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Constrained Consensus for Bargaining in Dynamic Coalitional TU

Games

Angelia Nedić and Dario Bauso

Abstract— We consider a sequence of transferable utility
(TU) games where, at each time, the characteristic function
is a random vector with realizations restricted to some set
of values. We assume that the players in the game interact
only with their neighbors, where the neighbors may vary
over time. The game differs from other ones in the literature
on dynamic, stochastic or interval valued TU games as it
combines dynamics of the game with an allocation protocol
for the players that dynamically interact with each other. The
protocol is an iterative and decentralized algorithm that offers
a paradigmatic mathematical description of negotiation and
bargaining processes. The main contributions of the paper
are the definition of a robust (coalitional) TU game and the
development of a distributed bargaining protocol. We prove the
convergence with probability 1 of the bargaining protocol to a
random allocation that lies in the core of the robust game under
some mild conditions on the players’ communication graphs.

I. INTRODUCTION

Coalitional games with transferable utilities (TU) have

been introduced by von Neumann and Morgenstern [24].

They have been used to model cooperation in supply chain or

inventory management applications [6], [10], network flow

applications [2] and in communication networks [20].

In this paper, we consider a sequence of coalitional TU

games for a finite set of players. The game is played

repeatedly over time, thus generating a sequence of time

varying characteristic functions. We refer to such a repeated

game as dynamic coalitional TU game. In this setting, a

player can observe only the allocations of his neighbors,

which may change in time. The model used in the current

paper is motivated by applications in the context of network

flow problems and multi-inventory control as illustrated in

[3], [4].

We consider bargaining protocols assuming that each

player i obeys rationality and efficiency by deciding on

an allocation vector which satisfies the value constraints of

all the coalitions that include player i. This set is termed

bounding set of player i. At every iteration, a player i

observes the allocations of some of his neighbors. This is

modeled using a directed graph with the set of players as the

vertex set and a time-varying edge set composed of directed

links (i, j) whenever player i observes the allocation vector

proposed by player j at time t. We refer to this directed
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graph as players’ neighbor-graph. Given a player’s neighbor-

graph, each player i negotiates allocations by adjusting the

allocations he received from his neighbors through weight

assignments. As the balanced allocation may violate his

rationality constraints (it lies outside player i’s bounding set),

the player selects a new allocation by projecting the balanced

allocation on his bounding set. We propose such bargaining

protocols for solving the robust TU game. We use some mild

assumptions on the connectivity of the players’ neighbor-

graph and the weights that the players use when balancing

their own allocations with the neighbors’ allocations. Assum-

ing that the core of the robust game is nonempty, we show

that our bargaining protocol converges with probability 1 to

a common (random) allocation in the core.

The work in this paper deviate from the stochastic frame-

work provided in [9], [21], [22] in at least three aspects: i)

the existence of a neighbor-graph, ii) the presence of multiple

iterations in the bargaining process, iii) and the consideration

of the robust game. Also, a new element with respect to

previous work [8], [11], is that the values of the coalitions

are realized exogenously and no relation is assumed between

consecutive samples.

Dynamic robust TU games have been considered in [3]

and [4] but for a continuous time setting in the former work

and for a centralized allocation process in the latter one.

Convergence of allocation processes is a main topic also

in [5], [13]. The difference with our approach is that in [5],

[13], rewards are allocated by a game designer repeatedly in

a centralized manner. Convergence of bargaining processes

has also been explored under dynamic coalition formation [1]

for a different dynamic model, where players decide both on

which coalition to address and what payoff to announce.

The work in this paper is also related to the literature

on agreement among multiple agents, where an underlying

communication graph for the agents and balancing weights

have been used with some variations [23], [15] to reach an

agreement on common decision variable, as well as in [16],

[17], [19], [18] for distributed multi-agent optimization.

This paper is organized as follows. In Section II, we

introduce the dynamic TU game, the robust game and

the bargaining protocol for this game. We then give some

preliminary results. In Section III, we prove the convergence

of the bargaining protocol to a point in the core of the robust

game with probability 1. In Section IV, we report some

numerical simulations to illustrate our theoretical study, and

we conclude in Section V.

Notation. We view vectors as columns. For a vector x, we

use xi or [x]i to denote its ith coordinate component. We



also use xi to denote the vector associated to player i. For

two vectors x and y, we use x < y (x ≤ y) to denote xi <

yi (xi ≤ yi) for all coordinate indices i. We let x′ denote

the transpose of a vector x, and ‖x‖ denote its Euclidean

norm. An n × n matrix A is row-stochastic if the matrix

has nonnegative entries aij and
∑n

j=1 aij = 1 for all i =
1, . . . , n. For a matrix A, we use aij or [A]ij to denote its

ijth entry. A matrix A is doubly stochastic if both A and

its transpose A′ are row-stochastic. Given two sets U and S,

we write U ⊂ S to denote that U is a proper subset of S.

We use |S| for the cardinality of a given finite set S.

We write PX [x] to denote the projection of a vector x on

a set X , and we write dist(x, X) for the distance from x

to X , i.e., PX [x] = arg miny∈X ‖x − y‖ and dist(x, X) =
‖x−PX [x]‖, respectively. Given a set X and a scalar λ ∈ R,

the set λX is defined by λX , {λx | x ∈ X}. Given two

sets X, Y ⊆ R
n, the set sum X +Y is defined by X +Y ,

{x + y | x ∈ X, y ∈ Y }. Given a set N of players and

a function η : S 7→ R defined for each nonempty coalition

S ⊆ N , we write < N, η > to denote the transferable utility

(TU) game with the players’ set N and the characteristic

function η. We let ηS be the value η(S) of the characteristic

function η associated with a nonempty coalition S ⊆ N .

Given a TU game < N, η >, we use C(η) to denote the

core of the game,

C(η) =

{

x
∣

∣

∣

∑

i∈N

xi = ηN ,
∑

i∈S

xi ≥ ηS for all S ⊂ N

}

,

where S is always considered to be non-empty.

II. DYNAMIC TU GAME AND ROBUST GAME

In this section, we formulate a robust dynamic TU game

and introduce a bargaining protocol that the players imple-

ment to reach an agreement on their allocations. We also

provide some preliminary results for the protocol.

A. Problem Formulation and Bargaining Process

Consider a set of players N = {1, . . . , n} and the set of

all possible (nonempty) coalitions S ⊆ N among them. Let

m = 2n−1 be the number of possible coalitions. We assume

that time is discrete and use t = 0, 1, 2, . . . to index the time.

We consider a dynamic TU game, denoted < N, {v(t)} >,

where {v(t)} is a sequence of characteristic functions. In this

game, the players are involved in a sequence of instantaneous

TU games whereby, at each time t, the instantaneous TU

game is < N, v(t) > with v(t) ∈ R
m for all t ≥ 0.

Further, we let vS(t) denote the value assigned to a nonempty

coalition S ⊆ N in the instantaneous game < N, v(t) >.

Throughout the rest of the paper, we assume that S 6= ∅,

i.e., we do not consider empty coalitions.

In what follows, we deal with dynamic TU games where

each characteristic function v(t) is a random vector with

realizations restricted to some set of values. Specifically, we

assume that the grand coalition value vN (t) is deterministic

for every t ≥ 0, while the values vS(t) of the other coalitions

S ⊂ N have a common upper bound. These conditions are

formally stated in the following assumption.

Assumption 1: There exists vmax ∈ R
m such that for all

t ≥ 0,

vN (t) = vmax
N ,

vS(t) ≤ vmax
S for all coalitions S ⊂ N.

We refer to the game < N, vmax > as robust game. We

assume that the robust game has a nonempty core.

Assumption 2: The core C(vmax) is not empty.

An immediate consequence of Assumptions 1 and 2 is

that the core C(v(t)) of the instantaneous game is always

not empty. This follows from the fact that C(vmax) ⊆ C(η)
for any η satisfying ηN = vmax

N and ηS ≤ vmax
S for S ⊂ N ,

and the assumption that the core C(vmax) is not empty.

We assume that each player i is rational and efficient. This

translates to each player i ∈ N choosing his allocation vector

within the set of allocations satisfying value constraints of

all coalitions that include player i. This set is referred to as

the bounding set of player i. For a generic game < N, η >,

it is given by

Xi(η) =







x ∈ R
n |
∑

j∈N

xj = ηN ,
∑

j∈S

xj ≥ ηS

for all S ⊂ N s.t. i ∈ S} .

Note that each Xi(η) is polyhedral.

In what follows, we find it convenient to represent the

bounding sets and the core in alternative equivalent forms.

For each coalition S ⊆ N , let eS ∈ R
n be the incidence

vector for S, i.e., the vector with the coordinates given by

[eS ]i =

{

1 if i ∈ S,

0 else.

Then, the bounding sets and the core are given by

Xi(η) = {x ∈ R
n | e′Nx = ηN , e′Sx ≥ ηS (1)

for all S ⊂ N with i ∈ S},

C(η) = {x ∈ R
n | e′Nx = ηN , e′Sx ≥ ηS (2)

for all S ⊂ N}.

Observe that the core C(η) of the game < N, η > is the

intersection of the bounding sets Xi(η) of the players, i.e.,

C(η) = ∩n
i=1Xi(η). (3)

We now discuss the bargaining protocol where repeatedly

over time each player i ∈ N proposes an allocation vector.

The allocation vector proposed by player i at time t is

denoted by xi(t) ∈ R
n, where the jth component xi

j(t) rep-

resents the amount that player i would allocate to player j. To

simplify the notation in the dynamic game < N, {v(t)} >,

we let Xi(t) denote the bounding set of player i for the

instantaneous game < N, v(t) >, i.e., for all i ∈ N and

t ≥ 0,

Xi(t) = {x ∈ R
n | e′Nx = vN (t), e′Sx ≥ vS(t) (4)

for all S ⊂ N with i ∈ S} .



Now, we focus on players interactions in time. We assume

that each player may observe the allocations of a subset of the

other players at any time, which are termed as the neighbors

of the player. The players and their neighbors at time t can

be represented by a directed graph G(t) = (N, E(t)), with

the vertex set N and the set E(t) of directed links. A link

(i, j) ∈ E(t) exists if player j is a neighbor of player i

at time t. We always assume that (i, i) ∈ E(t) for all t,

which is natural since every player i can always access its

own allocation vector. We refer to graph G(t) as a neighbor-

graph at time t. In the graph G(t), a player j is a neighbor

of player i (i.e., (i, j) ∈ E(t)) only if player i can observe

the allocation vector of player j at time t.

Given the players’ neighbor-graph G(t), each player i

negotiates allocations by averaging his allocation and his

neighbors’ allocations. More precisely, at time t, the bargain-

ing process for each player i involves the player’s individual

bounding set Xi(t), its own allocation xi(t) and the observed

allocations xj(t) of some of his neighbors j. Formally, we let

Ni(t) be the set of neighbors of player i at time t (including

himself), i.e.,

Ni(t) = {j ∈ N | (i, j) ∈ E(t)}.

With this notation, the bargaining process is given by:

xi(t+1) = PXi(t)





∑

j∈Ni(t)

aij(t)x
j(t)



 ∀i ∈ N, t ≥ 0 (5)

where aij(t) ≥ 0 is a scalar weight that player i assigns

to the proposed allocation xj(t) of player j and PXi(t)[·]
is the projection onto the player i bounding set Xi(t). The

initial allocations xi(0), i ∈ N, are selected randomly and

independently of {v(t)}.

The bargaining in (5) can be written more compactly by

introducing zero weights for players j whose allocations are

not available to player i at time t. Specifically by defining

aij(t) = 0 for all j 6∈ Ni(t) and t ≥ 0, we have the following

equivalent representation of the bargaining protocol:

xi(t + 1) = PXi(t)





n
∑

j=1

aij(t)x
j(t)



 ∀i ∈ N, t ≥ 0. (6)

Here, aij(t) = 0 for j 6∈ Ni(t) and aij(t) ≥ 0 for j ∈ Ni(t).
We now discuss the specific assumptions on the weights

aij(t) and the players’ neighbor-graph that we will rely on.

We let A(t) be the weight matrix with entries aij(t). We

will use the following assumption for the weight matrices.

Assumption 3: Each matrix A(t) is doubly stochastic with

positive diagonal, and there exists a scalar α > 0 such that

aij(t) ≥ α whenever aij(t) > 0.

In view of the construction of matrices A(t), we see that

aij(t) ≥ α for j = i and perhaps for some players j that

are neighbors of player i. The requirement that the positive

weights are uniformly bounded away from zero is imposed

to ensure that the information from each player diffuses

to his neighbors in the network persistently in time. The

requirement on the doubly stochasticity of the weights is used

to ensure that in a long run each player has equal influence

on the limiting allocation vector.

It is natural to expect that the connectivity of the players’

neighbor-graphs G(t) = (N, E(t)) impacts the bargaining

process. At any time, the instantaneous graph G(t) need

not be connected. However, for the proper behavior of the

bargaining process, the union of the graphs G(t) over a period

of time is assumed to be connected.

Assumption 4: There is an integer Q ≥ 1 such that the

graph
(

N,
⋃(t+1)Q−1

τ=tQ E(τ)
)

is strongly connected for every

t ≥ 0.

Assumptions 3 and 4 together guarantee that the players

communicate sufficiently often to ensure that the information

of each player is persistently diffused over the network in

time to reach every other player. Under these assumptions,

we will study the dynamic bargaining process in (6). We want

to provide conditions under which the process converges to

an allocation in the core of the robust game. Before this, we

provide some preliminary results in the following section.

B. Preliminary Results

In this section we derive some preliminary results pertinent

to the core of the robust game. We also provide some

error bounds for polyhedral sets applicable to the players’

bounding sets Xi(t). We later use these results to establish

the convergence of the bargaining process in (6).

In our analysis we often use the following relation that

holds for the projection operation on a closed convex set

X ⊆ R
n: for any w ∈ R

n and any x ∈ X ,

‖PX [w] − x‖2 ≤ ‖w − x‖2 − ‖PX [w] − w‖2. (7)

This relation is known as a strictly non-expansive projection

property (see [7], volume II, 12.1.13 Lemma, page 1120).

We next relate the distance dist(x, C(η)) from a point x

to the core C(η) with the distances dist(x, Xi(η)) from x to

the bounding sets Xi(η). To do so, we use the polyhedrality

of the bounding sets Xi(η) and the core C(η), as given in (1)

and (2) respectively, and a special relation for polyhedral sets.

This special relation states that for a nonempty polyhedral

set P = {x ∈ R
n | a′

ℓx ≤ bℓ, ℓ = 1, . . . , r}, there exists a

scalar c > 0 such that

dist(x,P) ≤ c

r
∑

ℓ=1

dist(x, Hℓ) for all x ∈ R
n, (8)

where Hℓ = {x ∈ R
n | a′

ℓx ≤ bℓ} and the scalar c depends

only on the vectors aℓ, ℓ = 1, . . . , r. Relation (8) is known as

Hoffman bound, as it has been established by Hoffman [12]

Aside from the Hoffman bound, in establishing the forth-

coming Lemma 1, we also use the fact that the square

distance from a point x to a closed convex set X contained

in an affine set H is given by

dist2(x, X) = ‖x − PH [x]‖2 + dist2(PH [x], X). (9)

Now, we are ready to present the result relating the values

dist2(x, C(η)) and dist2(x, Xi(η)).



Lemma 1: Let < N, η > be a TU game with a nonempty

core C(η). Then, there is a constant µ > 0 such that

dist2(x, C(η)) ≤ µ

n
∑

i=1

dist2(x, Xi(η)) for all x ∈ R
n,

where µ depends on the collection of vectors {ẽS | S ⊂
N, S 6= ∅}, where each ẽS is the projection of eS on the

hyperplane H = {x ∈ R
n | e′Nx = ηN}.

Proof: Since the hyperplane H contains the core C(η)
(see (2)), by relation (9) we have for all x ∈ R

n,

dist2(x, C(η)) = ‖x − PH [x]‖2 + dist2(PH [x], C(η)). (10)

The point PH [x] and the core C(η) lie in the hyperplane H

(an n− 1-dimensional affine set). By applying the Hoffman

bound relative to the affine set H (cf. Eq. (8)), we obtain

dist(PH [x], C(η)) ≤ c
∑

S⊂N

dist(PH [x], H ∩ HS),

where HS = {x ∈ R
n | e′Sx ≥ ηS}, while the constant

c depends on the collection {ẽS , S ⊂ N} of projections of

vectors eS on the hyperplane H for S ⊂ N . Thus, it follows

dist2(PH [x], C(η)) ≤ c2

(

∑

S⊂N

dist(PH [x], H ∩ HS)

)2

≤ c2(m − 1)
∑

S⊂N

dist2(PH [x], H ∩ HS), (11)

where m is the number of nonempty subsets of N , and the

last inequality follows by (
∑ℓ

j=1 aj)
2 ≤ ℓ

∑ℓ

j=1 a2
j , which

holds for any set of scalars {aj , j = 1, . . . , ℓ} with ℓ ≥ 1.

From Eqs. (10) and (11), we obtain for all x ∈ R
n,

dist2(x, C(η)) ≤ ‖x − PH [x]‖2

+ c2(m − 1)
∑

S⊂N

dist2(PH [x], H ∩ HS)

≤ c1

∑

S⊂N

(

‖x − PH [x]‖2

+ dist2(PH [x], H ∩ HS)
)

,

where c1 = max{1, c2(m − 1)}. Since the set H is affine,

by Eq. (9) we have ‖x−PH [x]‖2 +dist2(PH [x], H∩HS) =
dist2(x, H ∩ HS), implying that for all x ∈ R

n,

dist2(x, C(η)) ≤ c1

∑

S⊂N

dist2(x, H ∩ HS).

From the preceding relation, it follows for all x ∈ R
n,

dist2(x, C(η)) ≤ c1

∑

S⊂N

|S|dist2(x, H ∩ HS), (12)

where |S| is the cardinality of coalition S. Note that
∑

S⊂N

|S|dist2(x, H ∩ HS)

=
∑

S⊂N

∑

i∈S

dist2(x, H ∩ HS)

=

n
∑

i=1





∑

{S⊂N |i∈S}

dist2(x, H ∩ HS)



 . (13)

We also note that Xi(η) ⊂ H ∩ HS for each S ⊂ N with

i ∈ S, which follows by the definition of HS and relation (1).

For any two closed convex sets X, Y ⊆ R
n such that X ⊂ Y ,

we have dist(x, Y ) ≤ dist(x, X) for any x ∈ R
n. Thus,

since Xi(η) ⊂ H ∩ HS for each S with i ∈ S, it follows

that for all x ∈ R
n,

dist(x, H ∩ HS) ≤ dist(x, Xi(η)). (14)

By combining Eqs. (12)–(14) we obtain for all x ∈ R
n,

dist2(x, C(η)) ≤ c1

n
∑

i=1





∑

{S⊂N |i∈S}

dist2(x, Xi(η))





= c1κ

n
∑

i=1

dist2(x, Xi(η)),

where κ is the number of coalitions S that contain player

i, which is the same number for every player (κ does not

depend on i). The desired relation follows by letting µ = c1κ,

and by recalling that c1 = max{1, c2(m − 1)} and that c

depends on the projections ẽS of vectors eS , S ⊂ N , on the

hyperplane H .

Note that the scalar µ in Lemma 1 does not depend on

the coalitions’ values ηS for S 6= N . It depends only on the

vectors eS , S ⊆ N , and the grand coalition value ηN .

As a direct consequence of Lemma 1, we have the

following result for the instantaneous game < N, v(t) >

under the assumptions of Section II-A.

Lemma 2: Let Assumptions 1 and 2 hold. We then have

for all x ∈ R
n and all t ≥ 0,

dist2(x, C(v(t))) ≤ µ

n
∑

i=1

dist2(x, Xi(t)),

where C(v(t)) is the core of the game < N, v(t) >, Xi(t)
is the bounding set of player i, and µ is the constant from

Lemma 1.

Proof: By Assumption 2, we have that the core

C(vmax) is nonempty. Furthermore, under Assumption 1,

we have C(vmax) ⊆ C(v(t)) for all t ≥ 0, implying that the

core C(v(t)) is nonempty for all t ≥ 0.

Under Assumption 1, each core C(v(t)) is defined by the

same affine equality corresponding to the grand coalition

value, e′Nx = vmax
N . Moreover, each core C(v(t)) is defined

through the set of hyperplanes HS(t) = {x ∈ R
n | e′Sx ≥

vS(t)}, S ⊂ N , which have time invariant normal vectors

eS , S ⊆ N . Thus, the result follows from Lemma 1.

III. CONVERGENCE TO CORE OF ROBUST GAME

In this section, we prove convergence of the bargaining

process in (6) to a random allocation in the core of the robust

game with probability 1. We find it convenient to re-write

bargaining protocol (6) by isolating a linear and a non-linear

term. The linear term is the vector wi(t) defined as:

wi(t) =

n
∑

j=1

aij(t)x
j(t) for all i ∈ N and t ≥ 0. (15)



Note that wi(t) is linear in players’ allocations xj(t). The

non-linear term is the error

ei(t) = PXi(t)[w
i(t)] − wi(t). (16)

Using (15) and (16), we can rewrite protocol (6) as follows:

xi(t+1) = wi(t)+ei(t) for all i ∈ N and t ≥ 0. (17)

Recall that the weights aij(t) ≥ 0 are such that aij(t) = 0
for all j 6∈ Ni(t). Also, recall that A(t) is the matrix with

entries aij(t), which defines the vectors wi(t) in (15).

In what follows we will show that, with probability 1,

bargaining protocol (15)–(17) converges to the core C(vmax)
of the robust game < N, vmax >, provided that v(t) =
vmax happens infinitely often in time with probability 1.

To establish this we use some auxiliary results, which we

develop in the next two lemmas.

The following lemma provides a result on the sequences

xi(t) and shows that the errors ei(t) are diminishing.

Lemma 3: Let Assumptions 1 and 2 hold. Also, assume

that each matrix A(t) is doubly stochastic. Then, for bar-

gaining protocol (15)–(17), we have

(a)
{
∑n

i=1 ‖x
i(t) − x‖2

}

converges for all x ∈ C(vmax).
(b)

∑∞
t=0

∑n

j=1 ‖e
i(t)‖2 < ∞ and limt→∞ ‖ei(t)‖ = 0

for all i ∈ N .

Proof: By xi(t+1) = PXi(t)[w
i(t)] and by strictly non-

expansive property of the Euclidean projection on a closed

convex set Xi(t) (see (7)), we have for all i ∈ N , t ≥ 0 and

x ∈ Xi(t),

‖xi(t + 1) − x‖2 ≤ ‖wi(t) − x‖2 − ‖ei(t)‖2. (18)

Under Assumptions 1 and 2, the core C(vmax) is con-

tained in the core C(v(t)) for all t ≥ 0, implying that

C(vmax) ⊆ C(v(t)) for all t ≥ 0. Furthermore, since

C(v(t)) = ∩n
i=1Xi(t), it follows that C(vmax) ⊆ Xi(t) for

all i ∈ N and t ≥ 0. Therefore, relation (18) holds for all

x ∈ C(vmax). Thus, by summing the relations in (18) over

i ∈ N , we obtain for all t ≥ 0 and x ∈ C(vmax),

n
∑

i=1

‖xi(t+1)−x‖2 ≤
n
∑

i=1

‖wi(t)−x‖2−
n
∑

i=1

‖ei(t)‖2. (19)

By the definition of wi(t) in (15), using the stochasticity of

A(t) and the convexity of the squared norm, we obtain

n
∑

i=1

‖wi(t) − x‖2 =

n
∑

i=1

∥

∥

∥

∥

∥

∥

n
∑

j=1

aij(t)x
j(t) − x

∥

∥

∥

∥

∥

∥

2

≤
n
∑

j=1

(

n
∑

i=1

aij(t)

)

‖xj(t) − x‖2.

By the doubly stochasticity of A(t), we have
∑n

i=1 aij(t) =
1 for every j, implying

∑n

i=1 ‖w
i(t)−x‖2 ≤

∑n

i=1 ‖x
i(t)−

x‖2. By substituting this relation in (19), we arrive at

n
∑

i=1

‖xi(t+1)−x‖2 ≤
n
∑

i=1

‖xi(t)−x‖2−
n
∑

i=1

‖ei(t)‖2. (20)

The preceding relation shows that the scalar sequence

{
∑n

i=1 ‖x
i(t) − x‖2} is non-increasing for any given x ∈

C(vmax). Therefore, the sequence must be convergent since

it is nonnegative. Moreover, by summing the relations in (20)

over t = 0, . . . , s and then, letting s → ∞, we obtain

∞
∑

t=0

n
∑

i=1

‖ei(t)‖2 ≤
n
∑

i=1

‖xi(0) − x‖2,

which implies that limt→∞ ei(t) = 0 for all i ∈ N .

In our next result, we will use the instantaneous average

of players allocations, defined as follows:

y(t) =
1

n

n
∑

j=1

xj(t) for all t ≥ 0.

The result shows that the difference between the bargaining

payoff vector xi(t) for any player i and the average y(t)
of these payoffs converges to 0 as time goes to infinity.

The proof essentially uses the line of analysis that has

been employed in [17], where the sets Xi(t) are static, i.e.,

Xi(t) = Xi for all t. In addition, we also use the rate result

for doubly stochastic matrices, as established in [15].

Lemma 4: Let Assumptions 3 and 4 hold. Suppose that

for the bargaining protocol (15)–(17) we have

lim
t→∞

‖ei(t)‖ = 0 for all i ∈ N.

Then, for every player i ∈ N we have

lim
t→∞

‖xi(t) − y(t)‖ = 0, lim
t→∞

‖wi(t) − y(t)‖ = 0.

Proof: For any t ≥ s ≥ 0, define matrices

Φ(t, s) = A(t)A(t − 1) · · ·A(s + 1)A(s),

with Φ(t, t) = A(t). Using the matrices Φ(t, s) and the

expression for xi(t) in (17), we relate xi(t) with xi(s) at

a time s for 0 ≤ s ≤ t − 1, as follows:

xi(t) =

n
∑

j=1

[Φ(t − 1, s)]ij xj(s) (21)

+

t−1
∑

r=s+1





n
∑

j=1

[Φ(t − 1, r)]ij ej(r − 1)



+ ei(t − 1).

Using the doubly stochasticity of A(t), y(t) = 1
n

∑n

j=1 xj(t)
and relation (21), we obtain for all t ≥ s ≥ 0,

y(t) =
1

n

n
∑

j=1

xj(s) +
1

n

t
∑

r=s+1





n
∑

j=1

ej(r − 1)



 . (22)

By our assumption, we have limt→∞ ‖ei(t)‖ = 0 for all i.

Thus, for any ǫ > 0, there is an integer ŝ ≥ 0 such that

‖ei(t)‖ ≤ ǫ for all t ≥ ŝ and all i. Using relations (21)



and (22) with s = ŝ, we obtain for all i and t ≥ ŝ + 1,

‖xi(t) − y(t)‖ =

∥

∥

∥

∥

∥

∥

n
∑

j=1

(

[Φ(t − 1, ŝ)]ij −
1

n

)

xj(ŝ)

+
t−1
∑

r=ŝ+1

n
∑

j=1

(

[Φ(t − 1, r)]ij −
1

n

)

ej(r − 1)

+
(

ei(t − 1) −
1

n

n
∑

j=1

ej(t − 1)
)

∥

∥

∥

∥

∥

∥

≤
n
∑

j=1

∣

∣

∣[Φ(t − 1, ŝ)]ij −
1

n

∣

∣

∣ ‖xj(ŝ)‖

+

t−1
∑

r=ŝ+1

n
∑

j=1

∣

∣

∣[Φ(t − 1, r)]ij −
1

n

∣

∣

∣‖ej(r − 1)‖

+ ‖ei(t − 1)‖ +
1

n

n
∑

j=1

‖ej(t − 1)‖.

Since ‖ei(t)‖ ≤ ǫ for all t ≥ ŝ and all i, it follows that

‖xi(t) − y(t)‖ ≤
n
∑

j=1

∣

∣

∣[Φ(t − 1, ŝ)]ij −
1

n

∣

∣

∣ ‖xj(ŝ)‖

+ǫ

t−1
∑

r=ŝ+1

n
∑

j=1

∣

∣

∣[Φ(t − 1, r)]ij −
1

n

∣

∣

∣ + 2ǫ.

Under Assumptions 3 and 4, the following result holds for

the matrices Φ(t, s), as shown in [14] (see there Corollary

1):
∣

∣

∣

∣

[Φ(t, s)]ij −
1

n

∣

∣

∣

∣

≤
(

1 −
α

4n2

)⌈ t−s+1

Q ⌉−2

for all t ≥ s ≥ 0.

Substituting the preceding estimate in the estimate for

‖xi(t) − y(t)‖, we obtain

‖xi(t) − y(t)‖ ≤
(

1 −
α

4n2

)⌈ t−ŝ
Q ⌉−2 n

∑

j=1

‖xj(ŝ)‖

+nǫ

t−1
∑

r=ŝ+1

(

1 −
α

4n2

)⌈ t−r
Q ⌉−2

+ 2ǫ.

Letting t → ∞, we see that

lim sup
t→∞

‖xi(t)− y(t)‖ ≤ nǫ

∞
∑

r=ŝ+1

(

1 −
α

4n2

)⌈ t−r
Q ⌉−2

+ 2ǫ.

Note that
∑∞

r=ŝ+1

(

1 − α
4n2

)⌈ t−r
Q ⌉−2

< ∞, which by the

arbitrary choice of ǫ yields

lim
t→∞

‖xi(t) − y(t)‖ = 0 for all i ∈ N.

Now, we focus on
∑n

i=1 ‖w
i(t) − y(t)‖. Since wi(t) =

∑n

j=1 aij(t)x
j(t) and since A(t) is stochastic, it follows

n
∑

i=1

‖wi(t) − y(t)‖ ≤
n
∑

i=1

n
∑

j=1

aij(t)‖x
j(t) − y(t)‖.

Exchanging the order of the summations over, and then using

the doubly stochasticity of A(t), we have

n
∑

i=1

‖wi(t) − y(t)‖ ≤
n
∑

j=1

(

n
∑

i=1

aij(t)

)

‖xj(t) − y(t)‖

=

n
∑

j=1

‖xj(t) − y(t)‖.

Since limt→∞ ‖xj(t) − y(t)‖ = 0 for all j, we have
∑n

i=1 ‖w
i(t) − y(t)‖ → 0, implying ‖wi(t) − y(t)‖ → 0

for all i.

So far, the polyhedrality of the sets Xi(t) has not been

used. We now combine all pieces together, namely Lemma 2

that exploits the polyhedrality of the bounding sets Xi(t),
Lemma 3 and Lemma 4. This brings us to the following

convergence result for the robust game < N, vmax >.

Theorem 1: Let Assumptions 1–4 hold. Also, assume that

Prob {v(t) = vmax i.o.} = 1,

where i.o. stands for infinitely often. Then, the players

allocations xi(t) generated by bargaining protocol (15)–(17)

converge with probability 1 to an allocation in the core

C(vmax), i.e., there is a random vector x̃ ∈ C(vmax) such

that with probability 1,

lim
t→∞

‖xi(t) − x̃‖ = 0 for all i ∈ N.

Proof: By Lemma 3, the sequence {
∑n

i=1 ‖x
i(t)−x‖2}

is convergent for every x ∈ C(vmax) and the errors ei(t) are

diminishing for each player i, i.e., ‖ei(t)‖ → 0. Then, by

Lemma 4 we have ‖xi(t) − y(t)‖ → 0 for all i. Hence,

{‖y(t) − x‖} is convergent for every x ∈ C(vmax). (23)

We want to show that {y(t)} is convergent and that its limit

is in the core C(vmax) with probability 1. For this, we note

that since xi(t + 1) ∈ Xi(t), it holds for all t ≥ 0,

n
∑

i=1

dist2 (y(t + 1), Xi(t)) ≤
n
∑

i=1

‖y(t + 1) − xi(t + 1)‖2.

The preceding relation and ‖xi(t)−y(t)‖ → 0 for all i ∈ N

(cf. Lemma 4) imply

lim
t→∞

n
∑

i=1

dist2 (y(t + 1), Xi(t)) = 0.

By Assumptions 1 and 2, and Lemma 2 we have for t ≥ 0,

dist2 (y(t + 1), C(v(t))) ≤ µ

n
∑

i=1

dist2 (y(t + 1), Xi(t)) .

By combining the preceding two relations we see that

lim
t→∞

dist2 (y(t + 1), C(v(t))) = 0. (24)

By our assumption, we have that the event {v(t) =
vmax infinitely often} happens with probability 1. We now

fix a realization {vω(t)} of the sequence {v(t)} such that



vω(t) = vmax holds infinitely often (for infinitely many t’s).

Let {tk} be a sequence such that

vω(tk) = vmax for all k ≥ 0.

All the variables corresponding to the realization {vω(t)}
are denoted by a subscript ω. By relation (23) the sequence

{yω(t)} is bounded, therefore {yω(tk)} is bounded. Without

loss of generality (by passing to a subsequence of {tk}
if necessary), we assume that {yω(tk)} converges to some

vector ỹω, i.e.,

lim
k→∞

yω(tk) = ỹω.

Thus, the preceding two relations and Eq. (24) imply that

ỹω ∈ C(vmax). Then, by relation (23), we have that

{‖yω(t)− ỹω‖} is convergent, from which we conclude that

ỹω must be the unique accumulation point of the sequence

{yω(t)}, i.e.,

lim
t→∞

yω(t) = ỹω, ỹω ∈ C(vmax).

This and the assumption Prob {v(t) = vmax i.o.} = 1,
imply that the sequence {y(t)} converges with probability 1

to a random point ỹ ∈ C(vmax). Since by Lemma 4 we

have ‖xi(t) − y(t)‖ → 0 for every i, it follows that the

sequences {xi(t)}, i = 1, . . . , n, converge with probability 1

to a common random point in the core C(vmax).

IV. NUMERICAL ILLUSTRATIONS

In this section, we report some numerical simulations. We

consider a dynamic coalitional TU game with 3 players, so

the number of possible nonempty coalitions is m = 7. The

characteristic functions vS(t) are generated independently

with identical uniform distribution over an interval. Specifi-

cally, at each time t, the value v{1}(t) is chosen randomly in

the interval [4, 7] with uniform probability independently of

the other times. Similarly, the values v{2}(t) are generated

in the interval [0, 3]. The grand coalition value is fixed to 10

at all times, and the other coalition values are 0.

We run 50 different Monte Carlo trajectories each one

having 100 iterations. The number of iterations is chosen

long enough to show the convergence of the protocols. All

plots include the sampled average and sampled variance for

the 50 different trajectories that were simulated. Each trajec-

tory is generated by starting with the same initial allocations,

which are given by x1(0) = [10 0 0]′, x2(0) = [0 10 0]′,
and x3(0) = [0 0 10]′. The sampled average is computed for

each time t = 1, . . . , 100, by fixing the time t and computing

the average value of the 50 trajectory sample values for that

time. The sampled variance is computed as the variance of

the samples with respect to their sampled average.

v1

v2 v3

(a)

v1

v2 v3

(b)

v1

v2 v3

(c)

Fig. 1. Topology of players’ neighbor-graph at three distinct times
t = 0, 1 and 2.

Regarding the players’ neighbor-graphs, we assume that

the graphs are deterministic but time-varying. The graphs

for the times t = 0, 1, 2 are as follows: player 2 and 3

connected at time t = 0 (see Figure 1(a)), then player 3

and 1 connected at time t = 1 (Figure 1(b)), and finally

player 1 and 2 connected at time t = 3 (Figure 1(c)). These

graphs are then repeated consecutively in the same order. In

this way, the players’ neighbor-graph is connected every 2

time units (Assumption 4 is satisfied with Q = 2).

The matrices A(0), A(1) and A(2) that we associate with

these three graphs, are respectively given by:




1 0 0
0 1

2
1
2

0 1
2

1
2



 ,





1
2 0 1

2
0 1 0
1
2 0 1

2



 ,





1
2

1
2 0

1
2

1
2 0

0 0 1



 .

These matrices are also repeated in the same order for the

rest of the time. Thus, at any time t, the matrix A(t) is

doubly stochastic, with positive diagonal, and every positive

entry bounded below by 1
2 , so Assumption 3 is satisfied with

α = 1
2 . All simulations are carried out with MATLAB on

an Intel(R) Core(TM)2 Duo, CPU P8400 at 2.27 GHz and

a 3GB of RAM. The run time of each simulation is around

90 seconds.

The characteristic function vmax for the robust game is

obtained by considering the highest possible coalition values

which results in vmax = [7 3 0 0 0 0 10]′. The resulting core

of the robust game is given by

C(vmax) = {x ∈ R
3 : x1 ≥ 7, x2 ≥ 3, x3 ≥ 0,

x1 + x2 ≥ 0, x1 + x3 ≥ 0,

x2 + x3 ≥ 0, x1 + x2 + x3 = 10}.

We note that this core contains a single point, namely [7 3 0]′.
To ensure that v(t) = vmax infinitely often, as required

by Theorem 1 for the convergence of the protocol, we

adopt the following randomization mechanism. At each time

t = 1, . . . , 100, we flip a coin and if the outcome is “head”

(probability 1/2), the coalitions’ values v{1}(t) and v{2}(t)
are extracted from the intervals [4, 7] and [0, 3], respectively,

with uniform probability independently of the other times. If

the outcome of the coin flip is “tail”, then we assume that

the robust game realizes and take v(t) = vmax.

We next present the results obtained by the Monte Carlo

runs for the bargaining protocol in (15)–(17). An illustration

of a typical run with the allocations generated in periods

t = 0, 1, 2, 3 is shown below:

v(0) = [6.8 2.7 . . . 10]′

v(1) = [7 3 . . . 10]′

v(2) = [4.4 1.1 . . . 10]′

v(3) = [7 3 . . . 10]′

x1(0) = [10 0 0]′

x1(1) = [10 0 0]′

x1(2) = [5 2.5 2.5]′

x1(3) = [7 1.5 1.5]′

x2(0) = [0 10 0]′

x2(1) = [0 5 5]′

x2(2) = [0 5 5]′

x2(3) = [2.5 3.75 3.75]′

x3(0) = [0 0 10]′

x3(1) = [0 5 5]′

x3(2) = [5 2.5 2.5]′

x3(3) = [5 2.5 2.5]′.

Recall that the initial allocations of the players are x1(0) =
[10 0 0]′, x2(0) = [0 10 0]′, and x3(0) = [0 0 10]′. At



Fig. 2. Plots of the sampled average (left) and variance (right) of players’
allocations xi(t), i = 1, 2, 3 generated by bargaining protocol (15)–(17).
Sampled averages of the allocations xi(t) converge to the same point x̃ =
[7 3 0]′ ∈ C(vmax), while sampled variances go rapidly to zero.

time t = 1, bargaining involves player 2 and 3 who update

the allocations respectively as x2(1) = [0 5 5]′ and x3(1) =
[0 5 5]′. These allocations are feasible for their bounding sets

so the projections on these sets are not performed. At time

t = 2, the bargaining involves player 1 and 3 who update

their allocations, respectively, as x1(2) = [5 2.5 2.5]′ and

x3(2) = [5 2.5 2.5]′. Again, these allocations are feasible

for their bounding sets and the projections are not performed.

Finally, at time t = 3, the bargaining involves player 1 and 2

who update their allocations resulting in x1(3) = [7 1.5 1.5]′

and x2(3) = [2.5 3.75 3.75]′. Notice that x1(3) is obtained

after player 1 projects onto his bounding set.

In Figure 2 we report our simulation results for the average

of the sample trajectories obtained by Monte Carlo runs. We

show the sampled average and variance of the allocations

xi(t), i = 1, 2, 3 per iteration t. In accordance with the

convergence result of Theorem 1, the sampled averages of

the players’ allocations xi(t) converge to the same point,

namely x = [7 3 0]′ which is in the core of the robust game

C(vmax).

V. CONCLUSIONS

This article deals with dynamics and robustness within

the framework of coalitional TU games. The novelty of the

work lies in the design of a decentralized allocation process

defined over a communication graph of players. The key

properties that distinguish this work from the existing work

on dynamic games are: (1) the introduction of a time-varying

communication graph; and (2) the distributed bargaining

protocol for players’ allocations updates subject to local

information exchange with neighboring players.
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