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OBJECTIVE FUNCTION DESIGN FOR ROBUST OPTIMALITY OF LINEAR

CONTROL UNDER STATE-CONSTRAINTS AND UNCERTAINTY

Fabio Bagagiolo1 and Dario Bauso2

Abstract. We consider a model for the control of a linear network flow system with unknown but

bounded demand and politopic bounds on controlled flows. We are interested in the problem of finding

a suitable objective function that makes robust optimal the policy represented by the so-called linear

saturated feedback control. We regard the problem as a suitable differential game with switching cost

and study it in the framework of the viscosity solutions theory for Bellman and Isaacs equations.

1991 Mathematics Subject Classification. 49L25, 49N90, 90C35.

.

Introduction

In the recent work [3], the authors study the following problem: find an objective function (ζ, µ, ω) 7→
g(ζ, µ, ω) such that the feedback linear saturated control u(t) = sat(−kz(t)) = (u1(t), . . . , un(t)) with k > 0
and

ui(t) = sat(−kzi(t)) =







1 if zi(t) ≤ − 1
k

−kzi(t) if |zi(t)| ≤
1
k

−1 if zi(t) ≥
1
k
,

is robustly optimal for the problem of minimizing

J(ζ, u, w) =

∫ +∞

0

e−tg(z(t), u(t), w(t))dt, (1)

subject to

{

ż(t) = u(t) − Dw(t), t > 0
z(0) = ζ

, (2)

under the unknown disturbance w(·). Here, z(·) ∈ IRn is the state variable, ζ ∈ IRn is the initial state, t 7→ u(t)
is the measurable control, taking value, for all t ≥ 0, in the set of constant controls

U =
{

µ ∈ IRn
∣

∣

∣
|µi| ≤ 1 ∀i = 1, . . . , n

}

, (3)

t 7→ w(t) is the measurable unknown disturbance, taking value, for all t ≥ 0, in the set of constant disturbances

W =
{

ω ∈ IRm
∣

∣

∣
|ωj | ≤ 1 ∀j = 1, . . . , m

}

, (4)
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and finally D is a given constant n × m matrix.
Such a problem arises from a model of linear network flow system with unknown but bounded demand and

politopic bounds on controlled flows (see Bauso-Blanchini-Pesenti [6] and the present Section 1). In particular,
the following compact embedding hypothesis

DW =
{

Dω
∣

∣

∣
ω ∈ W

}

⊂⊂ U , (5)

guarantees that, if the linear saturated control u is used, the state z(·) reaches the target

T =

{

ζ ∈ IRn
∣

∣

∣
|ζi| ≤

1

k
∀i = 1, . . . , n

}

(6)

in finite time and, once T is reached, it will remain inside T for all the times. And this happens whichever the
disturbance w(·) is.

The problem of driving the state z(·) into the target T is called ǫ-stabilizability problem of z(·), where ǫ is
the maximal size of T .

For the modeling meaning of the target set T see again [6] and Section 1.
In [3] the problem is firstly addressed giving a suitable meaning to the robust optimality of the linear saturated

control. This is done by a ”differential game” approach in the sense of lower value of the game (see Elliot-Kalton
[16]). We interpret the problem as a game between a first player who wants to minimize the payoff and uses
the control u, and a second player who wants to maximize the payoff and uses the control w. Let us define the
following sets for the measurable controls u and w

U =
{

u : [0, +∞[→ U
∣

∣

∣
u measurable

}

,

W =
{

w : [0, +∞[→ W
∣

∣

∣
w measurable

}

,
(7)

and the set of the nonanticipating strategies for the first player

Γ =
{

γ = γ[·] : W → U
∣

∣

∣

w1(s) = w2(s)∀s ∈ [0, t] =⇒ γ[w1](s) = γ[w2](s)∀s ∈ [0, t],

∀w1, w2 ∈ W,∀t ≥ 0
}

.

(8)

For every initial state ζ fixed, we regard the linear saturated control u as a particular nonanticipating strategy
γζ for the first player

∀w ∈ W,∀t ∈ [0, +∞[, γζ [w](t) = sat(−kz(t)),

where z(t) is exactly the solution of (2) at the time t with w and u = sat as controls, i.e.

{

ż(t) = sat(−kz(t)) − Dw(t),
z(0) = ζ.

Hence, we consider the following two problems (respectively maximization problem and minmax problem)

sup
w∈W

J(ζ, γζ [w], w) = V (ζ),

subject to ż(t) = γζ [w](t) − Dw(t), z(0) = ζ,
(9)

and

inf
γ∈Γ

sup
w∈W

J(ζ, γ[w], w) = Ṽ (ζ),

subject to ż(t) = γ[w](t) − Dw(t), z(0) = ζ,
(10)

where the payoff J is given in (1).
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Definition 0.1. We say that the linear saturated control is robustly optimal if V (ζ) = Ṽ (ζ) for all ζ ∈ IRn,
that is if the value function of the maximization problem in w with fixed strategy γζ is equal to the lower value
function (see Elliot-Kalton [16]) of the differential game given by minimization in the control u and maximization
in the unknown disturbance w.

The way to prove the equality between V and Ṽ used in [3] is to consider respectively the Hamilton-Jacobi-
Bellman and the Hamilton-Jacobi-Isaacs equations that they must respectively solve in the viscosity sense (see
Crandall-Evans-Lions [13] and Bardi-Capuzzo Dolcetta [4]). Such equations are respectively, neglecting for the
moment possible boundary conditions,

V (ζ) + H(ζ,∇V (ζ)) = 0, (11)

Ṽ (ζ) + H̃(ζ,∇Ṽ (ζ)) = 0, (12)

where ∇ is the gradient, and the Hamiltonians H and H̃ are defined, for all ζ ∈ IRn, p ∈ IRn, as

H(ζ, p) = min
ω∈W

{−(sat(−kζ) − Dω) · p − g(ζ, sat(−kζ), ω)} ,

H̃(ζ, p) = min
ω∈W

max
µ∈U

{−(µ − Dω) · p − g(ζ, µ, ω)} .
(13)

In [3] we actually exhibit a function φ solving both (11)-(12), and, using uniqueness results for (11)-(12) we

conclude φ = V = Ṽ . However, apart from a simpler one-dimensional case, it seems suitable to split the
problem into two different problems: one outside the target T , giving it a ”minimum-time” feature, and one
inside the target, giving it a linear-quadratic feature. For the second case, some restriction on the behavior of
the time-dependent disturbance w(·) is forced by choosing some suitable forcing terms in g.

In the present work instead, we address the problem inside the target only, for which the saturated control
is then linear and which presents state-constraints. Moreover we relax some of the forcing terms considered
in [3]. To this end, as explained next, it seems necessary to introduce a discontinuity (switching term) in
the objective function g, and this fact may lead to some problem for the uniqueness of the Hamilton-Jacobi
equations. To overcome such a difficulty, we approximate that switching term by a delayed thermostat and
then study a suitable kind of hybrid system, in the spirit of Bagagiolo [1] (see Figure 7). This leads to the
introduction of two new state-variables: the switching one and a variable which counts switchings. Moreover,
in order to get uniqueness for both Hamilton-Jacobi problems, these are casted into boundary value problems,
which correspond to an optimal control problem and to a differential game with exit-cost. In particular, the
exit-time differential game problem is not well present in the literature. Hence, some suitable new results for
such a problem are also here reported. For another dynamic programming approach to some particular kinds
of hybrid differential games, see for instance Dharmatti-Ramaswamy [15].

The problem here described, may be viewed as an inverse problem in optimal control: find and objective
function such that a given control turns out to be optimal. Up to our knowledge, there are only few works on such
a subject, see for instance Casti [12], Lee-Liaw [22], Larin [21]. Except for [12], all of them are concerning linear
systems with unbounded state-space and unbounded controls. They look for a quadratic objective function by
means of searching for suitable matrices solving a Riccati-type equation. Our problem is concerning a linear
system too, but we also consider state-constraints and moreover we have restriction on the control set. In [12]
a nonlinear problem is instead considered. Under hypotheses of smoothness, using dynamic programming, a
partial differential equation satisfied by the objective function is guessed. However, also in this case, there are
no constraints in the state and in the control, and no uniqueness results for the Hamilton-Jacobi equation are
used. Note that our study also addresses the problem of differential games. Moreover, we also look for a ”good
shaped” objective function g such that the value V = Ṽ is good shaped too (for instance prevalently quadratic).

The paper is organized as follows. In Section 1 we briefly outline the applicative motivations for the model
(2) and for our searching the objective function g which makes sat robust. In Section 2 we outline the reasoning
that leads to guess a suitable objective function. In Section 3 we rigorous formulate both the maximization
and the minmax problem, and give the suitable uniqueness results. In section 4 we deduce the robustness of
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the linear saturated control. In Section 5 we illustrate some numerical simulations. In the Appendix 6 we
give some basic facts and some new suitable results about optimal control/differential game problems, dynamic
programming, Hamilton-Jacobi equations and viscosity solutions. Moreover, we also outline some basic facts
on the analytical representation of the delayed thermostatic switching rule.

1. Motivations

The idea of finding an objective function such that the feedback linear saturated control is robustly optimal
is in the spirit of mechanism design, or inverse game theory. Indeed, the main topic of the mechanism design
is the definition of game rules or incentive schemes that induce self-interested players to cooperate and reach
Pareto optimal solutions.

The system used in this work is similar in spirit with [6] and most references therein where saturated control
and unknown but bounded demands are also addressed. There, the authors derive for the first time the linear
system (2) starting from a standard network flow system (see dynamics (14) below) with bounding sets (3)-(4)
and formulate the ǫ-stabilizability problem for z(t) as an auxiliary problem to solve a network flow control
problem under input average constraints as recalled carefully next. The saturated control policy, is proved to
solve the ǫ-stabilizability problem in [6].

Our interest for the saturated control is due to the fact that i) it solves the ǫ-stabilizability problem in [6] ii)
it represents the simplest form of a piece-wise linear control the latter playing a central role in multi-parametric
optimization [7].

As regards the perturbation description, the idea of modeling the demand as unknown but bounded variable
is in line with some recent literature on robust optimization [8, 10, 14, 20] though the “unknown but bounded”
approach has a long history in control [9]. In particular, in [20] the authors deal with a problem of the same
nature of the one addressed here (they call it terminal linear quadratic control problem), with the only difference
that they do not take into account input constraints.

We also wish to highlight the analogies between the notion of feedback in control, present in this work, and
the notion of recourse used in robust optimization (see e.g., [14]) where some variables are function of the
perturbation realization. We also find that in [14], the linear saturated control is dealt with under the different
name of deflected linear decision rule.

1.1. Why model (2)? Linear network flow systems.

Let G = (V, E) a graph with |V | = n nodes and |E| = m arcs. The graph G describes the topology of a
flow network system. The system manager controls the flows (of materials) of the m arcs in order to meet the
demand materializing at the n nodes. Nodes model the different sites where inventory is stored. If we denote
by B ∈ R

n×m the incidence matrix of the graph, dynamics of the inventory x(t) at the nodes is

ẋ(t) = Bu(t) − w(t). (14)

The state x(t) integrates the deviation between the demand and the flow arriving to and departing from the
nodes. Previous studies (see [6]) show the connection between the ǫ-stabilizability problem of z(t) and the
ǫ-stabilizability problem of x(t) with the additional requirement of satisfying certain average constraints on
u(t), discussed below. To highlight such a relation, take a D ∈ R

n×m satisfying

BD = I (15)

U ⊃ DW. (16)
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We can interpret matrix D as follows: the ith row of D describes how to partition the demand at the ith node
among the arcs entering or leaving the nodes. Now, complete matrix B and D with matrices C and F such that

[

B
C

]

[

D F
]

= I. (17)

Consider the augmented system
ẋ(t) = Bu(t) − w(t)
ẏ(t) = Cu(t),

(18)

and consider the new variable z(t) defined as

z(t) =
[

D F
]

[

x(t)
y(t)

]

,

[

x(t)
y(t)

]

=

[

B
C

]

z(t). (19)

By differentiating z we obtain ż(t) = u(t) − Dw(t), which is exactly dynamics (2). Now, with z defined as in
(19), any control that ǫ-stabilizes z(t) ǫ-stabilizes x(t) as well and also implies

lim
T→∞

Av[w] = 0 ⇒ lim
T→∞

Av[u] = 0, (20)

where Av[w] := 1
T

∫ T

0
w(t)dt and Av[u] := 1

T

∫ T

0
u(t)dt. The above condition, known as average constraint,

means that if the long-term average of the demand is null then also the long-term average of the control is null.
To see this, observe that by integrating the left and right term of (2) we have that

lim
T→∞

z(T ) − z(0)

T
= lim

T→∞

1

T

∫ T

0

[u(t) − Dw(t)]dt = 0,

the latter implying that

lim
T→∞

1

T

∫ T

0

u(t)dt = lim
T→∞

1

T

∫ T

0

Dw(t)dt

which is exactly condition (20). Finally, note that the average constraint can be generalized to limT→∞ Av[w] =
w̄ ⇒ limT→∞ Av[u] = ū, for any pair of nominal demand w̄ and nominal controlled flow ū such that Bū = w̄.
This can be done by simply translating the origin of the vector spaces of w and u in w̄ and ū respectively as we
will show in the numerical example of Section 5.

2. Looking for a good objective function g

Here we outline the reasoning leading to the guess of a suitable objective function g. We recall that we are
concerned only with what happens when z(·), the trajectory of (2), is inside the target T for all the times.

Remark 2.1. Observe that problem has a trivial solution, for instance g(ζ, µ, ω) = ‖µ− sat(−kζ)‖. However,

in this case the values V and Ṽ are constantly equal to zero, and so the disturbance w(·) does not play any
effective role in selecting an optimal strategy by the first player. Instead, we are interested in a model that is
suitable to model real situations in the applications (see Section 1).

Since inside the target the saturated control is linear, we then look for a function g with a relevant ”qua-
dratic feature”. Moreover, we also ask that the corresponding value function (i.e. the optimum) is ”easy to
guess/construct”, that is it has a relevant quadratic feature too.

First guess for g. A first natural choice for g seems to be the following:

g1(ζ, µ, ω) =
k + 1

2

∥

∥

∥

∥

ζ +
Dω

k

∥

∥

∥

∥

2

+
1

2k
‖µ − Dω‖2

.
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However, such a choice does not force the demand to switch among only two vertices, which is instead what
we would like to happen, otherwise the computation of the optima values may be harder (the case where the
demand is free to switch among more than two vertices is still under investigation). Hence we suppose that
there exists a vertex ω ∈ W such that

‖Dω‖ > max
ω∈W,ω 6=±ω

‖Dω‖. (21)

This may happen, for instance, if the matrix D has suitable coefficients (for example all positive), and such a
requirement is compatible with real applications. However, there are other ways to impose the demand switch
only among two opposite vertices. We then consider the following new objective function:

g2(ζ, µ, ω) =
k + 1

2

∥

∥

∥

∥

ζ +
Dω

k

∥

∥

∥

∥

2

+
1

2k
‖µ − Dω‖2

+ C1‖Dω‖2, (22)

where C1 is a suitable positive constant. When the saturated control is used, the cost g2 becomes

g2(ζ,−kζ, ω) =
2k + 1

2

∥

∥

∥

∥

ζ +
Dω

k

∥

∥

∥

∥

2

+ C1‖Dω‖2.

When the demand is equal to ω, then g2 in some sense weights the distance of ζ from −(Dω)/k, which is also
the limit point of the trajectory with saturated linear control and fixed demand equal to ω. Hence a natural
guess for the maximum/optimum would be

V2(ζ) =















1

2

∥

∥

∥

∥

ζ +
Dω

k

∥

∥

∥

∥

2

+ C1‖Dω‖2 if ζ · Dω ≥ 0

1

2

∥

∥

∥

∥

ζ −
Dω

k

∥

∥

∥

∥

2

+ C1‖Dω‖2 if ζ · Dω < 0.

However, such a function is not the good one, as it is easy to check since it does not solve the corresponding
Hamilton-Jacobi equation (note that V2 is continuous everywhere and of class C1 out of the line ζ · Dω = 0).
Indeed, it seems that the optimal choice for ω is a sort of anticipation in the switching between ω and −ω
before crossing the line ζ ·Dω (and note that, when using the saturated control −kζ and the constant demand
ω, the trajectory converges to the equilibrium point −(Dω)/k, and hence, starting from ζ0 with ζ0 ·Dω > 0 we
certainly cross the line ζ · Dω = 0 in a finite time). Hence, the value function for this maximization problem,
has a more complicated formulation than V2.

Second guess for g. We introduce in the objective function a further term in order to force the maximizing
demand to keep a constant value (ω or −ω) when the state is inside one of the two parts ζ ·Dω > 0 or ζ ·Dω < 0.
To this end, we modify the objective function in the following way

g3(ζ, µ, ω) =
k + 1

2

∥

∥

∥

∥

ζ +
Dω

k

∥

∥

∥

∥

2

+
1

2k
‖µ − Dω‖2

+ C1‖Dω‖2 + C2sign(ζ · Dω), (23)

where sign is the sign function: sign(ξ) = 1 if ξ ≥ 0, sign(ξ) = −1 if ξ < 0, and C2 is a suitable nonzero
constant not necessarily positive. In particular, if C2 > 0 then the optimal choice for ω (when µ = −kζ, the
saturated control) should be ω (respectively −ω) if ζ ·Dω > 0 (respectively ζ ·Dω < 0). Otherwise, if C2 < 0, the
optimal choice should be the opposite one. Unfortunately, the objective function g3 becomes now discontinuous
(since so is the sign function). This is a serious problem for implementing our procedure which is strongly based
on uniqueness results of the Hamilton-Jacobi-Bellman equation for the maximization problem, as well as of the
Hamilton-Jacobi-Isaacs equation for the differential game problem. In particular, note that the discontinuity of
g3 presents some new features which are not well studied in the literature. Indeed, such discontinuity is with
respect (simultaneously) the state variables ζ as well as the control variables ω, which are intrinsically related
to each other by the scalar product ζ · Dω.
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Third guess for g. We approximate the sign function. One way may be to do that by continuous functions.
However such a procedure, even if possible, will probably make us loose the ”good fashion” of the value function
V2 which is almost based on the hypotheses that an optimal choice for the demand ω is switching through the
line ζ ·Dω. Hence, we prefer to approximate the sign function in a different way. We maintain the discontinuity
but we introduce a sort of delay in the switching. This is done by replacing the sign function by the delayed
thermostat hε described in the Appendix. Let us denote by by ϕ an odd function on W taking only the values
1 and −1 and such that ϕ(ω) = sign(C2). We then consider the objective function

g4(ζ, η, µ, ω) =
k + 1

2

∥

∥

∥

∥

ζ +
Dω

k

∥

∥

∥

∥

2

+
1

2k
‖µ − Dω‖2

+ C1‖Dω‖2 + C2ηϕ(ω), (24)

where the new state variable η is subject to the evolution

η(t) = hε[z(t) · Dω, η0](t).

We have then introduced the new state variable η, which can only take the values 1 and −1 (the output of
the thermostat) and whose evolution is subject to ”logic rules”, and not to ”differential rules”. That is we
are considering a hybrid problem. Also note that g4 is now continuous with respect to the state variables ζ
and η. However note that the discontinuity in the state is not definitely disappeared. It is now present in
the evolution of the variables η which switches between two values. But such a switching is governed by the
delayed thermostatic rule which allows us to say that switchings cannot accumulate in finite time (no Zeno
phenomenon). Note that now we have two switching lines for η: the line ζ ·Dω = ε only for switching up (from
−1 to 1), and the line ζ ·Dω = −ε only for switching down (from 1 to −1). Unfortunately, even if the objective
function g4 seems good for the maximization problem in ω with the saturated control, it is no more suitable
for the differential game problem. Indeed it may happen that, for particular values of ζ and η, the optimal
choice of the minimization is to force the trajectory to cross one of the switching line, and to do that a different
control from the linear saturated one may be necessary (recall that our final goal is to have the optimality of
the saturated control, regardless of the behavior of the demand).

Fourth guess for g. The above outlined difficulty comes from the fact that the function ”distance of ζ from
±(Dω)/k”, where the sign ± depends on which the maximizing ω is, is not continuous through the switching
lines ζ · Dω = ±ε (note that it is instead continuous through the switching line ζ · Dω = 0, in the case of
the sign function instead of the delayed relay). Hence we introduce a further term in the objective function
which counts the number of switchings and, in some sense, makes that distance function continuous through
the switching lines. The new objective function is (see Remark 3.1 for the meaning of the constant (2ε)/k)

g5(ζ, η, σ, µ, ω) =
k + 1

2

∥

∥

∥

∥

ζ +
Dω

k

∥

∥

∥

∥

2

+
1

2k
‖µ − Dω‖2

+ C1‖Dω‖2

+C2ηϕ(ω) − sign(C2)
2ε

k
σ,

(25)

where the new state variable σ belongs to IN, and its discrete evolution is subject to a delayed switching rule
given by (the term between parentheses can be expressed as the half of the total variation of η in [0, t])

σ(t) = σ0 + (number of switchings of η in [0, t]) .

3. Formulation of the problems

In the following, by g(ζ, η, σ, µ, ω) we intend the function g5 as in (25), and T is the target set defined in (6).
We define the following sets for the state variables (ζ, η, σ) ∈ T ×{−1, 1}× IN. For every fixed σ ∈ IN we define:

T1,σ =
{

(ζ, 1, σ)
∣

∣

∣
ζ ∈ T , ζ · Dω ≥ −ε

}

,

T−1,σ =
{

(ζ,−1, σ)
∣

∣

∣
ζ ∈ T , ζ · Dω ≤ ε

}

.
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ζ

nonswitching boundary
switching boundary

belongs tobelongs to belongs to

belongs to

τ τ τ

τ

1,σ 1,σ+2

−1,σ+3

1,σ+4

belongs toτ−1,σ+1

exit

Figure 1. Switching evolution, starting from ζ, which exits from the nonswitching boundary
after four switchings.

or, more generally, for every fixed η ∈ {−1, 1} and σ ∈ IN :

Tη,σ =
{

(ζ, η, σ)
∣

∣

∣
ζ ∈ T , η(ζ · Dω) ≥ −ε

}

.

For every initial state (ζ, η0, σ0) ∈ Tη0,σ0
, the controlled dynamical system is















z′(t) = u(t) − Dω(t),
η(t) = hε[z(·) · Dω; η0](t),
σ(t) = σ0 + (number of switchings of η in [0, t]) ,
z(0) = ζ.

(26)

We can say that Tη,σ is the set such that a trajecotry of (26), starting from (ζ, η, σ) ∈ Tη,σ, does not incur in
any switching of η(·) and σ(·) (i.e. switching of the thermostat hε) until it remains inside Tη,σ (see Figure 1).
Note that, if we start from (ζ, η0, σ0) ∈ Tη0,σ0

, and if the evolution of z(·) remains inside T for all the times,
then we certainly have

(z(t), η(t), σ(t)) ∈
⋃

n∈IN

T(−1)nη0,σ0+n.

Finally we consider the following exit-cost which acts when the trajectory z(·) leaves the closed target T
(note that the evolution of z(·) is not subject to the evolution of η and σ):

ψ(ζ, η, σ) =
1

2

∥

∥

∥

∥

ζ + sign(C2)η
Dω

k

∥

∥

∥

∥

2

+ C1‖Dω‖2 + |C2| − sign(C2)
2ε

k
σ.

Remark 3.1. Note that, since the dynamics µ − Dω is bounded, then, for passing from one switching line to
the other, it is necessary to spend at least a time τ > 0 independently from the initial position on one of the two
switching lines and from the controls µ and ω. Moreover, in that case of the saturated control µ(·) = −kz(·), for
every initial state (ζ, η0, σ0) there exists a sequence of controls wδ(·) for the demand such that the corresponding
costs converge to ψ(ζ, η0, σ0), as δ → 0+. For instance, if C2 > 0, let us fix δ > 0 and start with w ≡ η0ω
until t1 + δ where t1 is the first switching instant for the trajectory z(·) (it coincides with the reaching time
of the switching line ζ · Dω = −η0ε, which happens in a finite time). At the instant t1 the trajectory (η, σ)
switches and then we let w switch at the instant t1 + δ positioning on −η0ω. Hence, the trajectory z(·) changes
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direction, and the system goes on in this way for all the time. At every switching instant, the objective function
g
(

z(t), η(t), σ(t),−kz(t), η(t)ω
)

has a decrement of the quantity −(2ε)/k in its term containing the switching
variable σ which, via integration in the time up to +∞, is exactly compensated (modulo a quantity which goes
to zero as δ goes to zero) by the increment in the quadratic part

(

(2k + 1)‖z(t) + η(t)Dω/k‖2
)

/2 (−(2ε)/k is
equal to half of the difference between the square distances of a point on the switching line from the two points
±(Dω)/k). Hence, just a direct calculation proves the guess.

3.1. Maximization problem.

When the control u ∈ U is fixed equal to the linear saturated control −kz(·), we have the maximization
problem in w ∈ W given by the exit-time problem:

V (ζ, η, σ) = max
w∈W

∫ t

0

e−sg(z(s), η(s), σ(s),−kz(s), w(s))ds

+e−tψ(z(t), η(t), σ(t)), t = tζ,w

where tζ,w is the first exit time of z(·) from the target T , under the demand w. Since there exists a minimum
time interval in order to pass from one switching line to the other (see remark 3.1), then, starting from any
point (ζ, η, σ), with any controls, the cost is bounded (i.e. the integral converges, even if the trajectory z(·)
never exits from T ). Indeed, what may be not bounded in g is the variable σ which, if we have infinitely many
switchings, goes to +∞. However, due to the uniform delay in time for every possible switching, and due to
the presence of the discount exponential factor e−t, the integral converges anyway.

Let us denote by intT and by ∂T respectively the interior and the boundary of T (as subset of IRn) For every
(η, σ) ∈ {−1, 1}× IN fixed we denote the interior of Tη,σ (”interior” with respect to ζ as subset of IR×{η}×{σ})

intTη,σ = {(ζ, η, σ)
∣

∣

∣
(ζ, η, σ) ∈ Tη,σ, ζ ∈ intT , η(ζ · Dω) > −ε)},

For every (η, σ) ∈ {−1, 1}× IN, the boundary of Tη,σ (”boundary” with respect to ζ as subset of IR×{η}×{σ})
is split in two parts (nonswitching boundary and switching boundary respectively, see the figure)

∂T ns
η,σ = {(ζ, η, σ)

∣

∣

∣
(ζ, η, σ) ∈ Tη,σ, ζ ∈ ∂T , η(ζ · Dω) > −ε},

∂T s
η,σ = {(ζ, η, σ)

∣

∣

∣
(ζ, η, σ) ∈ Tη,σ, η(ζ · Dω) = −ε}

Finally, we define

T̂ =
⋃

n∈IN

T1,n ∪
⋃

n∈IN

T−1,n,

Since the delayed thermostat satisfies a suitable “semigroup property” (see Visintin [25]), the Dynamic

Programming Principle holds: for every (ζ, η, σ) ∈ T̂ , and for every t > 0 we have

V (ζ, η, σ) = sup
w∈W

(

∫ t

0

e−sg(z(s), η(s), σ(s),−kz(s), w(s))ds + e−tV (z(t), η(t), σ(t))

)

, (27)

where t = min(t, tζ,w).

Proposition 3.2. The value function V is continuous on T̂ , i.e. separately on every Tη,σ.

Proof. Note that, for ε sufficiently small, the points on the switching lines are totally controllable. Indeed,
for instance, the normal to the line ζ · Dω = ε is of course given by Dω, and, if ζ is on that line, we have

(−kζ − Dω) · Dω < 0 < (−kζ + Dω) · Dω (28)

where −kζ−Dω, and −kζ+Dω are the two possible dynamics. Moreover, for every initial point(ζ, η, σ) ∈ ∂T ns
η,σ,

all possible choice of ω make the trajectory strictly entering in intTη,ε. Hence, the trajectory cannot exit from
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Tη,σ through ∂T ns
η,σ, and hence the exit-cost ψ does not play a true role. The trajectory may exit from Tη,σ only

through the switching boundary ∂T s
η,σ. That is tζ,ω = +∞ for all ζ ∈ T and ω Hence, the only fact that may

cause discontinuity is the presence of the two switching lines ζ ·Dω = ε and ζ ·Dω = −ε (which act as switching
line only if η(t) = −1 and η(t) = 1 respectively). However, the total (inward/outward) controllability on that
lines and the fact that two possible subsequent switching time are delayed at least by an independent positive
time make V continuous anyway, as can be proved by standard techniques. ¤

For every (η, σ) ∈ {−1, 1} × IN, we consider the following Hamiltonian in IRn × IRn

Hη,σ(ζ, p) = min
ω∈W

{−(−kζ − Dω) · p − g(ζ, η, σ,−kζ, ω)}

For every (η, σ) ∈ {−1, 1}×IN, we consider the following Hamilton-Jacobi-Bellman problem in Tη,σ with (partial)
boundary condition, which, for a generic solution (ζ, η, σ) 7→ v(ζ, η, σ)), (which of course depends only on ζ,
since η and σ are fixed in Tη,σ) is written as

{

v(ζ, η, σ) + Hη,σ(ζ,∇ζv(ζ, η, σ)) = 0 in intTη,σ,
v(ζ, η, σ) = ψ(ζ, η, σ) on ∂T ns

η,σ

(29)

where ∇ζ means the gradient with respect to ζ only. Note that the boundary condition is ”partial” since it is
imposed only on the nonswitching boundary ∂T ns

η,σ. We call (29) HJBη,σ.

Proposition 3.3. Standing all the hypotheses already assumed, the value function V of our maximization
problem is the unique continuous function on T̂ satisfying both

V (ζ, η, σ) − V (ζ, η, σ + 1) = −sign(C2)
2ε

k
, (30)

V (ζ, η, σ) ≥ max{ψ(ζ, η, σ), V (ζ,−η, σ + 1)} ∀ (ζ, η, σ) ∈ ∂T s
η,σ ∩ ∂T ns

η,σ, (31)

and finally which solves the following problem







∀(η, σ) ∈ {−1, 1} × IN, V solves the following in the viscosity sense:
{

V solves HJBη,σ (29),
V (ζ, η, σ) = V (ζ,−η, σ + 1) on ∂T s

η,σ.
(32)

Remark 3.4. We refer to Proposition 6.1, regarding Tη,σ as Ω, ∂T s
η,σ as (∂Ω)1, and ∂T ns

η,σ as (∂Ω)1̂. By virtue
of (28), which in our case also implies that the analogous of (48) holds, for every (η, σ) fixed and for every
continuous function h defined on ∂T s

η,σ, satisfying

h(ζ, η, σ) ≥ ψ(ζ, η, σ) on ∂T s
η,σ ∩ ∂T ns

η,σ

there exists a unique continuous function v defined on Tη,σ which solves the problem

{

v solves HJBη,σ (29),
v(ζ, η, σ) = h(ζ, η, σ) on ∂T s

η,σ,

and it coincides with the value function of the maximization problem in Tη,σ with exit cost given by ψ on ∂T ns
η,σ

(which does not play any role by (47)) and by h on ∂T s
η,σ. However, this fact does not immediately implies the

uniqueness for the Hamilton-Jacobi problem as in the proposition above, since there the boundary conditions
(i.e. the exit-costs) are mutually exchanged on the switching boundaries, i.e. they are part of the solution.
However, such a uniqueness result for every (η, σ) fixed will be of course used in the proof.

Proof of Proposition 3.3. By Proposition 3.2, the value function V of our maximization problem is continuous
on T̂ . Moreover it also satisfies (30). Indeed, all the initial states (ζ, η, σ + n), with n ∈ IN, are exactly in the
same situation with respect to the future evolution and to the cost g, except for the value −sign(C2)(2ε)/k.

It solves (31) because, by definition of ψ, by the argumentation of Remark 3.1, and by the controllability
(46) we have that for all (ζ, η, σ) ∈ ∂T s

η,σ ∩ ∂T ns
η,σ



11

V (ζ, η, σ) ≥ V (ζ,−η, σ + 1)
V (ζ,−η, σ + 1) ≥ ψ(ζ,−η, σ + 1) = ψ(ζ, η, σ).

(33)

It also solves (32). Indeed, for every (ζ, η, σ) ∈ Tη,σ and for every control w ∈ W let us denote by tw ≤ +∞ the
corresponding exit-time from Tη,σ, (recall that the exit time of z(·) from T is always equal to +∞, tζ , w = +∞).
Let us fix (ζ, η, σ) ∈ Tη,σ, and suppose that, for every ε > 0 there exists a control wε which is ε-optimal and
such that twε is finite (if not, the case is easier). Then, for δ > 0 sufficiently small, we have (using the definition
of V , the inequality (33) and the Dynamic Programming Principle (27), also recall that, by definition of the
switching rule for the delayed thermostat, at the switching instant tw the switching is not yet happened)

∫ twε+δ

0

e−sg(z(s), η(s), σ(s),−kz(s), wε(s))ds

+e−twε

V (z(twε + δ),−η, σ + 1) + ε
≥ V (ζ, η, σ)

≥ sup
w∈W

(

∫ tw

0

e−sg(z(s), η, σ,−kz(s), w(s))ds + e−tw

V (z(tw), η, σ)

)

≥ sup
w∈W

(

∫ tw

0

e−sg(z(s), η, σ,−kz(s), w(s))ds + e−tw

V (z(tw),−η, σ + 1)

)

.

Taking the limit δ → 0+, using the continuity of V and the arbitrariness of ε > 0 we get, for every (ζ, η, σ) ∈ Tη,σ

V (ζ, η, σ) = sup
w∈W

(

∫ tw

0

e−sg(z(s), η, σ,−kz(s), w(s))ds + e−twV (z(tw),−η, σ + 1)

)

.

This means that on every Tη,σ, V is the value function of the maximization problem with exit cost from Tη,σ

given by ψ on ∂T ns
η,σ (which, however, does not play any role) and by V (·,−η, σ+1) on ∂T s

η,σ. Hence, by Remark
3.4, V satisfies the Hamilton-Jacobi problem (32).

Now let us prove the uniqueness. Let us consider two continuous functions f, h defined on T̂ which satisfy
the same inequalities (30), (31) saitsfied by V , and the Hamilton-Jacobi problem (32). We are going to prove
that f = h. For every (η, σ) fixed, f and h are, on Tη,σ (see Remark 3.4), the value function of two exit-time
maximization problems which differs from each other only for the exit-costs on the switching boundary ∂T s

η,σ.
Those two exit-costs are given respectively by f(ζ,−η, σ + 1) and h(ζ,−η, σ + 1). The same argumentation
shows that, on T−η,σ+1 f and h are the value functions of two exit-time maximization problems which differ
from each other only for the exit costs on the switching boundary ∂T s

−η,σ+1. Now, recalling that we need to
spend at least an independent time τ > 0 in order to pass from one switching boundary to the other, and
recalling (30) we get, for every fixed (η, σ)

sup
(ζ,η,σ)∈Tη,σ

|f(ζ, η, σ) − h(ζ, η, σ)|

≤ sup
(ζ,η,σ)∈∂T s

η,σ

|f(ζ,−η, σ + 1) − h(ζ,−η, σ + 1)|

≤ e−τ sup
(ζ,−η,σ+1)∈∂T s

−η,σ+1

|f(ζ, η, σ + 2) − h(ζ, η, σ + 2)|

≤ e−τ sup
(ζ,η,σ+2)∈Tη,σ+2

|f(ζ, η, σ + 2) − h(ζ, η, σ + 2)|

= e−τ sup
(ζ,η,σ)∈Tη,σ

|f(ζ, η, σ) − h(ζ, η, σ)|

from which the desired result since 0 < e−τ < 1. ¤
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3.2. The MinMax problem.

Here the problem is given by the (lower) value function

Ṽ (ζ, η, σ) = inf
γ∈Γ

sup
w∈W

∫ t̃

0

e−sg(z(s), η(s), σ(s), γ[w](s), w(s))ds

+e−t̃ψ(z(t̃), η(t̃), σ(t̃)), t̃ = tζ,γ,w

where Γ is the set of non-anticipative strategies for the first player (the minimizing one), and tζ,γ,w ≤ +∞ is
the first exit time of z(·) from the closed of the target T under the demand w and the strategy γ.

Also in this case, the Dynamic Programming Principle holds: for every (ζ, η, σ) ∈ T̂ , and for every t > 0 we
have

Ṽ (ζ, η, σ) = inf
γ∈Γ

sup
w∈W

(

∫ t

0

e−sg(z(s), η(s), σ(s), γ[w](s), w(s))ds + e−tṼ (z(t), η(t), σ(t))

)

, (34)

where t = min(t, tζ,γ,w).

Proposition 3.5. The value function Ṽ is continuous in T̂ .

Proof. Note that, by (5), the dynamical system ż = u−Dw is completely controllable in z by the first player,
whichever is the control ω used by the second player. That is, for every (ζ, η, σ) ∈ ∂T ns

η,σ ∪ ∂T s
η,σ, there exists

two controls µ1, µ2 ∈ U such that for every ω ∈ W the field µ1 − Dω, when applied in ζ, is strictly inward in
intTη,σ (i.e. (ζ + ν(µ1 − Dω), η, σ) ∈ intTη,σ for ν > 0 sufficiently small), and the field µ2 − Dω, when applied
in ζ, is strictly outward from Tη,σ (i.e. (ζ + ν(µ2 − Dω), η, σ) 6∈ Tη,σ for ν > 0).

Such a total controllability on the boundary and on the switching lines, together with the delay property of
the switching instants, make the value function Ṽ continuous, as can be proved by techniques similar to those
of the proof of Proposition 6.2. ¤

For every (η, σ), we have the Hamiltonian, defined in IRn × IRn,

H̃η,σ(ζ, p) = min
ω∈W

max
µ∈U

{−(µ − Dω) · p − g(ζ, η, σ, µ, ω)} .

For every (η, σ) ∈ {−1, 1} × IN, we consider the Hamilton-Jacobi-Isaacs problem in Tη σ with (partial)
boundary condition which, for a generic solution (ζ, η, σ) 7→ v(ζ, η, σ)), (which of course depends only on ζ,
since η and σ are fixed in Tη,σ) is written as

{

v(ζ, η, σ) + H̃η,σ(ζ,∇ζv(ζ, η, σ)) = 0 in Tη,σ,
v(ζ, η, σ) = ψ(ζ, η, σ) on ∂T ns

η,σ,
(35)

where ∇ζ means the gradient with respect to ζ only. Note that the boundary condition is ”partial” since it is

imposed only on the nonswitching boundary of Tη,σ. We call (35) ˜HJIη,σ.

Proposition 3.6. Standing all the hypotheses already assumed, the value function Ṽ of our minmax problem
is the unique continuous function on T̂ which satisfies (30) and the following inequality

Ṽ (ζ, η, σ) ≤ min{ψ(ζ, η, σ), Ṽ (ζ,−η, σ + 1)} ∀ (ζ, η, σ) ∈ ∂T s
η,σ ∩ ∂T ns

η,σ, (36)

and finally which solves the following problem















∀(η, σ) ∈ {−1, 1} × IN,

Ṽ solves the following in the viscosity sense:
{

Ṽ solves ˜HJIη,σ (35),

Ṽ (ζ, η, σ) = Ṽ (ζ,−η, σ + 1) on ∂T s
η,σ.

(37)
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Remark 3.7. First, let us note that, for every (η, σ) fixed, the boundary condition in ˜HJIη,σ (35) is now playing
a true role (despite to what happens for the maximization problem) since, on the nonswitching boundary ∂T ns

η,σ,
there are strategies for the first player that make the trajectory exit (by virtue of (5)). Moreover, (5) also implies
that the point on ∂T s

η,σ ∩ ∂T ns
η,σ are totally controllable by the first player, and also that there exist strategies

for the first player such the analogous of (55) holds. Hence, by Proposition 6.2, for every (η, σ) fixed, and for
continuous function h defined on the switching boundary ∂T s

η,σ, such that

h(ζ, η, σ) ≤ ψ(ζ, η, σ) on ∂T s
η,σ ∩ ∂T ns

η,σ

there exists a unique continuous function ṽ defined on Tη,σ such that

ṽ(ζ, η, σ) ≤ min{ψ(ζ, η, σ), h(ζ, η, σ)} on ∂T s
η,σ ∩ ∂T ns

η,σ

and such that solves the problem

{

ṽ solves HJIη,σ (35),
ṽ(ζ, η, σ) = h(ζ, η, σ) on ∂T s

η,σ,

Such a unique function ṽ coincides with the value function of the minmax problem in Tη,σ with exit cost given
by ψ on ∂T ns

η,σ and by h on ∂T s
η,σ. Final considerations as in Remark 3.4 then follow.

Proof of Proposition 3.6. Let us note that, by the controllability on the boundary, and by the definition of ψ,
also in this case Ṽ satisfies (36). Moreover, also in this case Ṽ satisfies (30). The fact that Ṽ satisfies (37), and
that it is the unique solution comes, via Remark 3.7, by the same argumentation as in the proof of Proposition
3.3. In particular, using the Dynamic Programming Principle (34), suitably arguing as for the maximization
problem, we have, for every (ζ, η, σ) ∈ ∂T s

η,σ ∩ ∂T ns
η,σ (here tγ,w is the first switching instant of the trajectory)

sup
w∈W

(

∫ tγε,w+δ

0

e−sg(z(s), η(s), σ(s), γε[w](s), w(s))ds

+e−tγε,w+δṼ (z(tγε,w + δ),−η, σ + 1)
)

− ε

≤ Ṽ (ζ, η, σ)

≤ inf
γ∈Γ

sup
w∈W

(

∫ tγ,w

0

e−sg(z(s), η(s), σ(s), γ[w](s), w(s))ds + e−tγ,w

Ṽ (z(tγ,w), η, σ)

)

≤ inf
γ∈Γ

sup
w∈W

(

∫ tγ,w

0

e−sg(z(s), η(s), σ(s), γ[w](s), w(s))ds + e−tγ,w

Ṽ (z(tγ,w),−η, σ + 1)

)

¤

4. Robustness

In this section, we proof the robustness of the linear saturated control in the sense of Definition 0.1. This is
done exhibiting a continuous function on T̂ which solves both problems (32) and (37).

Proposition 4.1. For suitable choices of the constant C1 and C2, the function

φ(ζ, η, σ) =
1

2

∥

∥

∥

∥

ζ + sign(C2)η
Dω

k

∥

∥

∥

∥

2

+ C1‖Dω‖2 + |C2| − sign(C2)
2ε

k
σ,

solves both problems (32) and (37).

Proof. It is evident that φ is continuous and that it satisfies (30), (31) and (36). Moreover, also the boundary
condition are satisfied (even in the classical sense: point by point). Now, let us note that, for every (η, σ) fixed,
φ is of class C1 (with respect to ζ) in intTη,σ, and that its gradient is
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∇ζφ(ζ, η, σ) = ζ + sign(C2)η
Dω

k
.

Hence, we have to find C1 > 0 and C2 ∈ IR such that, for every (η, σ), the following holds in the classical sense:

φ(ζ, η, σ) + Hη,σ(ζ,∇ζφ(ζ, η, σ)) = 0, in intTη,σ,

φ(ζ, η, σ) + H̃η,σ(ζ,∇ζφ(ζ, η, σ)) = 0. in intTη,σ.

By (21), by the compactness of T , U and W, the values of C1 > 0 and of |C2| are easily constructed (recall also
the definition of ϕ which appears in the objective function g = g5 (25)) For instance, we can take, without any
pretension of sharpness

|C2| ≥ 2 max
ζ∈T ,µ∈U,ω∈W,η∈{−1,1}

|f(ζ, η, µ, ω)|,

C1 ≥ max
ζ∈T ,µ∈U,ω∈vertW,ω 6=±ω,η∈{−1,1}

f(ζ, η, µ,±ω) − f(ζ, µ, ω)

‖Dω‖2 − ‖Dω‖2
,

where vertW is the set of the vertices of W and

f(ζ, η, ω, ω) = −(µ − Dω) · (ζ + η
Dω

k
) −

k + 1

2

∥

∥

∥

∥

ζ +
Dω

k

∥

∥

∥

∥

2

−
1

2k
‖µ − Dω‖2,

¤

Proposition 4.2. If C1 and C2 are the ones outlined in Proposition 4.1, then the linear saturated control is
robustly optimal in the sense of Definition 0.1.

Proof. Given Proposition 4.1 and the uniqueness results of the previous section, the conclusion immediately
follows, since we have V = Ṽ = φ. ¤

Remark 4.3. When ε goes to zero, the thermostat hε tends to the sign function. Moreover, the value function
V and Ṽ (which are equal by the way), on every Tη,σ, uniformly converge to the function

V0(ζ, η) =
1

2

∥

∥

∥

∥

ζ + sign(C2)η
Dω

k

∥

∥

∥

∥

2

+ C1‖Dω‖2 + |C2|,

which does not depend on σ anymore, and with η = sign(ζ · Dω). One may ask whether V0 is the value for
both the maximization problem and the minmax problem with the thermostat replaced by the sign function
(something as in the ”Second guess” paragraph). Unfortunately this is not true. A probably correct guess is
that the almost optimal trajectories for the problems with the thermostat hε (which, for the case C2 > 0, are
the ones described in Remark 3.1) are also almost optimal for the limit problems with the sign function. This
fact may still lead to robustness. Details are still under investigation.
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Figure 2. Example of a system with 5 nodes and 9 arcs.
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Figure 3. State trajectory for the system of Fig. 2. Chattering around the hyperplane H is
due to the discontinuous behavior of ω that jumps between ω̄ and −ω̄.

5. Numerical simulations

5.1. First guess for g

We consider g2 as in (22) and the system with 5 nodes and 9 arcs displayed in Fig. 2. We take matrix D as
follows

D =





























0 1 0 0 0
0 0 0.5 0 0

−0.1 0 0.5 0 0
−0.2 0 0 0 0

0 0 0 0 0
0 0 0.5 0 0

0.1 0 0 1 0
0.6 1 1 0 0
0.4 0 0 1 1





























, (38)

and ω̄ = [0 1 1 1 1]′.
Figure 3 displays the time plot of the state trajectory. We have 9 state variables (as many as the arcs of the

network). Chattering around the hyperplane H is due to the discontinuous behavior of ω that jumps between
ω̄ and −ω̄.
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Figure 4. State trajectory in the phase plane from different initial states (circles) for g3 as in
(23) and C2 < 0. In evidence the two equilibria ±Dω̄

k
= ±[10 10]′ (star).
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Figure 5. State trajectory in the phase plane from different initial states (circles). In evidence
the two equilibria ±Dω̄

k
= ±[10 10]′ (star). (Top left) g3 as in (23) and C2 > 0; (top right) g4

as in (24) and ǫ = 0.2; (bottom left) g4 as in (24) and ǫ = 0.5; (bottom right) g4 as in (24) and
ǫ = 1.

5.2. Second and third guesses for g

We consider g3 as in (23) and again the system with 1 node and 2 arcs displayed in Figure 1. The incidence
matrix is B = [1 1] and we take matrix D = [1/2 1/2]′.

In Fig. 4 and 5 (top left), we plot the state trajectory in the phase plane for the two cases C2 > 0 and C2 < 0
and from different initial states (circles) as

z(0) =

[

5
5

]

,

[

5
−5

]

,

[

−5
−5

]

,

[

−5
−5

]

,

[

7.5
2.5

]

,

[

2.5
−5

]

,

[

−2.5
−5

]

,

[

−5
2.5

]

,

[

2.5
7.5

]

. (39)

In evidence the two equilibria ±Dω̄
k

= ±[10 10]′ (star).
When C2 < 0 (see Fig. 4) we have ω = −ω̄ and the trajectories remain in the same half-space reaching the

nearest equilibrium (lying on the same half-space). No switching behavior of ω occurs as the state do not cross
the hyperplane ζ · Dω̄ = 0.
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Figure 6. State trajectory for the system of Fig. 2 for different values of ǫ: (top left) ǫ = 0
and g3 as in (23), (top right) ǫ = 0.8; (bottom left) ǫ = 2; (bottom right) ǫ = 5. Chattering
around the hyperplane H increases with ǫ.

Differently, when C2 > 0 (see Fig. 5 (top left)) we have ω = ω̄ and the trajectories try to leave one half-space
to reach the equilibrium of the other half-space. The trajectory do not reach the equilibrium because of the
switching behavior of ω across the hyperplane ζ · Dω̄ = 0.

Figure 5 also displays the state trajectories when g4 is as in (24) and demand performs according to the
delayed thermostat behavior. We considered different values of ǫ: (top right) ǫ = 0.2; (bottom left) ǫ = 0.5;
(bottom right) ǫ = 1.

Finally, we carried out simulations for the system with 5 nodes and 9 arcs displayed in Fig. 2 when g4 is as
in (24) and demand performs according to the delayed thermostat behavior. Again, we have 9 state variables
(as many as the arcs of the network). Fig. 6 displays the time plot of the state trajectory for different values of
ǫ: (top left) ǫ = 0 and g3 as in (23), (top right) ǫ = 0.8; (bottom left) ǫ = 2; (bottom right) ǫ = 5. Chattering
around the hyperplane H is due to the discontinuous behavior of ω that jumps between ω̄ and −ω̄. Amplitude
of chattering increases with ǫ.

6. Appendix

6.1. Some facts on Hamilton-Jacobi, viscosity solutions and control problems

For the general theory and results concerning viscosity solutions for Hamilton-Jacobi equations see Bardi-
Capuzzo Dolcetta [4]. Here, we state and prove some relatively new results exposed in a manner which is
suitable for our purposes.

6.1.1. Viscosity solutions with boundary conditions in the viscosity sense

Let us give

Ω ⊂ IRn open, bounded, satisfying a uniform cone property (see [4] eq: IV (5.21)),
F : IRn × IRn → IR a continuous function, ξ : ∂Ω → IR a function.

(40)

We say that a continuous function v : Ω → IR is a viscosity solution of the boundary value problem, with
boundary condition in the viscosity sense,
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{

v(x) + F (x,∇v(x)) = 0 in Ω,
v = ξ on ∂Ω,

if v is a viscosity solution of the Hamilton-Jacobi equation in Ω (i.e. the first line) and, for every x ∈ ∂Ω and
for every continuously differentiable function ϕ : Ω → IR we have

v − ϕ has a local maximum in x with respect to Ω =⇒ min
(

v(x) − ξ∗(x), v(x) + F (x,∇ϕ(x))
)

≤ 0;

v − ϕ has a local minimum in x with respect to Ω =⇒ max
(

v(x) − ξ∗(x), v(x) + F (x,∇ϕ(x))
)

≥ 0,

where ξ∗ and ξ∗ are respectively the lower semicontinuous envelope and the upper semicontinuous envelope:

ξ∗(x) = lim inf
y→x,y∈∂Ω

ξ(y), ξ∗(x) = lim sup
y→x,y∈∂Ω

ξ(y), ∀x ∈ ∂Ω.

6.1.2. Optimal control problems with exit-time

Here, to not introduce much more notation, W and W are the same as in (4), (7). Moreover Ω and ξ are as
in (40), but we further assume that there exist m C2-functions θi, i = 1, . . . , m, such that

Ω =
{

x ∈ IRn
∣

∣

∣
θi(x) > 0 ∀i = 1, . . . , m

}

. (41)

Moreover, we use the following notation

(∂Ω)1 =
{

x ∈ IRn
∣

∣

∣
θ1(x) = 0

}

⊆ ∂Ω, (∂Ω)1̂ =
{

x ∈ IRn
∣

∣

∣
θi(x) = 0 i = 2, . . . ,m

}

⊆ ∂Ω, (42)

and suppose that ξ : ∂Ω → IR is continuous on (∂Ω)1 and on (∂Ω)1̂ separately and it is globally upper
semicontinuous on ∂Ω, i.e. for all x ∈ (∂Ω)1̂ ∩ (∂Ω)1

lim
y→x,y∈(∂Ω)

1̂

ξ(y) = ξ∗(x) ≤ ξ∗(x) = lim
y→x,y∈(∂Ω)

1

ξ(y). (43)

Finally

f : IRn ×W → IRn, ℓ : IRn ×W → IR,

are two bounded Lipschitz continuous functions. We now consider the controlled dynamical system in IRn

{

y′(t) = f(y(t), w(t)) t > 0,
y(0) = x ∈ Ω,

(44)

and the payoff (here and in the sequel, by continuity, ξ∗(x) = ξ∗(x) = ξ(x) if x 6∈ (∂Ω)1 ∩ (∂Ω)1̂)

J(x, w) =

∫ tx,w

0

e−tℓ(y(t), w(t))dt + e−tx,wξ∗(y(tx,w)),

where y(·) is the unique trajectory of (44) with w ∈ W , and tx,w is the first exit time of the trajectory from Ω:

tx,w = inf
{

t ≥ 0
∣

∣

∣
y(t) 6∈ Ω

}

, (45)

with the convention inf ∅ = +∞ (and e−∞ξ = 0).

Proposition 6.1. Standing all the above hypotheses, if on (∂Ω)1 the dynamics is totally controllable i.e.:

∀x ∈ (∂Ω)1 , ∃ω1, ω2 ∈ W such that
f(x, ω1) is strictly entering in Ω at x,
f(x, ω2) is strictly entering in the complementary of Ω at x,

(46)
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on (∂Ω)1̂ we have only strictly inward admissible fields, i.e.:

f(x, ω) is strictly entering in Ω at x ∀x ∈ (∂Ω)1̂ , ∀ω ∈ W, (47)

and moreover if for every x ∈ (∂Ω)1̂ there exists a control w ∈ W such that the corresponding trajectory starting
from x reaches (∂Ω)1 in a lap of time t satisfying

t ≤ Cdist(x, (∂Ω)1), (48)

with C > 0 independent on x, then the value function of the maximization problem

v(x) = sup
w∈W

J(x,w)

is continuous in Ω, and it is the unique viscosity solution of the Hamilton-Jacobi-Bellman boundary value
problem (with boundary condition in the viscosity sense)

{

v(x) + min
ω∈W

{−f(x, ω) · ∇v(x) − ℓ(x, ω)} = 0 in Ω

v = ξ∗ on ∂Ω,
(49)

satisfying the condition

v(x) ≥ ξ∗(x) ∀x ∈ (∂Ω)1 ∩ (∂Ω)1̂ (50)

Proof. The proof suitably adapts standard techniques to our situation. We do not report it. However, we
are going to report a sketched proof for the analogous case of differential games. ¤

6.1.3. Differential games with exit-time

Here, again, W,W are as in (4), (7). Moreover U and U are as in (3), (7), Γ is as in (8), Ω and ξ are as in
(40), satisfying also (41), (42), and moreover ξ : ∂Ω → IR is continuous on (∂Ω)1 and on (∂Ω)1̂ separately and
it is globally lower semicontinuous on ∂Ω, i.e. for all x ∈ (∂Ω)1̂ ∩ (∂Ω)1

lim
y→x,y∈(∂Ω)

1

ξ(y) = ξ∗(x) ≤ ξ∗(x) = lim
y→x,y∈(∂Ω)

1̂

ξ(y). (51)

Note the difference between (51) and (43): the role of (∂Ω)1 and (∂Ω)1̂ are mutually exchanged. Finally

f̃ : IRn × U ×W → IRn, ℓ̃ : IRn × U ×W → IR,

are two Lipschitz continuous functions. We now consider the controlled dynamical system in IRn

{

y′(t) = f̃(y(t), γ[w](t), w(t)) t > 0,
y(0) = x ∈ Ω,

(52)

and the payoff

J̃∗(x, γ, w) =

∫ tx,γ,w

0

e−tℓ̃(y(t), γ[w](t), w(t))dt + e−tx,γ,wξ∗(y(tx,γ,w)), (53)

where y(·) is the unique trajectory of (52) with γ ∈ Γ w ∈ W , and tx,γ,w is the first exit time of the trajectory

from Ω (similarly defined as in (45)).

Proposition 6.2. Standing the above hypotheses, if the dynamics is totally controllable by the first player (the
minimizing one) on the points of the boundary i.e.

∀x ∈ ∂Ω, ∃µ1, µ2 ∈ U such that, ∀ω ∈ W,

f̃(x, µ1, ω) is strictly entering in Ω at x,

f̃(x, µ2, ω) is strictly entering in the complementary of Ω at x,

(54)
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moreover if for every x ∈ (∂Ω)1̂ there exists a strategy γ ∈ Γ such that, for every w ∈ W , the corresponding
trajectory starting from x reaches (∂Ω)1 in a lap of time t satisfying

t ≤ Cdist(x, (∂Ω)1), (55)

with C > 0 independent on w ∈ W , then the (lower) value function of the minmax problem

ṽ(x) = inf
γ∈Γ

sup
w∈W

J̃∗(x, γ, w)

is continuous in Ω, and it is the unique continuous viscosity solution of the Hamilton-Jacobi-Isaacs boundary
value problem (with boundary condition in the viscosity sense)

{

ṽ(x) + min
ω∈W

max
µ∈U

{

−f̃(x, µ, ω) · ∇ṽ(x) − ℓ̃(x, , µ, ω)
}

= 0 in Ω

ṽ = ξ∗ on ∂Ω,
(56)

satisfying the condition

ṽ(x) ≤ ξ∗(x) ∀x ∈ (∂Ω)1 ∩ (∂Ω)1̂ (57)

Proof. ṽ is continuous. The continuity of ṽ comes from (54), (55), from the fact that ξ is separately continuous
on (∂Ω)1 and (∂Ω)1̂, and also from the fact that ξ∗ is continuous on (∂Ω)1 ∩ (∂Ω)1̂ (see (51)). In particular
note that (55) guarantees the (controlled in time) reachability of (∂Ω)1, where the values of the exit cost ξ are
(probably) lower than the values on (∂Ω)1̂, at least for points near to (∂Ω)1 ∩ (∂Ω)1̂. Indeed, adapting a result
due to Soner [24] (see also Bagagiolo-Bardi [2] for a generalization to a polytopic case as (41)), there exist a

time τ > 0 and a constant α > 0 (both depending only on Ω and on f̃ via (54)) such that, for every x ∈ Ω and
for every u ∈ U , there exists a control u ∈ U such that

yx(t; u,w) ∈ Ω, ∀0 ≤ t ≤ τ, ∀w ∈ W,

|Jτ (x, u, w) − Jτ (x, u, w)| ≤ α sup
0≤t≤τ

dist
(

yx(t;u, w), Ω
)

, ∀w ∈ W, (58)

where yx(·; u,w) and yx(·; u,w) are respectively the trajectories of (52) with u and u as first control (i.e.
γ[w] ≡ u, γ[w] ≡ u, respectively), and, in general, for t ≥ 0, Jt is the corresponding cost given only by the
integral part of (53) up to the time t, independently whether the trajectory stays inside Ω or not. From (58),
and standard estimates on the trajectories, we get the following

∀T > 0, ∃CT > 0 such that ∀x, y,∈ Ω, ∀ (u,w) ∈ U × W
with yy(t; u,w) ∈ Ω ∀ 0 ≤ t ≤ T, ∃ u ∈ U such that
‖yx(t; u,w) − yx(t; u,w)‖ ≤ CT ‖x − y‖ ∀t ∈ [0, T ],
‖yx(t; u,w) − yy(t; u,w)‖ ≤ CT ‖x − y‖ ∀t ∈ [0, T ],
∣

∣

∣
JT (x, u, w) − JT (y, u, w)

∣

∣

∣
≤ CT ‖x − y‖.

(59)

Now, from (59), from the reachability condition (55), and again from the controllability condition (54), and
from standard inequalities on the trajectories, we then get the following

∀ δ > 0 ∃ Cδ > 0 such that ∀ x, y ∈ Ω, ∀γ ∈ Γ, ∃ γ ∈ Γ such that ∀ w ∈ W
∣

∣

∣
J∗(x, γ, w) − J∗(y, γ, w)

∣

∣

∣
≤ Cδ‖x − y‖ + δ.

(60)

To obtain (60), observe that all the estimates in (59) are independent on w ∈ W , and take T > 0 such that the
possible remaining part of the cost J∗ in the time interval (T, +∞) is certainly less than δ/2 for every initial
point x and couple of controls (u,w). Then construct the strategy γ defining γ[w] by observing the trajectory
yy(·; γ[w], w) and making yx(·; γ[w], w) have suitable behavior and cost: use (54) to exit from Ω if necessary;

use (59) to remain inside Ω if necessary; use (55) to reach (∂Ω)1 as final exit point if necessary. From (60), we
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Figure 7. Delayed thermostat with thresholds ±ε.

easily get the continuity of ṽ. It is sufficient to argue by absurd and suppose that there exist a point x ∈ Ω, a
sequence {yn}n ⊂ Ω converging to x, and ε > 0 such that |ṽ(x) − ṽ(yn)| ≥ ε for all n ∈ IN.

ṽ solves (56), (57). This fact is checked by standard techniques. In particular, observe that by the control-
lability hypothesis (54), ṽ certainly satisfies (57).

ṽ is the unique solution of (56). We argue as in Bardi-Capuzzo Dolcetta [4] (Chapter V, Theorem 4.17).
The only difference here is that the boundary datum is discontinuous. However, the only possible discontinuous
points are in (∂Ω)1 ∩ (∂Ω)1̂. But there, condition (57) guarantees the applicability of the argument. ¤.

Remark 6.3. Differential games with exit time and/or state-constraints present, in general, the problem of
devolving the responsability of exit and/or respecting the state-constraints to both players (see Evans-Ishii
[17], Koike [19], Bardi-Koike-Soravia [5], Cardialaguet-Quincampoix-SaintPierre [11]). In the present case, the
controllability condition (54) and the fact that we are only concerned with the lower value (first minimizing, then
maximizing), make all the responsability and the faculty of exit and/or respecting the state-constraint be up
to the first player only (the minimzing one). Uniqueness results for first order Hamilton-Jacobi equations with
discontinuous boundary datum and/or discontinuous Hamiltonians are in general hard to get, see for instance
Soravia [23] and Garavello-Soravia [18]. In the present paper, conditions (50), (57), and the approximation of
the discontinuity by the delayed relay are of course useful. However, our goal is not to give a general result of
uniqueness, but instead to have suitable uniqueness results in order to recognize given functions as the values
of the optimal control and of the differential game. This is what we just do in Section 4.

6.2. On the delayed thermostat

For more details on this subject we refer to Visintin [25]. Let us consider a continuous input p : [0,+∞[→ IR,
a discontinuous output q : [0,+∞[→ {−1, 1}, and two different thresholds for the values of p, let us say −ε and
ε, with ε > 0, for which q respectively switches “down” from +1 to −1, and “up” from −1 to +1. We define

O := (] −∞, +ε] × {−1}) ∪ ([−ε, +∞[×{1}) ⊂ IR2 =: O−1 ∪ O1,

and we can think to the delayed switching as the evolution of the couple (p(·), q(·)) on the set O with a suitable
switching rule for switching from one branch to the other. More in details, we say that q is the output of the
delayed switching rule (or “delayed thermostat”, or “delayed relay”) with thresholds −ε, ε, input u, and initial
state q0 ∈ {−1, 1}, and we write q(t) = hε[p, q0](t) ∀t ≥ 0, if (here δ is any positive number)

i) (p(t), q(t)) ∈ O ∀t ≥ 0, q(0) = q0, (p(0), q0) ∈ O
ii) q(t) = 1, p(·) ≥ −ε in [t, t + δ] =⇒ q(·) is constant in [t, t + δ],
iii) q(t) = −1, p(·) ≤ ε in [t, t + δ] =⇒ q(·) is constant in [t, t + δ].

Such conditions say that q switches if and only if the couple (p, q) is on one of the two switching points (−ε, 1)
and (ε,−1), and the input p crosses the threshold ±ε (decreasing if the threshold is −ε, increasing if it is ε).
According to this rule, a switching instant t ≥ 0 is a time such that q(t) = q ∈ {1,−1}, and q ≡ −q immediately
after t (for instance in ]t, t + δ]). Referring to exit-time problems, we can say that, if at a time t we have, for
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instance, (p(t), q(t)) = (p(t), 1) then certainly p(t) ≥ −ε and a possible subsequent switching time τ ∈ [t,+∞[
is exactly the first exit time of the trajectory p(·) from the closed set [−ε, +∞[, which is similarly defined as
in (45). In particular, for the same example, the fact that p(t) = −ε for some t ≥ t, does not in implies any
swithcing if the threshold is not crossed (i.e. if p 6< −ε immediately after t). After any switching instant t,
q cannot immediately switch back, because p has to reach the other threshold. This implies the existence of
exactly one output, even for fast oscillating inputs, i.e. no Zeno phenomenon.

References

[1] F. Bagagiolo, Minimum time for a hybrid system with thermostatic switchings, in Hybrid Systems: Computation and Control,
A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.), Lecture Notes in Computer Sciences 4416, Springer-Verlag, Berlin (2007)
32-45.

[2] F. Bagagiolo, M. Bardi, Singular perturbation of a finite horizon problem with state-space constraints. SIAM J. Control Optim.
36 (1998) 2040-2060.

[3] F. Bagagiolo, D. Bauso, Robust optimality of linear saturated control in uncertain linear network flows, Decision and Control,
2008. CDC 2008. 47th IEEE Conference on 9-11 Dec. 2008 Page(s):3676 - 3681.

[4] M. Bardi, I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser,
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