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TEAM THEORY AND

PERSON-BY-PERSON OPTIMIZATION

WITH BINARY DECISIONS
∗

D. BAUSO† AND R. PESENTI‡

Abstract. In this paper, we extend the notion of person by person optimization to binary
decision spaces. The novelty of our approach is the adaptation to a dynamic team context of notions
borrowed from the pseudo-boolean optimization field as completely local-global or unimodal functions
and sub-modularity. We also generalize the concept of pbp optimization to the case where the
Decision Makers (DMs) make decisions sequentially in groups of m, we call it mbm optimization.
The main contribution are certain sufficient conditions, verifiable in polynomial time, under which
a pbp or an mbm optimization algorithm leads to the team-optimum. As a second contribution,
we present a local and greedy algorithm that allows the DMs to select a small neighborhood which
guarantees them to behave as if they had complete information. As a last contribution, we also
show that there exists a subclass of sub-modular team problems, recognizable in polynomial time,
for which the convergence is guaranteed if the pbp algorithm is opportunely initialized.

Key words. team theory, person-by-person optimality, approximation algorithms

1. Introduction. Most fundamental results in team theory concern linear quadratic
Gaussian problems or, in general, problems with continuous decision spaces, where
the cost is somehow convex in the strategies and the information structure is a “nice”
one (see, e.g., partial nested structures) [12, 16]. In such particular cases, it is well
known that a simple solution idea consisting in a sequential optimization on the part
of the Decision Makers (DMs), called person by person optimization (pbp), leads to
the team-optimum [12], namely the argument minimizing the team objective function.

In this paper, on the same line of [8, 9], we restrict our attention to boolean de-
cision spaces. The novelty of our approach is the adaptation to a dynamic team con-
text of notions borrowed from pseudo-boolean optimization [5], as Completely Local-
Global (CLG) functions, Completely Unimodal (CU) functions (also known as acyclic
unique sink orientations and abstract objective functions [15]) and sub-modular func-
tions [6, 11].

Boolean decision spaces can be found in finite-alphabet control and in particular
on-off control problems [2, 10], impulsively-controlled systems (activate the impulse
or not) [7], or switching control (switches between active and passive modes) [17].
Boolean decisions are encountered in many applications as inventory with set up costs
(reordering or not from a warehouse in order to meet a demand) [3, 4], distributed
computer systems (processing or not the assigned task) [9], in air-conditioning systems
control, in economics and finance (see, e.g., [5] and references therein).

As first contribution, we generalize the concept of pbp optimization to the case
where the Decision Makers (DMs) make decisions sequentially in groups of m, we call
it mbm optimization.

∗A conference version [1] of this paper has been published in the Proc. of the IEEE American
Control Conference, Seattle, Washington, USA, June 2008. Corresponding author D. Bauso Tel.
+39-320-4648142. Research supported by MURST-PRIN 2007ZMZK5T “Decisional model for the
design and the management of logistics networks characterized by high interoperability and informa-
tion integration”.

†D. Bauso is with DINFO, Università di Palermo, Italy dario.bauso@unipa.it
‡R. Pesenti is with DMA, Università “Ca’ Foscari” di Venezia, Italy pesenti@unive.it
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2 D. Bauso and R. Pesenti

The main contribution of this paper consists in providing certain sufficient condi-
tions, verifiable in polynomial time, for the optimality of such pbp (respectively mbm)
optimization algorithms based on the knowledge of the agents’ states. Then we can
frame our results in the literature on person by person algorithms in team theory,
which has drawn the attention of the control audience since the ’70s (see, e.g., [12]).

A second contribution, which makes this paper to differ from the conference ver-
sion [1], is the local and greedy algorithm of Section 5. This algorithm allows the DMs
to select a small neighborhood which guarantees them to behave as if they had com-
plete information, i.e., they knew all the other agents’ states. “Small” neighborhood
means that each DM is not required to communicate with all the other DMs but only
with a restricted, possibly the minimal, number of them. “Local” means that the
algorithm is implemented by the same DM who has to make a decision without any
centralized mechanism. “Greedy” means that the DM who has to make a decision
implements an iterative algorithm that at each iteration picks the smallest number of
DMs whose state knowledge may be as informative as the knowledge of all the other
agents’ states.

As a last contribution, we have paid special attention to problems with sub-
modular team objective function (sub-modular team problems). Though sub-modularity
alone does not guarantee the convergence of any pbp optimization algorithm, we show
that there exists a special class of sub-modular team problems, recognizable in polyno-
mial time, for which the convergence is guaranteed when the algorithm is opportunely
initialized. This class is characterized by so-called threshold strategies.

This paper is organized as follows. In Section 2, we introduce some notions from
team theory [12] and pseudo-boolean optimization [5]. In Section 3, we introduce the
class of completely local-global functions and completely unimodal functions [6], and
[11]. In Section 4, we address the mbm optimization. In Section 5, we present the
greedy algorithm. In Section 6, we focus on sub-modular team problems. In Section
7 we provide numerical examples. Finally, in Section 8, we discuss how to extend the
obtained results.

2. Definitions and Problem Statement. Consider a set N of n DMs making
decisions x from a discrete hypercube B

n = {0, 1}n. Decisions are made in order to
optimize a common team objective function, J(x) : B

n �→ Z, where Z is the set of
integer numbers.

Assumption 2.1. The team objective function J(x) is injective and has the
following quadratic form

J(x) =
n∑

i=1

bixi +
∑

i∈N

∑

j∈N

aijxixj(2.1)

with aij and bi integer (this causes J(x) assuming only integer values).
The following definitions are slightly modified from [9].
Definition 2.1. (Team-optimum) A point x∗ is a team-optimum if

x∗ = arg min
x∈Bn

J(x).

As the set B
n is finite, a team optimum x∗ always exists. Furthermore, as J(x) is

injective, the team optimum is unique.
Definition 2.2. (pbp optimum) The point x∗ is a pbp optimum if for any DM i

the following condition holds

J(x∗
i , x

∗
−i) < J(xi, x

∗
−i), ∀xi �= x∗

i(2.2)
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where xi ∈ B is the decision of DM i and x−i = (x1, . . . , xi−1, xi+1 . . . , xn)T ∈ B
n−1

is a vector collecting decisions of all other DMs. From the above definitions we have
that a team-optimum always implies pbp optimality but not vice versa.

Let S any subset of N with m elements. We indicate this with S ⊆ N with
|S| = m, where |S| means cardinality of S. Let xS ∈ B

m be a vector collecting the
decisions of all the DMs belonging to S, namely, xS = (xi : i ∈ S). Analogously, let
x−S ∈ B

n−m be a vector collecting the decisions of all the other DMs, x−S = (xi :
i ∈ N \ S).

Definition 2.3. (mbm optimum) The point x∗ is an mbm optimum if, for any
subset S ⊆ N with |S| = m, the following condition holds

J(x∗
S , x∗

−S) < J(xS , x∗
−S), ∀xS �= x∗

S .(2.3)

All the results stated in the following hold true for any value of the parameter m

from 1 to n.

For each subset S ⊆ N , we isolate from the team objective function (2.1) the only
terms in xi with i ∈ S as follows

JS(x) =
∑

i∈S

bixi +
∑

i∈S

∑

j∈N

aijxixj

and denote this last function as the S-projection of J(x).

We observe that for any S ⊆ N ,

arg min
x̃S∈{0,1}

J(x̃S , x−S) = arg min
x̃S∈{0,1}

JS(x̃S , x−S).

Moreover, assume that DMs in S know the decisions of the only DMs in a neigh-
borhood ΓS , with ΓS ⊆ N \ S.

Then, for each ΓS ⊆ N \ S we can also define as ΓS-approximation of JS(x) the
following function

ĴS,ΓS
(x) =

∑

i∈S

bixi +
∑

i∈S

∑

j∈S∪ΓS

aijxixj +
∑

i∈S

∑

i∈N\(S∪ΓS)

aijxix̂j(2.4)

where

x̂j =

{
1 if aij > 0
0 otherwise

.

The above definition implies that ĴS,ΓS
(x) approximates from above JS(x), i.e.,

ĴS,ΓS
(x) ≥ JS(x) for all x ∈ B

n and all ΓS ⊆ N \ S.

Hereafter, for the sake of notation, we use the notation Ji(x), Ĵi(x), and Γi, and
Γ{i}, in state of J{i}(x), Ĵ{i}(x), and Γ{i} respectively.

We are ready to generalize the concept of pbp strategy, introduced in [9] and [12],
as follows.

Definition 2.4. A strategy µi : B
n−1 �→ B is pbp strict for DM i if, for any

x−i ∈ B
n−1, we have

µi(x−i) = arg min
x̃i∈{0,1}

J(x̃i, x−i) = arg min
x̃i∈{0,1}

Ji(x̃i, x−i).
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A strategy µ̂i : B
n−1 �→ B is a Γi-approximation, for some Γi ⊆ N \ {i}, of a pbp

strict strategy µi(x−i) if, for any x−i ∈ B
n−1, we have

µ̂i(x−i) = arg min
x̃i∈{0,1}

Ĵi,Γi
(x̃i, x−i).

As J(x) is injective, the above equations have a unique solution. Then, under a
strict pbp strategy µi(·), DM i changes decision from zero to one or vice versa only
if such a change lets the {i}-projection Ji(·, ·), and the team objective function J(·, ·)
as well, decrease for fixed decisions of all other DMs j �= i.

We can repeat the same argument for the Γi-approximate strict pbp strategy µ̂i(·)
with respect to the Γi-approximation Ĵi,Γi

(·, ·).
Definition 2.5. A strategy µS : B

n−m �→ B
m is mbm strict for DMs in S where

S ⊆ N with cardinality |S| = m if, for any x−S ∈ B
n−m, we have

µS(x−S) = arg min
x̃S∈Bm

J(x̃S , x−S) = arg min
x̃S∈Bm

JS(x̃S , x−S).

A strategy µ̂S : B
n−m �→ B

m is a ΓS-approximation, for some ΓS ⊆ N \ S, of a mbm
strict strategy µS(x−S) if, for any x−S ∈ B

n−m, we have

µ̂S(x−S) = arg min
x̃S∈{0,1}

ĴS,ΓS
(x̃S , x−S).

The above definition of strict mbm strategy has the following geometric inter-
pretation. For any x ∈ B

n and S ⊆ N , denote by ΠS(x) as the the corresponding
m-dimensional face {x̃ = (x̃S , x−S) ∈ B

n : x−S fixed} of hypercube B
n. Then, a

strict mbm strategy means that either (xS , x−S) is the optimal vertex in ΠS(x) or
the DMs in S coordinate their decisions to find an optimal vertex in ΠS(x).

With the above definitions in mind, we call pbp optimization algorithm, any al-
gorithm that returns a sequence of decisions x(0) → x(1) → . . . where, for each
iteration t, we denote by x(t) = {x1(t) . . . xn(t)} and xi(t) the vector of decisions and
the decision of DM i respectively. We also require that each decision x(t) is obtained
from x(t − 1) by a unilateral improvement on the part of a single DM i = σ(t), i.e.,
x(t) = [µi(x−i(t− 1)), x−i(t− 1)], where σ : N �→ N , is a periodic surjective function,
with period n, that returns a DM for each iteration t. For instance, σ(1) = 2, σ(2) = 5
. . . means that at iteration 1, DM 2 plays the strict pbp strategy for fixed decisions of
all other DMs, and similarly for DM 5 at iteration 2. We define an mbm optimization
algorithm in a similar manner. Here, the function σ becomes σ : N �→ Q, with period
|Q|, where Q is the set of all subsets S ⊆ N with |S| = m, and the vector of decisions
at iteration t becomes x(t) = [µS(x−S(t − 1)), x−S(t − 1)]. We define an algorithm
approximate when it uses approximate strategies µ̂i(·) or µ̂S(·).

We can now state the problem of interest.
Problem 1. Find conditions under which any pbp (respectively mbm) optimiza-

tion algorithm converges to the team-optimum. Furthermore, design local information
mechanisms under which approximate algorithms return the same decisions as in the
complete information case.

Throughout the paper, convergence means “from any generic x(0)”, unless spec-
ified differently.

Remark 2.1. Any strict pbp (respectively mbm) optimization algorithm con-
verges to a pbp (mbm) optimum x∗

pbp (respectively x∗
mbm) in a finite number of itera-

tions. Actually, the set B
n is finite and at each iteration t of the algorithm the value

of objective function J(x(t)) decreases.
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There is a vast literature on functions f(x) : B
n �→ Z that map from a discrete

hypercube B
n to the ordered field Z of integer numbers. They are usually referred to

as pseudo-boolean functions [5].
In the following, we recall some notions and optimality conditions in the context

of pseudo-boolean optimization that we use to prepare and motivate the results of the
next sections.

Let us now associate to a binary vector x ∈ B
n its neighborhood Nr(x) of radius

r, defined as Nr(x) = {y : ρH(x, y) ≤ r}, where ρH(x, y) denotes the Hamming
distance of the vectors x and y, defined as the number of components in which these
two vectors differ. According to this definition, the neighborhood of radius n of each
x ∈ B

n is equal to B
n, that is Nn(x) = B

n.
A vector x is a local minimum of a pseudo-boolean f(.) if f(y) ≥ f(x) for all

neighboring vectors y ∈ N1(x). It is a global minimum if f(y) ≥ f(x) for all vectors
y ∈ B

n.
Local minima can be determined by means of local search algorithms. In par-

ticular, [6] defines as a single switch algorithm any algorithm that at each iteration
proceeds to a better neighbor of the current iterate, by changing one coordinate at
a time, until a local optimum is found. Similarly, they define as a multiple switch
algorithm of order m any algorithm that at each iteration proceeds to a next better
iterate that differs from the current vertex in at most m coordinates.

Remark 2.2. The following statements hold true:
i) The team objective function J(x) is a pseudo-boolean function.
ii) Any pbp (respectively mbm) optimum is a local optimum in a neighborhood

of radius one (respectively m).
iii) The team-optimum is a global optimum.
iv) Strict pbp (respectively mbm) strategies are single (respectively multiple) switch

algorithms.
There is a large variety of techniques applied in the literature for solving problems

that can be modelled by quadratic pseudo-Boolean functions optimization. As this
last problem is NP-hard, many of the published algorithms are implicitly enumerative.
However, specialized optimization algorithms have been developed for increasing or
decreasing pseudo-Boolean functions.

We can associate to a pseudo-boolean function its first order ith derivative

∂f

∂xi

(x) = f(x1, . . . , xi−1, 1, xi+1, . . . , xn) − f(x1, . . . , xi−1, 0, xi+1, . . . , xn),

which will be used later on. If f(.) is injective, ∂f
∂xi

(x) �= 0 for all x ∈ B
n, for all

i ∈ N . Let us finally introduce the following operation.
Definition 2.6. Given a function f : B

n �→ R, for any subset S ⊆ N , define
restriction of f into S, RSf(x) : B

n �→ R the function

RSf(x) =
∑

i∈S

bi +
∑

i∈S

∑

j∈S

aij +
∑

k �∈S

∑

i∈S

aikxk.

The above definition has the following geometric interpretation. Consider the face
ΠS(x) : {x = (xS , x−S) ∈ B

n : x−S fixed} of B
n and extract two points x = (1, x−S)

and x = (0, x−S) from it. Note that, for fixed x−S , in x all DMs i ∈ S set xi = 1
while in x all DMs i ∈ S set xi = 0. Then, the restriction is the difference J(x)−J(x)
of the team objective function computed on the two points. Also, note that for a
singleton, S = {i}, then RSf(x) = ∂f

∂xi
(x).
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3. Person by Person Optimization. In this section, we present sufficient
conditions, verifiable in polynomial time, for the convergence of any pbp algorithm to
the team-optimum.

Definition 3.1. (CLG-functions [11]) An injective function f : B
n �→ Z is

Completely Local-Global (CLG) if in B
n there is a unique local minimum.

Lemma 3.1. Any pbp optimization algorithm guarantees convergence to the team-
optimum x∗ if and only if J(x) is a CLG-function.

Proof. (sufficiency) If J(.) is a CLG-function then there is a unique pbp optimum
which is also team-optimum. Any pbp optimization algorithm guarantees convergence
to it.
(necessity) If J(.) is not a CLG-function then there is a second pbp optimum x̄ which
is not team-optimum. Any pbp optimization algorithm starting at x̄ cannot deviate
from it and therefore does not reach the global optimum.

�

The class of CLG-functions includes the class of completely unimodal functions.

Definition 3.2. (CU-functions) An injective function f : B
n �→ Z is Completely

Unimodal (CU) if f has a unique local minimum on every face of B
n.

We can derive the following corollary from the above lemma.

Corollary 3.1. Any pbp optimization algorithm converges to the team-optimum
x∗ if J(x) is a CU-function.

To the best of author’s knowledge, recognizing CU-functions or CLG-functions is,
in general, a difficult task. Actually, it involves an exponential number of conditions
as shown next. Furthermore, even if f is a CLG or CU-function, strict pbp strategies
may converge in exponential time.

To see why completely unimodality involves an exponential number of conditions
consider that for the existence of two local minima on a 2-face containing xi and xj ,
it must hold

∂f(x)

∂xi

∣
∣
∣
∣
xj=0

·
∂f(x)

∂xi

∣
∣
∣
∣
xj=1

< 0(3.1)

∂f(x)

∂xj

∣
∣
∣
∣
xi=0

·
∂f(x)

∂xj

∣
∣
∣
∣
xi=1

< 0.(3.2)

Then for f to be CU it is necessary that, on each 2-face and for all x, the above
conditions are not satisfied, which implies an exponential number of verifications.

Example 3.1. Consider the set B
3 = {0, 1}3 and the team objective function

J(x) : B
3 �→ Z, taking on the values displayed in Fig. 3.1.a. The explicit expression

of the function J according to the formula (2.1) is

J(x) = 4x2
1 + 4x2

2 − 8x1x2 + 2x2
︸ ︷︷ ︸

J (x1,x2)

−10x3 − 10x1x3 + 3x2x3,

where we denote by J (x1, x2) the function obtained considering terms only in x1

and x2. In Fig. 3.1.a, the oriented arcs indicate the decreasing directions for the team
objective function J(x). Function J(x) is a CLG-function as it has a unique local
(global) minimum in B

3 which is x = (1, 0, 1) (point C in the figure). However note
that J (x1, x2) is not a CLG-function as it has two local minima in B

2. For instance,
see the 2-face x1-x2 with x3 = 0 which has two local minima in x = (0, 0, 0) and
x = (1, 1, 0) (point A and B). We complete the example by considering a different
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Fig. 3.1. Unit 3-dimensional cubes: oriented arcs indicate decreasing directions for J(x) when
(a) J(x) is CLG-function or (b) J(x) is CU-function. Solutions x = (0, 0, 0) and x = (1, 1, 0) (point
A and B in (a)) are two local minima for the 2-face x1-x2 with x3 = 0. In both cases, the global
minimum is x = (1, 0, 1) (point C).

function Ĵ(x) : B
3 �→ Z, taking on the values displayed in Fig. 3.1.b. The explicit

expression is

Ĵ(x) = x2
1 + 4x2

2 − 5x1x2 + 2x2
︸ ︷︷ ︸

Ĵ (x1,x2)

−10x3 − 10x1x3 + 3x2x3,

where again Ĵ (x1, x2) is obtained considering terms only in x1 and x2. In Fig. 3.1.b,
the unique global minimum is again x = (1, 0, 1) (point C in the figure) but differently
from before function J(x) is a CU-function in B

3 as it has a unique local minimum
on each 2-face. In correspondence to such a situation we also have that Ĵ (x1, x2) is
a CLG-function on B

2 as it has a unique local minimum in B
2 (see the 2-face x1-x2

with x3 = 0 which has a local minimum in x = (0, 0, 0) (point A)).
A special case of completely unimodality is when f(.) is monotonic along any

single direction, which corresponds to being both left hand side of (3.1) and (3.2)
positive. Now, f(.) is monotonic along any single direction, when for all i = 1 . . . , n,
one of the following mutually exclusive conditions holds true

max
x∈Bn

∂J(x)

∂xi

< 0(3.3)

min
x∈Bn

∂J(x)

∂xi

> 0.(3.4)

We can specialize Corollary 3.1 to such a particular case.
Lemma 3.2. (Sufficient conditions) If the team objective function J(x) is such

that, for all i ∈ N , either (3.3) or (3.4) hold, then
1. the team optimum is

x∗
i =

{

1 if maxx∈Bn
∂J(x)
∂xi

< 0

0 if minx∈Bn
∂J(x)
∂xi

> 0

2. the team optimum x∗ is also the unique pbp optimum,
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3. any pbp optimization algorithm converges to the team optimum x∗ in at most
n iterations.

Proof. Item 3 is straightforward from item 2. To prove item 1 and 2 consider

that if max ∂J(x)
∂xi

< 0, then ∂J(x)
∂xi

< 0 for all x. Analogously, if min ∂J(x)
∂xi

> 0 then
∂J(x)
∂xi

> 0 for all x.
�

Let us finally observe that verifying whether (3.3) or (3.4) holds is easy (poly-
nomial in n), as we just have to find the maxima, respectively the minima, of the n

functions ∂J(x)
∂xi

linear in x ∈ B
n.

4. Generalization to mbm Optimization. Let us now generalize the results
established in the preceding section to the case where DMs make decisions sequentially
in groups of m.

Theorem 4.1. (Sufficient conditions) Let x∗ = 1 be an (m−1)b(m−1) optimum,
if the team objective function J(.) is such that for all S ⊆ N with |S| = m it holds

max
x∈Bn

RSJ(x) < 0(4.1)

then
1. x∗ is the team-optimum
2. x∗ is also the unique mbm optimum,
3. any mbm optimization algorithm converges to the team-optimum x∗.

Proof. Item 3 is straightforward from item 2. To prove item 1 and 2, let us assume
by contradiction that there exists a team optimum value x∗ �= 1. Let V = {i : x∗

i = 0}.
The cardinality of V cannot be greater than or equal to m. Indeed consider S ⊆ V

with |S| = m, since RSJ(x∗) < 0 implies J(x◦) < J(x∗), where x◦ ∈ B
n differs from

x∗ only for the components in S, i.e., x◦
i = 0 if i ∈ V \ S, x◦

i = 1 otherwise. Then x∗

should be within an Hamming distance strictly less than m from 1, but this situation
cannot occur since 1 by definition is optimum within its neighborhood of radius m−1.

�

Example 4.1. Consider the team objective function J(x) = x1+x2−3x3−5x1x2+
x1x3 + x2x3. The solution x∗ = 1 is a pbp optimum as, for all i, bi +

∑

k �=i aik < 0.
Since for all S, with |S| = 2 condition (4.1) holds (for i = 1 and j = 2, we have
b1 + b2 + a12 + maxx∈Bn(a13 + a23)x3 = −1), then x∗ = 1 is also team-optimum.

Remark 4.1. In the above lemma, the assumption x∗ = 1 is without loss of
generality. Actually, if the team problem has a unique team optimum x∗ �= 1 then the
following transformation can be applied to the decision space such that the new team
optimum is x̂∗ = 1:

x̂i =

{
xi if x∗

i = 1
1 − xi it x∗

i = 0.
(4.2)

Let us finally observe that verifying whether (4.1) holds is, for fixed m, polynomial
in n although exponential in m, as we just have to find the maxima of the

(
n
m

)
functions

RSJ(x) linear in x ∈ B
n.

5. A greedy algorithm to find a small set Γσ(t). Assume that at time t

DM σ(t) may choose its neighborhood Γσ(t). In this context, we present a local (im-
plemented by DM σ(t)) and greedy algorithm to find a small neighborhood Γσ(t) for
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which Γi-approximate, respectively ΓS-approximate, strategies µ̂i(·) or µ̂S(·) repro-
duce exactly the behavior of strict pbp strategies µ̂i(·), or mbm strategies µ̂S(·).

Given an initial point x(0), consider the pbp optimization algorithm. Let i = σ(t)
be the DM picked by the algorithm at step t. The DM i strategy provides the following
result

xi(t) =

{

1 if ∂Ji

∂x

∣
∣
x(t−1)

= bi +
∑

j∈N aijxj(t − 1) ≤ 0

0 otherwise
.

Here note that the value of xi(t) depends only on the sign of ∂Ji

∂x

∣
∣
x(t−1)

and not on its

exact value. In general, the strategy µi(x−i(t − 1)) may not need to know the values
of all the xj(t−1), for j ∈ N to determine the sign of ∂Ji

∂x

∣
∣
x(t−1)

and, hence, to return

the value of xi(t). As a consequence, an approximate pbp optimization algorithm
certainly converges to x∗

pbp if, at each step t, the DM i chooses a Γi(t) so that the sign

of
∂Ĵi,Γi

∂x
is equal to the sign of ∂Ji

∂x
and, hence, µ̂i(x−i(t − 1)) = µi(x−i(t − 1)).

In particular, the DM i may choose the set Γi(t) by iteratively solving the following
problem:

z = min
∑

j∈N

yj

bi +
∑

j∈Di

aijxj(t − 1) +
∑

j∈A+

i

aij(1 − yj) +
∑

j∈A−
i

aijyj ≤ 0(5.1)

yj ∈ {0, 1} ∀j ∈ N

where: the binary variables yj , for j ∈ N , are defined as follows

yj =

{
1 if j ∈ Γi(t)
0 otherwise

;

the set Di is the set of DMs whose values xj(t − 1) are known in advance by DM
i; finally, the sets A+

i and A−
i are such that A+

i = {j ∈ N \ Di : aij > 0} and
A−

i = {j ∈ N \ Di : aij ≤ 0}.
Let y∗ = {y∗

j : j ∈ N} be an optimal solution (if it exists) for (5.1) and Γi(t) =
{j ∈ N : y∗

j = 1}∪Di the corresponding neighborhood of i. Problem (5.1) determines
a minimal set Γi(t) of DMs that must be considered by DM i to be sure that µ̂i(x−i(t−
1)) = µi(x−i(t − 1)) = 1, given the knowledge of xj(t − 1), for j ∈ Di. Indeed, if the
following conditions hold

xj(t − 1) = 0,for each j such that y∗
j = 1 and j ∈ A+

i ,

xj(t − 1) = 1,for each j such that y∗
j = 1 and j ∈ A−

i ,(5.2)

then

∂Ji

∂x

∣
∣
∣
∣
x(t−1)

≤ bi +
∑

j∈Di

aijxj(t−1)+
∑

j∈A
+

i

aij(1−y∗
j )+

∑

j∈A
−
i

aijy
∗
j =

∂Ĵi,Γi

∂x

∣
∣
∣
∣
∣
x(t−1)

≤ 0.

Now, let us observe that three situations may occur:
i) problem (5.1) has no feasible solution, that is Γi(t) = Di;
ii) problem (5.1) has an optimal solution y∗ and conditions (5.2) hold;
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iii) problem (5.1) has an optimal solution y∗ and conditions (5.2) do not hold.

If situation i) occurs, then both
∂Ĵi,Γi

∂x

∣
∣
∣
x(t−1)

and ∂Ji

∂x

∣
∣
x(t−1)

are strictly positive.

Hence, µ̂i(x−i(t − 1)) = µi(x−i(t − 1)) = 0.

If situation ii) occurs, then both
∂Ĵi,Γi

∂x

∣
∣
∣
x(t−1)

and ∂Ji

∂x

∣
∣
x(t−1)

are non positive.

Hence, µ̂i(x−i(t − 1)) = µi(x−i(t − 1)) = 1.

Differently, if situation iii) occurs, DM i cannot conclude that
∂Ĵi,Γi

∂x

∣
∣
∣
x(t−1)

=

∂Ji

∂x

∣
∣
x(t−1)

. In this last situation, DM i must enlarge the set Di by including even

the indexes of DMs whose values xj(t − 1) have been interrogated by DM i before
realizing that conditions (5.2) do not hold. Then, DM i determines a further tentative
set Γi(t) by solving (5.1) again.

The above procedure is iterated, starting from Di = ∅, until either situation i) or
ii) occurs. At each iteration the cardinality of Di increases at least by one unit. Then,
in the worst case, after at maximum n − 1 iterations, the procedure stops as Γi(t)

has become equal to N \ {i} and hence
∂Ĵi,Γi

∂x

∣
∣
∣
x(t−1)

=
∂Ĵi,N\{i}

∂x

∣
∣
∣
x(t−1)

= ∂Ji

∂x

∣
∣
x(t−1)

as Ĵi,N\{i} = Ji.

Let us finally observe that Problem (5.1) can be solved in polynomial time. In-
deed, rewrite Problem (5.1) as

z = min
∑

j∈N

yj

∑

j∈A
+

i
∪A

−
i

âijyj ≥ b̂i(5.3)

yj ∈ {0, 1} ∀j ∈ N

where b̂i = bi +
∑

j∈Di
aijxj(t − 1) +

∑

j∈A
+

i
aij and âij =

{
aij if aij ∈ A+

i

−aij if aij ∈ A−
i

.

Problem (5.3) is a relaxed (polynomial time) version of the change making prob-
lem [14] and its optimal solution can be trivially determined. Initially, re-denominate
the DMs in A+

i ∪ A−
i so that âij ≥ âik if j < k, then set

y∗
j =

{

0 if
∑

k∈A
+

i
∪A

−
i

, k<j âik ≥ b̂i

1 otherwise
.

Similarly to (5.1), the DMs i ∈ S may determine whether RSf(x) ≤ 0 choosing
a set ΓS(t) by iteratively solving the following problem:

z = min
∑

j∈N\S

yj

∑

i∈S

bi +
∑

i∈S

∑

j∈S

aij +
∑

i∈S

∑

k∈(N\S)∩DS

aikxk(t − 1) +

+
∑

i∈S

∑

k∈(N\S)∩A
+

S

aik(1 − yj) +
∑

i∈S

∑

k∈(N\S)∩A
−
S

aijyj ≤ 0(5.4)

yj ∈ {0, 1} ∀j ∈ N
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where: the binary variables yj , for j ∈ N \ S, are defined as follows

yj =

{
1 if j ∈ ΓS(t)
0 otherwise

;

the set DS is the set of DMs whose values xj(t − 1) are known in advance by DMs
i ∈ S; finally, the sets A+

S and A−
S are such that A+

S = {j ∈ N \ DS : aij > 0} and
A−

S = {j ∈ N \ DS : aij ≤ 0}.
A little more difficult is for the DMs i ∈ S to choose a ΓS(t) so that µ̂i(x−S(t −

1)) = µi(x−S(t − 1)).
Actually, x∗

S = µi(x−S(t − 1)) if, for all x̃S ∈ B
m,

∑

i∈S

bi(x
∗
i − x̃i) +

∑

i∈S

∑

j∈S

aij(x
∗
i x

∗
j − x̃ix̃j) +

∑

i∈S

∑

k∈N\S

aik(x∗
i − x̃i)xk(t − 1) ≤ 0

Then, the DMs i ∈ S may determine whether a tentative x̂S ∈ B
m is equal to

µi(x−S(t − 1)) choosing a set ΓS(t) by iteratively solving the following problem:

z = min
∑

j∈N\S

yj

∑

i∈S

bi(x̂i − x̃i) +
∑

i∈S

∑

j∈S

aij(x̂ix̂j − x̃ix̃j) +
∑

i∈S

∑

k∈(N\S)∩DS

aik(x̂i − x̃i)xk(t − 1) +

+
∑

i∈S

∑

k∈(N\S)∩A
+

S

aik(x̂i − x̃i)(1 − yj) +(5.5)

+
∑

i∈S

∑

k∈(N\S)∩A
−
S

aij(x̂i − x̃i)yj ≤ 0 ∀x̃S ∈ B
m

yj ∈ {0, 1} ∀j ∈ N

where the binary variables yj , for j ∈ N \S, and the sets DS , A+
S and A−

S are defined
as for (5.4).

Now, let us observe that three situations may occur:
i) problem (5.5) has no feasible solution;
ii) problem (5.5) has an optimal solution y∗ and conditions (5.2) hold;
iii) problem (5.5) has an optimal solution y∗ and conditions (5.2) do not hold.
If situation i) occurs, then x̂S is not µi(x−S(t − 1)), a different xS ∈ B

m must be
considered as tentative µi(x−S(t − 1)).

If situation ii) occurs, then x̂S = µi(x−S(t − 1)).
Differently, if situation iii) occurs, DMs i ∈ S cannot conclude neither x̂S =

µi(x−S(t − 1)) nor x̂S �= µi(x−S(t − 1)). In this situation, DMs i ∈ S must enlarge
the set DS by including even the indexes of DMs whose values xj(t − 1) have been
interrogated by DM i ∈ S before realizing that conditions (5.2) do not hold. Then,
DMs i ∈ S solves (5.5) again.

The above procedure is iterated, starting from DS = ∅, until either situation i)
or ii) occurs. At each iteration the cardinality of DS increases at least by one unit.
Then, in the worst case, after at maximum n − m iterations, the procedure stops as
ΓS(t) has become equal to N \ S.

6. Sub-modular Team Problems. In the past sections we have provided con-
ditions for the convergence from any initial state x(0). Now, we show that we can
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Table 6.1

Sequence of DMs’ decisions: blocks on the left, middle and right describe the first, second and
third round of optimization.

DM x J(x) DM x J(x) DM x J(x)

1 (1,0,0,0,0) -1 1 (0,1,1,0,0) -4 1 (1,1,1,1,1) -7
2 (1,1,0,0,0) -2 2 (0,1,1,0,0) -4 2 (1,1,1,1,1) -7
3 (1,1,1,0,0) -3 3 (0,1,1,0,0) -4 3 (1,1,1,1,1) -7
4 (1,1,1,0,0) -3 4 (0,1,1,1,0) -5 4 (1,1,1,1,1) -7
5 (1,1,1,0,0) -3 5 (0,1,1,1,1) -6 5 (1,1,1,1,1) -7

recognize in polynomial time a special class of sub-modular team problems, which do
not meet the aforementioned conditions and for which the convergence is guaranteed
at least when the pbp algorithm is opportunely initialized. This class is characterized
by so-called threshold strategies.

Let us call sub-modular team problems, all team problems with sub-modular team
objective function. From [5], we remind from that i) a pseudo-Boolean function f(.)
is sub-modular if f(v) + f(w) ≤ f(vw) + f(v ∨ w) ii) a quadratic pseudo-Boolean
function f(.) is submodular iff its quadratic terms are nonpositive. However, from
the following example, it is apparent that sub-modularity alone does not guarantee
the convergence of any pbp optimization algorithm.

Example 6.1. Consider the sub-modular team objective function J(x) = x1 +
x2 − 3x1x2 and take x(0) = (0, 0). The team optimum is (1, 1) but observe that at
iteration 1, no DM alone benefits from changing its decision from 0 to 1. Hence the
pbp optimization algorithm starts and terminates in (0, 0).

We can generalize the above reasoning to show that sub-modularity alone does
not guarantee the convergence of any mbm optimization algorithm. On this purpose,
note that if the team objective function is sub-modular, then condition (4.1) reduces
to

∑

i∈S

bi +
∑

i∈S

∑

j∈S

aij < 0, for all S, with |S| = m.(6.1)

We derive the above result by reminding that all quadratic terms are nonpositive and
therefore maxx

∑

k �=i,j(aik + ajk)xk ≤ 0 with the equality verified in x = 0.

Example 6.2. Consider the sub-modular team objective function J(x) = 2x1 +
2x2 +2x3−3x1x2−3x1x3−3x2x3 and take x(0) = (0, 0). The team optimum is again
(1, 1) but observe that at iteration 1, no pairs i and j of DMs alone benefits from
changing their decisions from 0 to 1. Note that condition (6.1) for m = 2 becomes
bi + bj + aij < 0 and there is no pair i and j that satisfies such a condition. Hence
the mbm optimization algorithm starts and terminates in (0, 0).

6.1. A Special Class with Threshold Strategies. Threshold strategy means
that a DM i chooses xi = 1 if and only if at least other li DMs do the same. The
following simple example shows that when DMs have threshold strategies the team
objective function is sub-modular. The team objective function is as in (2.1). We say
that DM i has a threshold strategy with threshold li = k, if its strict pbp strategy is

µi(x−i) =

{
1 if ‖x−i‖1 ≥ k

0 otherwise.
(6.2)
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Table 6.2

Sequence of decisions: first and second round of pbp optimization (left and middle blocks), 2b2
optimization (right block).

DM x J(x) DM x J(x) DM x J(x)

1 (0,0,0,0,0) 0 1 (0,0,1,0,0) -3 1-2 (1,1,0,0,0) -3
2 (0,0,0,0,0) 0 2 (0,0,1,0,0) -3 3-4 (1,1,1,1,0) -11
3 (0,0,1,0,0) -3 3 (0,0,1,0,0) -3 5-1 (1,1,1,1,1) -23
4 (0,0,1,0,0) -3 4 (0,0,1,0,0) -3 2-3 (1,1,1,1,1) -23
5 (0,0,1,0,0) -3 5 (0,0,1,0,0) -3 4-5 (1,1,1,1,1) -23

Lemma 6.1. If all DMs have threshold strategies then the team objective function
J(x) must be sub-modular.

Proof. Observe that DM i has a threshold strategy with li = k. Denote by
S(k) the set of all subsets of N , which do not contain DM i and have cardinality less
than k. Now, for a generic subset S ∈ S(k), take x−i such that xj = 1 for all j ∈ S

and xj = 0 for all j ∈ N \ (S
⋃
{i}) and observe that from (6.2) it must hold that

µi(x−i) = 0. But this means that the following condition holds true

bi +
∑

j∈S

aij ≥ 0for all S ∈ S(k).(6.3)

Repeat the same reasoning considering a generic subset S ⊆ N \ S(k), and take x−i

such that xj = 1 for all j ∈ S with j �= i and xj = 0 for all j ∈ N \ S. Observe that
from (6.2) it must hold that µi(x−i) = 1 which implies that the following condition
hold true

bi +
∑

j∈S

aij < 0for all S ⊆ N \ S(k).(6.4)

Now, consider two sets S1 ∈ S(k) with |S1| = k−1 and S2 = S1∪{j} ∈ N \S(k).
Observe that S2 has cardinality |S2| = k as it is obtained from S1 by adding a single
DM j. We complete the proof by observing that for (6.3) and (6.4) to be valid it must
be aij < 0 for all i and j. Then J(.) has all quadratic terms negative which proves
that J(.) is sub-modular.

�

This special class of sub-modular team problems is interesting as i) threshold
structures can be recognized in polynomial time and ii) any pbp optimization algo-
rithm initialized at x(0) = 1 converges to the team-optimum x∗, in general different
from 1, as established in the following theorem.

Theorem 6.1. There exists a polynomial algorithm that verifies conditions (6.3)
and (6.4) in O(n2 log n). In case of positive answer, any pbp optimization algorithm
initialized at x(0) = 1 converges to the team-optimum.

Proof. (Complexity) Given a DM i, consider all DMs except i in the order
σ(1), . . . , σ(n) with aiσ(1) ≤ . . . ≤ aiσ(n). We remind here that the ordering process
has a complexity O(n log n). Now, conditions (6.3) and (6.4) are verified if and only
if bi + aiσ(1) + . . . + aiσ(k−1) ≥ 0 and bi + aiσ(n−k) + . . . + aiσ(n) < 0. We can limit
ourselves to verify the latter two conditions for any possible value of the threshold
li from 1 to n. Such a procedure is carried out via a dicotomic search and has a
complexity of O(log n). Then, for fixed i the total complexity is O(n log n)+O(log n),
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and as O(n log n) dominates (is always greater than) O(log n) the total complexity
simply reduces to the cost of the ordering process O(n log n). We conclude our proof
by noticing that the ordering process must be repeated n times (one for all DM i)
and therefore the resulting complexity is O(n2 log n).

(Convergence of pbp) Assume DMs ordered by increasing thresholds, i.e., l1 ≤
. . . ≤ ln. Starting at x(0) = 1 any pbp optimization algorithm converges to the
pbp optimum nearest to 1 (in terms of Hamming distance), call it x̂. In other words
x̂ = arg min{‖x−1‖ : x is pbp-opt.}. We must show that x̂ is also the team-optimum.
To prove this fact corresponds to proving that, if there exists a second pbp optimum,
call it x̃, it must hold

J(x̂) − J(x̃) = RSJ(x̃) =

=
∑

i∈S

bi +
∑

i∈S

∑

j∈S

aij +
∑

r �∈S

∑

i∈S

airx̃r ≤ 0,

where S is the set of components which are zero in x̃ and one in x̂. Now note that
∑

i∈S

∑

j∈S aij +
∑

r �∈S

∑

i∈S airx̃r =
∑

i∈S

∑

r∈N airx̂r and therefore we can rewrite
the above inequality as

J(x̂) − J(x̃) =
∑

i∈S

(bi +
∑

r∈N

airx̂r) =
∑

i∈S

(bi +
∑

r∈S̄

air) ≤ 0,(6.5)

where we denote by S̄ the set of components which are one in x̂. Then we need to
prove the validity of (6.5). Now, note that if DMs are ordered by increasing thresholds,
it must hold x̃ ≤ x̂ component-wise. Hence, as x̂ is a pbp optimum then each i ∈ S

has threshold li < ‖x̂−0‖ = ‖x̂‖ which in turns implies that
∑

i∈S(bi +
∑

r∈S̄ air) ≤ 0
and therefore (6.5) hold true.

�

Remark 6.1. Threshold strategies simplify the search for a small neighbor-
hood Γσ(t). DMs may implement a random selection of neighbors based only on their
threshold. So, if DM i has threshold 4, then, it will start selecting randomly four
neighbor DMs, and still randomly increase their number until it can certainly affirm
or exclude that at least four of them play 1.

7. Numerical example. In this first example we simulate a pbp optimization
and show that the algorithm converges to the team optimum. Consider the following
team objective function

J(x) = −x1 + x2 + x3 + x4 + 5x5 − 2x1x2 + 4x1x3 +

+ 2x1x4 − 4x1x5 − 6x2x3 − 2x2x4 − 7x4x5

By direct verification, it can be proved that the above function is a CLG-function
as it has a unique local minimum in (1, 1, 1, 1, 1). Similarly, we can see that it is not
a CU-function as, for instance, on the 2-face x1-x3 with x2 = x4 = x5 = 0, conditions
(3.1)-(3.2) are both verified. The function is not submodular because of the presence
of positive quadratic terms.

Start from the decision vector x = 0 and assume that the DMs make their decision
in the following order: DM 1, DM 2, . . ., DM 5. Table 6.1 reports the sequence of
DMs’ decisions (decisions are starred when they change with respect to the previous
round). Blocks on the left describe the first and second round of optimization while
block on the right describes the third round of optimization.
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If we consider only the vectors x that change from a decision to another one we
obtain the sequence

σ = (1, 0, 0, 0, 0), (1, 1, 0, 0, 0), (1, 1, 1, 0, 0), (0, 1, 1, 0, 0),

(0, 1, 1, 1, 0), (0, 1, 1, 1, 1), (1, 1, 1, 1, 1).

In this second example we simulate the pbp and the 2b2 optimization for the
following team objective function and show that only in the second case we converge
to the team optimum:

J(x) = x1 + x2 − 3x3 + x4 + x5 − 5x1x2 + x1x3 + x2x3 +

−4x1x4 − 4x1x5 − 4x2x4 − 4x2x5 − 5x4x5.

First observe that the solution x∗ = 1 is a pbp optimum as, for all i, bi+
∑

k �=i aik < 0.
Furthermore, since for all S, with |S| = 2 condition (4.1) holds, then x∗ = 1 is also
team-optimum. The pbp optimization is carried out as in the previous example and
decisions are reported in Table 6.2 (left blocks describe the first and second round).
Convergence is on x = (0, 0, 1, 0, 0) �= x∗. Differently, the 2b2 optimization converges
to x∗ as evident from the sequence of decisions listed in the right block.

8. Concluding Remarks. In future works, we wish to extend the obtained
results to consensus problems. Actually, consensus problems have been recently rein-
terpreted as special potential games [13]. For these games there exist algorithms,
very similar in spirit to pbp algorithms and called best response path algorithm, that
guarantee the distributed convergence to Nash equilibria.

A second line of research aims at providing a parallel between mbm and self
organizing/Kohonen maps, since both are optimization methods that can be applied
to boolean spaces with decreasing goal functions that in each iteration modify a subset
of decision variables.
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