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Abstract—This paper studies interactions among homogeneous
social groups within the framework of large population games.
Each group is represented by a network and the behavior
described by a two-player repeated game. The contribution is
three-fold. Beyond the idea of providing a novel two-level model
with repeated games at a lower level and population games at
a higher level, we also establish a mean field equilibrium and
study state feedback best-response strategies as well as worst-
case adversarial disturbances in that context.

I. INTRODUCTION

“Systems of systems” is a topic of primary interest in the
European Union FP7 work program. Systems considered here
are social networks/groups, which at an abstract level, are
described by mathematical models that try to capture the main
phenomena when a large number of individuals interact. The
purpose of this current study is to analyze the mutual influ-
ences in a large number of homogeneous social networks; see
Fig. 1. On each single network, the daily interactions among

Fig. 1. Network of networks.

players is captured by a vector payoff, one component per
each player. The state of the network is the cumulative payoff
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up to the current time. The perspective we adopt is a worst-
case one, in the sense that each network state is affected by
an adversarial disturbance beyond the presence of a controlled
input. Thus the resulting game on each network is a two-player
repeated one, with vector payoffs. The first player selects the
controlled input, the second player the adversarial disturbance.
More specifically, given a current state distribution over the
entire population (of networks), the controlled input of a
single network tries to steer the state to the mean of the
state distribution. This resembles herd behaviors or crowd-
seeking attitudes in that certain social groups tend to mimic
the behavior of other social groups. A similar behavior can be
observed in financial markets under the name of “stock market
bubbles”, which sees investors to emulate other investors. A
third application area is in everyday decision making in that
decisions are made on the basis of the observed information
(past decisions), thus influencing successive decisions. Such a
phenomenon is known as “cascaded information” [3], [8].

Outline of the results. A first result in this paper involves
providing a mean field game framework that captures the
interactions among a large number of networks where herding
behavior is rewarding. The novelty of the proposed model is
in the two-layer structure. On a lower layer one observes two-
player repeated games, one for each network. On a higher
layer a large number of networks interact according to a mean
field game model.

For the mean field game at hand, a second result is that
we establish a mean field equilibrium, that is, a solution
in terms of state feedback best-responses for the controlled
inputs. In such solutions no player can benefit from a unilateral
deviation, as in the case of Nash equilibrium strategies in
differential games with a finite number of players [6]. At the
equilibrium, controlled inputs exhibit a bang-bang structure
when the associated state is far from the mean distribution
(target value), and turn into linear controls in a neighborhood
of the target value.

As a third contribution, microscopic and macroscopic anal-
yses are carried out to show convergence properties of the
population distribution. This is accomplished by resorting to
Markov chain stability tools. Under certain assumptions, the
population converges in mean and variance.



Related literature on mean field games. A first formula-
tion of mean field games is due to J. M. Lasry and P. L. Lions
[13]. The featuring aspect is that the strategies of a single
agent are influenced by the mass of the other agents.

Economics, physics, biology, and network and production
engineering are among the several domains where mean field
games find applications (see [1], [7], [9], [10], [12], [15], [17],
[21]).

The mathematical formulation of a mean field game consists
of a system of two partial differential equations (PDEs). The
first PDE is the Hamilton-Jacobi-Bellman (HJB) equation
whose solution is the value function which is parametrized in
the population distribution [7] (in the presence of disturbance
the equation is better known as Hamilton-Jacobi-Bellman-
Isaacs (HJBI)). The HJB equation is coupled with a second
PDE, known as Fokker-Planck-Kolmogorov (FPK), defined on
variable population distribution and parametrized in the value
function [2], [13], [18], [20].

Explicit closed-form expressions for mean field equilibria
are available only for a limited class of problems among which
is the class of linear-quadratic mean field games, see [4].
As an alternative to explicit solutions, a variety of numerical
approaches are available which hinge on discretization and
finite difference approximations [2].

Evolutionary games represent another stream of literature
strongly connected to mean field games and large population
games ([16], [11], [19]). A first attempt to introduce dynamics
is in [11] for a discrete time version of the game, which
represents a precursor of mean field games.

More recently, and in the spirit of the present paper, the
notion of robustness has been brought within the picture.
Robust mean field games aim to achieve robust performance
and/or stability in the presence of unknown disturbances when
there is a large number of players; see [18], where relations
with risk-sensitive games and risk-neutral games have been
analyzed.

The rest of this paper is organized as follows. In Section II
we formulate the problem and introduce the model. In Section
III we establish a mean field equilibrium for the problem at
hand. Finally, in Section IV we draw some conclusions.

II. THE MODEL

We consider a “large population” of networks, i.e., social
groups characterized by a controlled time-varying behav-
ior/state/characteristics. By “large population” we mean a large
but finite number of homogeneous networks, namely, players’
interactions in each network are similar. Each network is
subject to controlled inputs and adversarial disturbances. The
large population game in its generic form appears as follows.

Given the following data, f : ∆(U)×∆(W )→ [− 1, 1]n,
“bilinear”, U a finite control set and ∆(U) a set of mixed
control actions, W a finite disturbance set and ∆(W ) a set of
mixed dsturbance actions; g : Rn×Rn → [0,+∞[, “regular”;
Ψ : Rn×Rn → Rn, “regular”; U andW , sets of all measurable
functions u(·) and w(·) from [0, T ] to ∆(U) and ∆(W ),

respectively; m : Rn× [0,+∞[→ R, (x, t) 7→ m[x](t), proba-
bility density function, which satisfies

∫
Rn m[x](t)dx = 1 for

every t; each player solves the minimization problem:

inf
u(·)∈U

sup
w(·)∈W

J(x, u(·), w(·),m[·](·))

=

∫ T

0

g(X(t),m(t))dt+ Ψ(X(T ),m[δX(t)](T )) (1)

dX(t) = f(u(t), w(t))dt+ σdB(t), X(0) = x, (2)

where we denote by
• X : [0, T ]→ Rn, t 7→ X(t), the players’ state at time t,

and x its initial state,
• u : [0, T ]→ ∆(U), t 7→ u(t), the control at time t;
• w : [0, T ]→ ∆(W ), t 7→ w(t), the disturbance at time t;
• m(t) :=

∫
Rn xm[x](t)dx the mean distribution at time t.

Note that the cost functional includes a mean field term
to capture the mutual interaction between individuals and
population. In this sense, observe that the distribution m[x](t)
represents the percentage of agents in state x at time t. Also,
the cost functional J in (1), currently in a finite horizon form,
can be replaced by infinite horizon discounted or average
cost when appropriate. Also, the differential equation (2) in
its stochastic form includes an infinitesimal vector Brownian
motion dB = {dBi}n (the ith component of dB is dBi which
is a scalar Brownian motion) weighted by a scalar coefficient
σ, but turns into an ordinary differential equation if we take
σ = 0.

We suppose that the distribution enters into the cost through
its mean. Indeed, the running cost g : Rn × Rn → [0,+∞[,
(x,m) 7→ g(x,m) is of the form:

g(x(t),m(t)) =
1

2
(m(t)− x(t))

T
Q (m(t)− x(t)) .

The above cost describes the square deviation of an individ-
ual’s state from the mean state computed over the whole pop-
ulation. Such a cost reflects the willingness of the individuals
to mimic the mean population behavior as it happens in herd
behaviors or crowd-seeking attitudes.

To see how the model above describes players’ interactions
over networks consider the following example borrowed from
[14].

f1

f2

f3

w1

w2

Fig. 2. Network system.

Example 1: Consider the system depicted in Fig. 2 rep-
resenting two warehouses, three controlled flows and two
uncontrolled flows. A unit of flow f1 produces one unit of
product X1 per time unit. Similarly, flow f2 uses one unit of



X1 to produce one unit of X2 per time unit. A unit of flow f3

produces one unit of product X2 per time unit. Uncontrolled
flows w1 and w2 represent the exogenous demand of resources
X1 and X2, respectively. The associated dynamics then reads:[
Ẋ1

Ẋ2

]
= f(u,w) =

[
1 −1 0
0 1 1

]
︸ ︷︷ ︸

F

 f t1
f t2
f t3


︸ ︷︷ ︸
u(t)

−
[
wt1
wt2

]
︸ ︷︷ ︸
w(t)

.

Now, suppose that flows can be processed only in batches
and therefore take for instance fi ∈ {−5,−2, 1, 6}, and wi ∈
{−3, 2}.

Let us enumerate all the actions of players 1 and 2, so that
we have U = {a11, . . . , a1r} and W = {a21, . . . , a2q} with
r = 43 and q = 22, where aij denotes the jth action of player
i.

The complete matrix of vector payoffs is then obtained from
the following table, where each entry represents a possible
vector payoff f(u,w):

u/w a21 . . . a2q

a11 Fa11 − a21 . . . Fa11 − a2q

...
...

...
a1r

As it will be clearer later, for our purposes we can simply
extract from the above table the rows corresponding to the
following four actions of player 1:

a11 = (1,−2, 6), a12 = (1,−2,−5),

a13 = (−5, 1,−5), a14 = (−5, 1, 6).

For player 2, we consider the following four actions:

a21 = (−3,−3), a22 = (2,−3),

a23 = (−3, 2), a24 = (2, 2).

Control and disturbance sets are then U = {a11, . . . , a14} and
W = {a21, . . . , a24}, respectively.

The following 4 × 4 matrix includes all possible vector
payoffs f(u,w), where u ∈ U and w ∈W and n = 2:

(6, 7) (1, 7) (6, 2) (1, 2)
(6,−4) (1,−4) (6,−9) (1,−9)

(−3,−1) (−8,−1) (−3,−6) (−8,−6)
(−3, 10) (−8, 10) (−3, 5) (−8, 5)

 . (3)

Note that we can always normalize f(·) so as to have
(∆(U),∆(W )) 7→ [− 1, 1]n.

This then leads to the following mean field game system

vt(x, t) + inf
u∈∆(U)

sup
w∈∆(W )

{f(u,w)vx(x, t) + g(x,m, t)}

+σ2

2 v
2
xx(x, t) = 0 in Rn × [0, T [,

v(x, T ) = Ψ(x) ∀ x ∈ Rn

mt(t) + div(m · f(u∗, w∗)− σ2

2
m2
xx = 0, m(0) = m0

u∗(t, x) = arginfu∈∆(U){f(u,w∗)vx(x, t)}.
w∗(t, x, u) = argsupw∈∆(W ){f(u,w)vx(x, t)}.

The mean field game system appears in the form of two
coupled PDEs intertwined in a forward-backward way. The
first equation is the HJBI equation with variable v(x, t) and
parametrized in m(·). Given the boundary condition on final
state (second equation), and assuming a given population
behavior captured by m(·), the HJBI equation is solved
backwards and returns the value function and best-response
behavior of the individuals (fourth equation) as well as the
worst adversarial response (fifth equation). The HJBI equation
is coupled with a second PDE, known as Fokker-Planck-
Kolmogorov (FPK) (third equation), defined on variable m(·)
and parametrized in v(x, t). Given the boundary condition on
initial distribution m(0) = m0, and assuming a given indi-
vidual behavior described by u∗ the FPK equation is solved
forward and returns the population behavior time evolution
m(t).

Noting that the distribution enters into the cost through its
mean, we can also simplify the above system through model
reduction. Indeed, we can replace the FPK equation by an
ordinary differential equation in the variable mean distribution
and obtain the following system:

vt(x, t) + inf
u∈∆(U)

sup
w∈∆(W )

{
f(u,w)vx(x, t)

+g(x,m, t)
}

+ σ2

2 v
2
xx(x, t) = 0 in Rn × [0, T [,

v(x, T ) = Ψ(x) ∀ x ∈ Rn

m′(t) =

∫
f(u∗, w∗)m(x, t)dx,

m(0) = m0.

(4)

Any solution of the above system of equations is referred
to as mean field equilibrium, as no individual benefits arise
from deviating from the adopted strategy. A main question
is the existence and uniqueness of equilibria for (4). The
answer lies in most cases in numerical techniques and requires
the implementation of a fixed point procedure. This entails
assuming that m : [0, T ]→ R is continuous and m(0) = m0.
With such m one solves the HJBI equation, first two lines
of (4), and obtain a value function vm(·). The value function
is then used to calculate the best-response u∗ and worst
adversarial disturbance w∗. These are plugged into the ODE
of the mean distribution evolution, last two equations. We then
solve the ODE and obtain a new function Mm(·). The process
halts when Mm(·)(·) = m(·).

A main issue in the above procedure is to prove in an
abstract way that such a fixed point procedure leads to one
and only one fixed point; a second issue is related to finding
the value function vm(·) in order to have its derivative for the
explicit calculation in the last line of (4). In this perspective
a main question is the following one: does a solution of the
first two lines necessarily have a spatial derivative? In the rest
of the paper we address the above issues by using the weak
notion of viscosity solutions.

III. MEAN FIELD EQUILIBRIUM

Consider a two player repeated game where player 1 plays
u(t) ∈ ∆(U), player 2 plays w ∈ ∆(W ), and f : ∆(U) ×



∆(W )→ [−1, 1]n is the payoff. We assume that f is bilinear
in u and w. We denote by G the one-shot vector payoff game
(∆(U),∆(W ), f(t)). With respect to the above game, in the
spirit of attainability [14], we aim at analyzing convergence
properties of the disturbed cumulative payoff X(t) obtained
by integrating (2) which we rewrite below

dX(t) = f(u(t), w(t))dt+ σdB(t), X(0) = x.

Toward this aim, we will make use of the notion of projected
game which we recall next. Let us consider λ ∈ Rn and denote
by 〈λ,G〉 the one-shot zero-sum game whose set of players
and their actions are as in game G, and the payoff that player
2 pays to player 1 is λT f(u,w)). Note that, as a zero-sum
one-shot game, the game 〈γ,G〉 has a value, denoted val[λ],
obtained as

val[λ] := infu∈∆(U)supw∈∆(W ){f(u,w)λ}.

Assumption 1: The value of the projected game, val[λ], is
negative for every λ ∈ Rn.

Now, for given x, take for λ the value λ(vx) = vx(x,t)
‖vx(x,t)‖

which is the gradient direction on x. Then, we can introduce
the value of the projected anti-gradient game

val[vx(x, t)] := f(u∗, w∗)λ(vx).

Due to the bilinear structure of f , we can deduce that the
best-response strategy u∗ and worst adversarial disturbance
w∗ are on a vertex of the associated simplices in Rp and Rq ,
respectively. This corresponds to saying that both strategies
are pure strategies. We recall here that pure strategies are
such that each player chooses a single action, in contrast with
mixed strategies where players select probabilities on actions.
A consequence of this is that the mean field equilibrium, if
exists, is in pure strategies as well.

We can formalize the above concept by introducing

Aij := f(1i,1j) ∈ [−1, 1]n,

where 1i ∈ Rp is a unit vector with all zero components except
the ith one which is equal to 1, and similarly for 1j ∈ Rq .
Then, we can rewrite the value of the anti-gradient projected
game as

val[vx] = inf
i∈I

sup
j∈J

Aijλ(vx),

where I = {1, . . . , p} and J = {1, . . . , q} are opportune sets
of indices. Best responses and adversarial strategies are then

(i∗, j∗) = arg inf
i∈I

sup
j∈J

Aijλ(vx).

With the above definition of val[vx] in mind, the Hamilton-
Jacobi part of (4) can be rewritten as

vt + ‖vx‖val[vx] +
1

2
(m(t)− x(t))

T
Q (m(t)− x(t))

+
σ2

2
v2
xx = 0 in Rn × [0, T [, (5)

v(x, T ) = Ψ(x) ∀ x ∈ Rn. (6)

Our goal is to find a suitable final cost Ψ such that there
exists a solution with m ≡ 0. In order to do this, consider the
solution Ψ of the stationary equation

‖Ψx‖ = 1
−val[Ψx]

(1

2
(m(t)− x(t))

T
Q (m(t)− x(t))

+
σ2

2
v2
xx

)
.

We can show that, given function Ψx(x) as above, any
primitive Ψ̂(x) is a candidate value function for our problem.

Theorem 1: Let Assumption 1 hold. Then any primitive
Ψ̂(x) is a candidate value function for our problem.

In order to arrive at the value function it remains to define
Ω, the set of an associated exit-time optimal control problem
yet to be introduced. Set Ω consists of all states x sufficiently
close to zero, where a single player can drive the state to zero
in one shot in the case of no Brownian motion. We can define
such a set in two steps. First, let us identify the region of the
state space where the adversary responds with a fixed pure
strategy l ∈ J . This region is a cone with vertex at the origin,
as the value function gradient vx is radial and the adversary
strategy depends on this only. More formally, for fixed l ∈ J
the cone we look for is

Cl = {x ∈ Rn| (i∗, j∗) = arg inf
i∈I

arg sup
j∈J

Aijλ(vx) = (i∗, l)}.

For the same l ∈ J , we consider the set of states that can
be driven to zero in one iteration. Such a set is a polyhedron
and is defined as

Pl = −AT·l∆(U) = {x ∈ Rn| −AT·lu = xdt,

for some u ∈ ∆(U)}.

Then, let us take the intersection of the two sets Ωl = Cl∩Pl.
The set of states for which a player can exit the game is then

Ω = ∪l∈JΩl.

We are now in a position to formalize the exit time optimal
control problem. Consider the function on Rn

Ψ(x) =


Ψ̂(x) if x 6∈ Ω,

1
2 (m(t)− x(t))

T
Q (m(t)− x(t))

= Ψ̂(x)
if x ∈ Ω.

Also, consider the final-time problem in Rn × [0, T ] given by
the running cost g(·, ·, 0) and by the continuous final cost Ψ.
For every Ω 6= x ∈ Rn, we denote by t∗(x) the reaching time
of Ω under the nonanticipative minmax strategies (u∗, w∗).
It holds that the map x 7→ t∗(x) can be obtained through
numerical computations and by solving the problem below in
the variable t∗(x) for a given x:{

k̃ − xTx =
∫ t∗(x)

0
(val[vX ] + σ2

2 v
2
xx)dt

dX(t) = f(u∗, w∗)dt+ σdB(t), X(0) = x.
(7)

In the above system, we consider the balls centered at the
origin with radius k, Bk = {x ∈ Rn| xTx ≤ k} and then
compute the maximal inscribed ball Bk̂ in Ω

k̃ := arg max{k| Bk ⊆ Ω}.



Then, the value function of the optimal control problem
introduced (the solution of the HJB equation) is given by

v(x, t) =

 Ψ(x) if T − t < t∗(x),

Ψ(x) +
Qσ2

2
(T − t∗(x)− t) otherwise.

In summary, the state of each single player reaches Ω in
minimum time t∗(x), and once there it oscillates around
zero due to the Brownian motion. This justifies the cost
Qσ2

2 (T − t∗(x) − t) from t∗(x) to T . Should t∗(x) exceed
the residual horizon length, the cost is then Ψ(x).

In order to provide a macroscopic description of the system
evolution let us start by discretizing the state space X . Also
let us denote by π the probability distribution vector defined
on X and let us refer to s as the total number of states, i.e.,
s is the dimension of X , dim(X ) = s. The FPK equation can
then be replaced by the following Markov chain equation

π+ = πP,

where P is a right (row) stochastic matrix in {0, a}s×s and
a = 2n. If we zoom in on matrix P , then we notice that it is
a block matrix of the form:

P =

[
A B
C D

]
, A =

{
1
a

}a×a
B = {0}a×s

C = {0, a}(s−a)×a D = {0, a}(s−a)×(s−a)

Matrix A is responsible for stationarity, i.e., the stationary
solution is a uniform distribution over the first a states,
[π1 . . . πa] = [1/a . . . 1/a]. Such a solution satisfies the sta-
tionarity equation

[π1 . . . πa] = [π1 . . . πa]A.

In other words, once the system reaches S = {±σ}n, it never
leaves the set. We also say that S is invariant. For the same
reason, matrix B is the zero matrix. A different way to see
this is that A is row stochastic and therefore the rows of B
must sum to zero. This observation, together with the fact that
the elements of P are nonnegative suggests that all elements
of B must be zero. Matrix C is a full column rank, as any
point in S is reachable from outside S. Finally, matrix D has
zero elements in the principal diagonal, as outside S no states
can keep their values fixed, or, saying the same, the transition
probability from any given state to the same state is zero.

With the above in mind, we can infer that the probability
distribution π converges to the stationary uniform distribution
[π1 . . . πa] = [1/a . . . 1/a]. The same applies to m if we track
back the discussion to its origins. The above distribution is
zero-mean and variance equal to σ2, which is in accordance
with the Brownian motion characteristics introduced earlier.

IV. CONCLUSIONS

This paper has shown how repeated games and population
games can be intertwined to capture interactions among ho-
mogeneous social groups when herding behavior is rewarding
for the groups. For the selected games, we have establish

a mean field equilibrium and studied state feedback best-
response strategies as well as worst-case adversarial distur-
bances. Future directions of research involve the extension of
the framework to other social behaviors (other types of cost
functions), as well as social dynamics. The impact on social
networks that existing results and techniques from repeated
and population game literature can have is still a broad and
open field.
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