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Abstract—We introduce the concept of strongly attainable sets
of payoffs in two-player repeated games with vector payoffs in
continuous time. A set of payoffs is called strongly attainable if
player 1 has a strategy guaranteeing, even in the worst case, that
the distance between the set and the cumulative payoff shrinks
with time to zero. We characterize when any vector is strongly
attainable and illustrate the motivation of our study on a multi-
inventory application.

I. INTRODUCTION

In the literature on multi-inventory control [1], [3], [4], the
supplier tries to meet the demand, which is multi-dimensional
and given in continuous time. The goal of the supplier is to
ensure that the difference between the total demand up to time
T and the total supply up to time T converges to 0, as T goes
to infinity. The literature on Approachability theory, which
was initiated by [2], answers a similar question (see, e.g., [5]),
when one considers the average demand and average supply
instead of total demand and total supply.

Motivated by the problem of multi-inventory control, we
study in this paper two-player repeated games in continuous
time with vector payoffs. We define a new concept, the concept
of strongly attainable sets, which is close in spirit to the
concept of approachable sets: a set A in the payoff space
is strongly attainable if player 1 has a strategy such that,
for every strategy of player 2, the total payoff up to time T
converges to the set A.

The main contribution of this paper are conditions that
ensure that all payoff vectors are strongly attainable.

II. PROBLEM SETUP AND BACKGROUND

A. System model

We study a two-player repeated game with vector payoffs
in continuous time. The set of players is N = {1, 2}, and the
finite set of actions of each player i is Ai. The instantaneous
payoff is given by a function u : A1×A2 → Rm. We assume
w.l.o.g. that payoffs are bounded by 1, so that in fact u :
A1 × A2 → [−1, 1]m. We extend u to ∆(A1) × ∆(A2) in
a multi-linear fashion. We denote the one-shot vector-payoff
game (A1, A2, u) by G.

We study non-anticipating behavior strategies with delay.
Denote by ati the mixed action chosen by player i in time t.

Definition 1: A non-anticipating behavior strategy with de-
lay or simply behavior strategy for player i is a process
(ati)t∈R+ with values in ∆(Ai) such that there exists an
increasing sequence of stopping times (τki )k∈N satisfying:

1) τk+1
i is measurable w.r.t. the information at time τki (it

also depends on the play of the other player up to that
time);

2) ati is measurable w.r.t. the information at time τki , where
τki ≤ t < τk+1

i .
In the sequel we will refer to the stopping times (τki )k∈N in
Definition 1 as the stopping times in the definition of ai or as
the stopping times related to σi.

Every pair of non-anticipating strategies with delay σ =
(σi)i∈N uniquely determines the play path (at(σ))t∈R+ . The
payoff vector up to time T associated with the pair of strategies
σ is given by

γT (σ) =
∫ T

0

u(at(σ))dt.

Since payoffs are bounded by 1, the integral, which is the
cumulative payoff up to time T , is well-defined.

For every set A ⊆ Rm we denote by B(A, ε) the set of all
points whose distance from at least one point in A is less than
ε:

B(A, ε) := {x ∈ Rm : d(x,A) < ε}.

When A is a single point x, we write B(x, ε) instead of
B({x}, ε).

In this paper we present two new concepts: attainable sets
and strongly attainable sets.

Definition 2: (i) The set A ⊆ Rm is strongly attainable by
player 1 if there is a strategy σ1 for player 1 such that for
every strategy σ2 of player 2,

lim
T→∞

d(γT (σ), A) = 0. (1)

(ii) The set A is attainable by player 1, if the set B(A, ε) is
strongly attainable for every ε > 0.

The definition of an attainable set looks similar to that
of approachable set in games played over discrete set of



times (see Blackwell, 1956). There is, however, a significant
difference between the two.

Notation 1: For every mixed action p ∈ ∆(A1) denote by

D1(p) = {u(p, q) : q ∈ ∆(A2)},

the set of all payoffs that can occur when player 1 plays the
mixed action p.

Our goal is to provide a geometric characterization to
attainable sets. To this end we define a condition related
to auxiliary zero-sum scalar-payoff games. Let λ ∈ Rm.
Denote by 〈λ,G〉 the zero-sum game whose set of players
and their action sets are as in the original game G. Player
1’s payoff1 is 〈λ, u(a1, a2)〉 for every (a1, a2) ∈ A1 × A2.
As a zero-sum game, the game 〈λ,G〉 has a value, denoted
vλ. The inequality vλ > 0 means that there is a mixed action
p ∈ ∆(A1) such that D1(p) is a subset of the open half space
{x ∈ Rm : 〈λ, x〉 > 0}.

Definition 3: (i) Let B ⊆ Rm be a subspace and S ⊆
∆(A1) be a subset of player 1’s mixed strategies. We
say that the payoff function u satisfies condition C(B,S)
if for every2 open half space H of B, there is a mixed
action p ∈ S such that D1(p) ⊆ H .

(ii) If B = Rm and S = ∆(A1) we say that u satisfies
condition C.

Note that condition C is satisfied if and only if vλ > 0 for
every λ ∈ Rm.

Remark 1: Standard continuity and compactness arguments
imply that if u satisfies condition C, then there is δ1 > 0 such
that for every half space F there is p ∈ ∆(A1) satisfying
d(D1(p), F )) ≥ δ1. Stated differently, there is δ2 > 0 such
that for every vector λ whose `1-norm is 1, 〈u(p, q), λ〉 < −δ2
for every q ∈ ∆(A2).

The following theorem establishes that condition C is equiv-
alent to all vectors being attainable.

Theorem 1: The following statements are equivalent
C1 Every vector x ∈ Rm is strongly attainable;
C2 Every vector x ∈ Rm is attainable;
C3 The payoff function u satisfies condition C.

III. PROOF OF THEOREM 1

We show first that C3 implies C1. Assume that condition
C is satisfied. Fix a vector x. We show that x is strongly
attainable.

We define a strategy σ1. Fix a constant η = 1 and let τk1
be defined inductively as

τk1 =
{

0 k = 1,
τk−1
1 + η

k k > 0.
(2)

Denote the payoff up-to time τk1 by Sk. σ1(t) is defined to
be an optimal strategy of player 1 in the game 〈x − Sk, G〉,
for τk1 ≤ t < τk+1

1 . That is, σ1 is constant in the interval
[τk1 , τ

k+1
1 ). In case x − Sk 6= 0, σ1(t) in this interval is

1Recall that 〈x, y〉 =
∑m
i=1 xiyi for every x, y ∈ Rm.

2H is an open half space if it is of the form {x; 〈x, λ〉 > 0} for some
λ ∈ Rm.

equal to a mixed action that guarantees that the payoff and
x − Sk lie on different sides of the hyperplane perpendic-
ular to x − Sk. Moreover, in light of Remark 1, there is
δ2 > 0 such that when σ2 is the strategy played by player
2, 〈 x−Sk

‖x−Sk‖1 , u(σ1(t), σ2(t))〉 < −δ2.
Denote by ak the payoff accumulated in the interval

[τk1 , τ
k+1
1 ). Thus,

‖x− Sk‖2 = ‖x− Sk−1 −
1
k
ak‖2 = ‖x− Sk−1‖2

+
1
k2
‖ak‖2 + 2

1
k
‖x− Sk−1‖1〈

x− Sk−1

‖x− Sk−1‖1
, ak〉.

(3)

Thus, ‖x− Sk‖ is smaller than ‖x− Sk−1‖ as long as

1
k2
‖ak‖2 + 2

1
k
‖x− Sk−1‖1〈

x− Sk−1

‖x− Sk−1‖1
, ak〉 < 0. (4)

Recalling that ‖ak‖2 ≤ 1, we infer that Eq. (4) occurs when

1
2kδ2

< ‖x− Sk−1‖1. (5)

We claim that lim inf ‖x−Sk‖ = 0. Otherwise, from a certain
k0 on ‖x − Sk‖ > ε > 0, meaning that from a certain k0 on
Eq. (5) is satisfied. But then for every K > k0 we obtain from
Eq. (3) that

‖x− Sk‖2 ≤
K∑

k=k0

1
k2
‖ak‖2

+ 2
1
k
‖x− Sk−1‖1〈

x− Sk−1

‖x− Sk−1‖1
, ak〉

≤
K∑

k=k0

1
k2
‖ak‖2 + 2

1
k
ε(−δ2).

(6)

Since the RHS converges to −∞, it implies that the LHS is
negative for K large enough, which is a contradiction. Thus
indeed, lim inf ‖x− Sk‖ = 0.

We show now that lim sup ‖x − Sk‖ = 0. Fix an ε > 0.
By the previous claim there are infinitely many k’s for which
‖x − Sk‖2 < ε. If ‖x − Sk‖2 < ε, then ‖x − Sk+1‖2 <
ε + 1

k2 ‖ak‖2 + 2 1
k‖x − Sk−1‖1〈 x−Sk−1

‖x−Sk−1‖1 , ak〉 < 2ε for k
sufficiently large. But when k is large enough 1

2kδ2
< ε, and

then Eq. (5) is satisfied. In this case ‖x − Sk+2‖2 < ‖x −
Sk + 1‖2. In other words, for k large enough, if ‖x−Sk‖2 < ε,
then the next time distance squared, ‖x − Sk + 1‖2, cannot
jump beyond 2ε. And if this figure jumps above ε, the distance
‖x−S`‖ is then starting to go down. Thus, for k large enough
once ‖x− Sk‖2 is smaller than ε, it will remain smaller than
2ε for ever. We conclude that lim sup ‖x − Sk‖2 < 2ε and
since ε is arbitrary, it shows C1.

It is clear that C1 implies C2 and it remains to show that
C2 implies C3. Assume that the payoff function u does not
satisfy condition C. Then there exists a half space H such that
D1(p) is not a proper subset of H , for every p ∈ ∆(A1). From
the minimax theorem this implies that there is q ∈ ∆(A2)
such that D2(q) is disjoint of H . But then any vector x ∈
H is not attainable by player 1, simply because the strategy



σ2 that constantly plays q generates a cumulative payoff that,
regardless of σ1 being player by player 1, is always out of H ,
which shows that C2 is not satisfied.

IV. CASE STUDY

In this section we carry out a numerical analysis aimed at
simulating the play path and integral payoff of a given game.
The game under consideration is displayed below

(6, 7) (1, 7) (6, 2) (1, 2)
(6,−4) (1,−4) (6,−9) (1,−9)

(−3,−1) (−8,−1) (−3,−6) (−8,−6)
(−3, 10) (−8, 10) (−3, 5) (−8, 5)

 . (7)

The game is obtained starting from the following multi-
inventory case study.

f1

f2

f3

w1

w2

Fig. 1. Network system.

Consider the system depicted in Fig. 1 representing two
warehouses, three controlled flows and two uncontrolled flows.
A unit of flow f1 produces one unit of product γ1 per time unit.
Similarly, flow f2 uses one unit of γ1 to produce one unit of γ2

per time unit. A unit of flow f3 produces one unit of product
γ2 per time unit. Uncontrolled flows w1 and w2 represent the
exogenous demand of resource γ1 and γ2 respectively. The
associated dynamics reads then:[
γ̇t1
γ̇t2

]
= u((at1, a

t
2)) =

[
1 −1 0
0 1 1

]
︸ ︷︷ ︸

F

 f t1
f t2
f t3


︸ ︷︷ ︸

at1

−
[
wt1
wt2

]
︸ ︷︷ ︸

at2

.

Now, suppose that flows can be processed only in batches
and therefore take for instance fi ∈ {−5,−2, 1, 6}, and wi ∈
{−3, 2}.

Let us enumerate all the actions of player 1 and 2, so that
we have A1 = {a11, . . . , a1r} and A2 = {a21, . . . , a2q} with
r = 43 and q = 22, where aij denotes the jth action of player
i.

The complete matrix of vector payoffs is then obtained from
the following table, where each entry represents a possible
vector payoff u((a1, a2)):

a1/a2 a21 . . . a2q

a11 Fa11 − a21 . . . Fa11 − a2q

...
...

...
a1r

φ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
vλ 5 3.7 2.4 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0

TABLE I
VALUES OF THE GAME 〈λ,G〉 WHERE λ = (φ, 1− φ) ∈ R2 FOR

DIFFERENT φ’S.

As it will be clearer later on, to our purposes we can
simply extract from the above table the rows associated to
the following four actions of player 1:

a11 = (1,−2, 6), a12 = (1,−2,−5),
a13 = (−5, 1,−5), a14 = (−5, 1, 6).

This procedure reduces the vector payoff matrix to the 4× 4
matrix displayed in (7).

In fact, the above game satisfies condition C as vλ > 0
for every λ ∈ Rm. Thus, the theoretical results developed in
the previous part of the work (see in particular Theorem 1)
establish that any vector x ∈ R2 is strongly attainable for this
game.

To see that vλ > 0 for every λ ∈ Rm, we study the one shot
game 〈λ,G〉 where λ = (φ, 1− φ) ∈ R2 for φ = 0, 0.1, . . . 1.
More specifically, let Uλ be the payoff matrix and U ′λ its
transposed, and consider the optimization variables p̃ = p

vλ
.

Then for each λ we solve the linear program below using
Matlab in-built function linprog:

(LP ) min{‖p̃‖1| U ′λp̃ ≥ 1, p̃ ≥ 0}.

The value of the game is then obtained as vλ = 1
‖p̃‖1 . In Table

I we display the values of the game 〈λ,G〉 for different φ’s.
Note that the minimum vλ = 1 in correspondence to φ = 1.

We are now in the position to start with the Monte Carlo
simulations. We perform 20 sample paths, and in each one
the attainable vector x is randomly chosen with uniform
distribution from the interval [−1, 1]. At the end of all the 20
sample paths, we compute the sampled average of the variables
of interest (integral payoff γT (σ), distance d(x, γT (σ)) a.s.o),
namely, we average over all the 20 trajectories for varying
time T .

To avoid numerical issues, we set the initial payoff γ0(σ) =
(0.1, 0.1). Each sample path has horizon length τk1 with k =
1, . . . , 200, and each interval [τk1 , τ

k+1
1 ] is subdivided into 10

steps, i.e, the basic length of the interval is τk+1
1 −τk1

10 . In spirit
with the proof of Theorem 1, for each period k = 1, . . . , 200,
we denote the payoff up-to time τk1 by Sk. Then, the strategy of
player 1 σ1(t) is the optimal strategy in the game 〈x−Sk, G〉,
for τk1 ≤ t < τk+1

1 . More specifically, σ1 is constant-wise over
the intervals [τk1 , τ

k+1
1 ), k = 1, . . . , 200. From a computational

standpoint, σ1 is obtained solving the aforementioned linear
program (LP ) with λ = x− Sk.

Without loss of generality, we also take σ2(t) =
(1/4, 1/4, 1/4, 1/4) namely we assume that player 2 simply
randomizes over a2 = 1, . . . , 4 with uniform distribution.

All simulations are carried out with MATLAB on an In-
tel(R) Core(TM)2 Duo CPU P8400 at 2.27 GHz and a 3GB



of RAM. The run time of the only Monte Carlo simulations
is about 60 seconds. The results of the simulations are sum-
marized in Figs. 2 to 5.

Figure 2 shows the time plot of sampled average of
x − γT (σ). In accordance to Theorem 1, any x is strongly
attainable and therefore we do expect the trajectories converge
to zero as in fact depicted in the figure.

Fig. 2. Sampled average of x− γT (σ) vs. time T .

For the same simulations, Fig. 3 shows the time plot of
sampled average of the distance d(γT (σ), x). Again, from
Theorem 1, strongly attainability of x implies that the distance
tend to zero as illustrated in the plot.

Fig. 3. Sampled average of distance d(γT (σ), x) vs. time T .

Looking at a single path out of the 20 simulations, we plot
in Fig. 4 the trajectory x−γT (σ) for varying time T where we
have set as attainable vector x = (0.1, 0.8). The plot shows
that the trajectory of the integral payoff γT (σ) converges to
the prescribed attainable vector x.

Finally, Fig. 5 illustrates the distance d(γT (σ), x) for vary-
ing steps N (rather than time T ) in the same single simulation
mentioned above. The plot shows the converging nature of the
trajectory as a function of 1√

N
.

Fig. 4. γT (σ) vs. time T with x = (0.1, 0.8).

Fig. 5. Distance d(γT (σ), x) vs. steps N with x = (0.1, 0.8).

V. CONCLUSIONS

We have introduced the concept of strongly attainable sets
of payoffs in two-player repeated games with vector payoffs
in continuous time. In particular, a set of payoffs is called
strongly attainable if player 1 has a strategy that guarantees,
even in the worst case, that the distance between the set and
the cumulative payoff tends to zero.

As main result we study conditions under which any vector
is strongly attainable. Results are illustrated in the context of
multi-inventory applications.
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