i, j be

the agents selected by the QGA at the generic timer > tk and consider difference

||x(r + 1)||2 − ||x(r)||2 =







2δij(r)
2 + 2δij(r)(xi(r) − xj(r)) ≥ 4 if |xi − xj | 6= 0

0 otherwise
.

In view of Assumption 1, we have that||x(s)||2 − ||x(tk)||
2 ≥ 4

⌊

s−tk
T

⌋

for all s ≥ tk, as, if

i) no critical events occurs aftertk, ii) G(tk) is connected and iii) the agents have not reached

consensus intk, within every T instants at least a couple of agents with different states is

selected. Then, aslims→∞ 4
⌊

s−tk
T

⌋

= ∞, we have thatlims→∞ ||x(s)||2 = ∞. The value of the

latter limit is in contradiction with the fact that0 ≤ xi(s) ≤ B must hold for anys ≥ 0. Hence,

either the agents have reached consensus intk or a critical event occurs aftertk.

January 17, 2014 DRAFT
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An immediate consequence of Theorems 2 and 3 is that a first duplication event occurs at

time th after at maximumχ−2 death events. In addition, theth is finite unless the agents reach

consensus at timet0 or at one the above death events.

In the rest of this section, we analyze possible scenarios where the agents reach consensus.

Example 1:Consider systems evolving according a protocol in which theduplication rule (5)

requires thatα = β = B/2 and that both the two children inherit all their parent connections

and connect to each other (see, e.g., rule (16) discussed in the next section). Such systems may

reach consensus. Note that in this case each duplication generates twin agents. Consider, as an

example, the evolution of a system wheren(0) = 2 and x1(0) = B/2 and x2(0) = 3B/4. By

Theorem 2, we haven(tk) ≥ 2 for all tk. We can easily define a QGA such that at timet1,

we havex1(t1) = B/4 andx2(t1) = x3(t1) = B/2. At time t2, the agent1 dies (we have not

renumbered the agents for the easy of exposition) and the remaining two twin agents reach an

equilibrium corresponding to a state value equal to5B/8.

The next theorem establishes some necessary conditions forthe agents to reach consensus.

Theorem 4:Consensus can be reached provided thatxi(tk) = xj(tk) = χ

n(tk)
< B for all

i, j ∈ Γ. Furthermore,

χ

n(tk)
≥







χ

n(t0)
for t0 ≤ tk < th

α for tk ≥ th
,

whereth is the critical time of the first duplication event.

Proof: The first part of the theorem is a trivial consequence of the definition of consensus

and of the invariancy property.

The first lower bound is true as, fort0 ≤ tk < th, we haven(tk+1) = n(tk)−1 and, obviously,

the invariancy property holds. In proving the second lower bound, we observe that, forr ≥ th,

we haveximax(r)(r) = maxi∈Γ(tk){xi(r)} ≥ α. Actually, any QGA preventsximax(r)(r) from

decreasing between two consecutive critical duplication events.

A direct consequence of Theorem 4 is that there exist initialstatesx(0) such that the agents

will never reach a consensus as stated in the following corollary.

Corollary 1: Let th be the critical time of the first duplication event. No consensus can be

attained fort0 ≤ tk < th, if χ is not divisible for some integer less than or equal ton(t0). No

consensus can be attained fortk ≥ th, if χ is not divisible for some integer greater than or equal

to α.
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Proof: The corollary thesis is an immediate consequence of of Theorem 4 and the fact that

both the number of agents that reach consensus and their states must assume integer values.

We conclude this section by observing that trajectoryx(t) may become periodic in the long

run when the agent do not reach a consensus. As an example, this situation occurs if the system

evolution evolves according to death/duplication rules that depend on the agents’ states and on

the connection network topology and no stochasticity or time dependency is allowed.Indeed, we

can observe that our systems evolve in a space defined by the number of agents, their states

and the topologies of their possible connection networks.As both the number of agents and their

states may assume only integer values bounded from above, then the number of topologies of

the possible connection networks is also finite, hence the thesis follows.

IV. TOPOLOGY INVARIANCY

Let us now investigate conditions on death and duplication rules that result in the invariancy of

specific network topologies like complete, hole or chain networks. As we study the asymptotic

evolution of a system, let us initially observe that Theorem2 implies that there always exists a

critical time tq an two integer valuesn and n̄ such that, for each̃n satisfying
⌈ χ

B

⌉

≤ n ≤ ñ ≤ n̄ ≤ χ, (12)

we have an infinite sequence of critical time instantsσ(ñ) = {tñk : tñk ≥ tq} such thatn(tñk) = ñ.

In this context, we say that thedensity of the connection networkof a system does not increase

asymptotically if there exists a valuêt ≥ 0 such that for each̃n satisfying condition (12), the

value |E(tñk)| does not increase over the critical times inσ(ñ) and greater than or equal tôt.

We start by considering the duplication rule which equally divides the parent’s connections

between the two children. Formally,

Λn = pick(Nn(tk)) ∪ {n + 1} and Λn+1 = Nn(tk) \ Λn ∪ {n}, (13)

where functionpick(Nn(tk)) returns a random subset of⌊|Nn(tk)|/2⌋ elements ofNn(tk).

With such a rule, ifG(t0) is a hole network, respectively a chain network (see Fig. 6),

then G(tk) are hole network, respectively chain network, for everytk, whatever death rule is

implemented. Again, this corresponds to saying that hole and chain networks are invariant as

established in the next theorem. Before giving the theorem,we recall that a networkG(tk) is
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a hole, respectively a chain network, if it is connected and all the agents have degree two,

respectively all the agents have degree two a part from two agents at the extreme of the chain

whose degree is one (see, e.g., Fig. 6).

Theorem 5:Hole and chain networks are invariant under duplication rule (13).

Proof: The idea of the proof is that critical events do not change, ingeneral, the degree

of the agents. This is always true unless the dying or duplicating agentn is an extreme of the

chain. Actually, when an extreme agent dies, its neighbor, whose degree changes from two to

one, becomes the new extreme. Similarly, when an extreme agent duplicates, one children is the

new extreme with degree one, while the other children has degree two as all other agents.

Fig. 6. A hole network and a chain network.

Consider now the death rule (2) that assign all the connections of a dead agent to just one of

its neighbors. This can be formally described by a death rulethat, for eachj ∈ Nn(tk), satisfies:

Λj =







Nn(tk) \ {j
∗} if j = j∗

{j∗} if j 6= j∗
(14)

wherej∗ ∈ Nn(tk) is arbitrarily picked.

From a practical point of view, these choices forΛj are the simplest ones to implement that

guarantee the connectivity ofG after the removal of the dying agent.

Theorem 6:Under duplication rule (13) and death rule (14), both the density and the number

cycles of a connection network cannot increase asymptotically.

Proof: the thesis is trivially true if the agents reach consensus. Otherwise, it is immediately

to see that, if attk a duplication occurs,|E(tk)| = |E(tk−1)| + 1; if at tk a death occurs,

|E(tk)| ≤ |E(tk−1)| − 1 (15)

as at least the connection(n, j∗) is not substituted by a new connection. Now, observe that, for

eachñ satisfying condition (12), an equal number of death and duplication events must occur

between each two critical timestñk and tñs ∈ σ(ñ), with tñs > tñk , henceE(tñs ) ≤ E(tñk). Then,
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we can conclude that the density of the connection network cannot increase over time. Finally,

the observation that the considered duplication and death rules forbid the creation of new cycles

in the connection network concludes the proof.

Authors’ computational experiments show that the density of the connection network usually

indeed decreases untilG presents a single or no cycle at all if the assumptions of Theorem 6 hold

and the agents do not reach consensus. Although no formal proof confirms such observations,

it appears reasonable to expect that the the connection network becomes sparser and sparser.

Indeed, inequality (15) in the proof of Theorem 6 holds strictly in the occurrence of a death

event wheneverNn(tk) ∩ Nj∗(tk) 6= ∅, situation quite common if the network is not sparse.

Let us now consider the duplication rule which makes both children inherit all the parent

connections and connect to each other:

Λn = Nn(tk) ∪ {n + 1} and Λn+1 = Nn(tk) ∪ {n}. (16)

Observe that the above rule preserves complete connectivity of the subnetwork induced by

the critical set after a duplication event. This also induces the fact that ifG(t0) is a complete

network thenG(tk) are complete networks for everytk, whatever death rule is implemented.

This corresponds to saying that the complete network isinvariant under the duplication rule (16)

as established in the next theorem.

Theorem 7:The complete network isinvariant under the duplication rule (16).

Proof: AssumeG(tk) is a complete network. If a death occurs at timetk+1, each agent is

already adjacent to all the other agents. If a duplication occurs at timetk+1, because of rule (16),

the two new agents are adjacent to each other and to all the other agents.

The authors’ computational experiments show that, for a generic systems withG(t0) not

complete, the density of the connection network usually increases untilG becomes a complete

network if the rule (16) is applied and the agents do not reachconsensus, see [2].

V. FINAL REMARKS

In this paper we have introduced systems of competitive agents exchanging quantized flows

according to a dissensus protocol. We have discussed some invariancy properties of the systems

and observed that the number of agents is bounded from below and above over time.

As a future direction of research we are oriented toward the definition of more general rules for

the inheritance of the connections. Indeed, the main limit of the current version of the dissensus
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protocol seems the fact that the inheritance rule of the connections applies only when an agent

dies. In many real competitive systems the larger agents mayacquire the connections of the

smaller agents when the latter ones are still alive. Consider the following two examples. The

number of the cells adjacent to (that is, in the neighborhoodof) a cell i of a tissue is a function

of the size of the celli and not only of the possible occurrence of a death of an adjacent cell.

Similarly, the rules used for the dynamic pie diagram in Fig.4 cannot trivially be extended to

a general dynamic tessellation.
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[2] D. Bauso, L. Giarré, R. Pesenti. “Quantized Dissensus in Switching networks with nodes Death and Duplication2,Proc.

of the 1st IFAC Workshop on Estimation and Control of Networked Systems, Venice, I, Sept. 24-26, pp. 1-6, 2009.

[3] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. “Randomizedgossip algorithms”,IEEE T. Inform. Theory.vol. 52, no. 6,

pp. 2508-2530, 2006.

[4] F. Chung, L. Lu, T.D. Dewey, G. Dewey, ”Duplication models for biological network”,J. Comput. Biol., vol. 10, no.5,

pp. 677-687, 2003.

[5] P. Frasca, R. Carli, F. Fagnani, S. Zampieri, “Average consensus by gossip algorithms with quantized communication”

Proc. 47th IEEE Conference on Decision and Control, Cancun, MEX, pp. 4831-4836, 2008.

[6] J. P. Hespanha, D. Liberzon, A. R. Teel,Lyapunovconditions for input-to-state stability of impulsive systems.Automatica,

vol. 44, no. 11, pp. 2735-2744, 2008.

[7] S. Hill, F. Provost, and C. Volinsky, “Network-Based Marketing: Identifying Likely Adopters via Consumer Networks”,

Stat. Sci., vol. 21, no. 2, pp. 256-276, 2006.

[8] A. Kashyap, T. Basar, R. Srikant, “Quantized consensus”, Automatica, vol. 43, no. 7, 1192-1203, 2007.

[9] G. Karev, Y. Wolf, A. Rzhetsky, F. Berezovskaya, E. Koonin, “Birth and death of protein domains: a simple model of

evolution explains power law behavior”,BMC Evol. Biol., vol. 2, no. 1, pp. 1-8, 2002.

[10] D. Liberzon, Switching in Systems and Control. Systems and Control: Foundations and Applications. Birkhauser, Boston-

MA, 2003.
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