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Bandwagon effect in mean-field games

Leonardo Stella, Fabio Bagagiolo, Dario Bauso, Raffaele Pesenti

Abstract— This paper provides a mean-field game theoretic
model of the bandwagon effect in social networks. The latter
phenomenon can be observed whenever individuals tend to align
their own opinions to a mainstream opinion. The contribution
is three-fold. First, we provide a mean-field games framework
that describes the opinion propagation under local interaction.
Second, we establish mean-field equilibrium strategies in the case
where the mainstream opinion is stationary. Such strategies are
shown to have a threshold structure. Third, we study conditions
under which a given opinion distribution is stationary if agents
implement optimal non-idle and threshold strategies.

I. INTRODUCTION

Nowadays social networks have been shown to have an

effect also on political and socio-economic events. Thus a

rigorous study of the mutual influence between individuals’

opinions and population’s mainstream opinion has involved

scientists in different disciplines such as engineering, eco-

nomics, finance and game theory, just to name a few.

A common observation is that in most cases opinions

evolve following so-called averaging processes [11]. It has

been shown that when the interaction is global, every agents

interact with all other agents, opinions may converge to a

unique consensus-value. On the other hand, if agents have

local interactions, that is, agents talk only with those “who

think similarly”, the macroscopic behavior yields clusters

of opinions, representing separate groups, parties, or com-

munities [8]. The literature offers a variety of Lagrangian

and Eulerian models to model opinion dynamics [1]. This

paper provides a mean-field game theoretic perspective on

the problem.

Main results. First, we provide a mean-field games frame-

work that describes the opinion propagation under local

interaction. The model assumes that the agents adjust their

opinions based on a local measure of the mainstream opinion.

Changes in the opinion involve fixed and quadratic costs. The

model borrows concepts from mean-field games, statistical

physics, and optimal control.
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Second, we establish mean-field equilibrium strategies in

the case where the mainstream opinion is stationary. Such

strategies are characterized by the property that no player can

benefit from a unilateral deviation similarly to the definition

of Nash equilibrium strategies in noncooperative n-player

games [5]. In particular, we show that mean-field equilibrium

strategies are non-idle, that is, the controls of a given agent

can switch from non null to null only but not viceversa. It is

shown that non-idleness is justified by the fixed costs. Such

strategies are also shown to be thresholds strategies, that is,

the control is non null only if the target point (the mainstream

opinion) is sufficiently far from the current opinion. This

corresponds to saying that for a control to be non null the

distance between mainstream and agent’s opinion must be

higher than a given time-varying threshold.

Third, for the general case of time-varying mainstream

opinion, and forcing the control strategies to be non-idle, we

provide a detailed macroscopic analysis of the time evolution

of the opinions’ distribution. More specifically, we address

the question on what initial distributions are stationary under

optimal non-idle and threshold strategies.

Related literature on mean-field games. The theory of

mean-field games was first presented by Lasry and Lions

in [14], [4]. This theory studies interactions between in-

distinguishable individuals and the population around them.

Several application domains accommodates mean-field game

theoretic models such as economics, physics, biology, and

network engineering (see [3], [10], [12], [13], [16], [18],

[19]). Decision problems with mean-field coupling terms

have also been formalized and studied in [7]. The classical

structure of mean-field games consists of two partial dif-

ferential equations (PDEs). The first PDE is the Hamilton-

Jacobi-Bellman equation, which returns the optimal indi-

vidual response to the population mean-field behavior. The

second PDE is the Fokker-Planck equation which describes

the density evolution of the players as a results of the

implementation of the individual optimal strategies [14],

[17]. Robustness and risk-sensitivity are also open lines of

research as evidenced recently in [6], [17].

The paper is organized as follows. In Section II, we

discuss the problem. In Section III, we prove some properties

of the optimal control strategy in the case of a stationary

mainstream opinion. In Section IV, we study the system

response in consequence to the application of a threshold

policy. In Section V, we provide numerical illustrations and

draw conclusions in Section VI.

Notation We denote by (Ω,F ,P) a complete probability

space. We let B be a finite-dimensional standard Brownian

motion process defined on this probability space. We define



F = (Ft)t≥0, its natural filtration augmented by all the

P−null sets (sets of measure-zero with the respect P). We

write ∂x and ∂2
xx to stand respectively for the first and second

derivatives with respect to x.

II. THE GAME

Consider a population of homogeneous agents (players),

each one characterized by an initial opinion X(0) ∈ R and

an opinion X(t) ∈ R at time t ∈ [0, T ], where [0, T ] is the

time horizon window.

The control variable is a measurable function of time u(·),
t 7→ u(t) ∈ R and establishes the rate of variation of an

agent’s opinion. It turns out that the opinion dynamics can

be written in the form
{

dX(t) = udt+ σdB(t), t ∈ [0, T ],
X(0) = x.

(1)

Consider a probability density function m : R× [0, T ] → R,

(x, t) 7→ m(x, t), representing the percentage of agents in

state x at time t, which satisfies
∫

R
m(x, t)dx = 1 for every

t. Let us also denote the mainstream opinion at time t as

m(t), and the mainstream opinion as perceived by a player

in state X(t), as m[X(t)](t). Generally speaking, both m(t)
and m[X(t)](t) may be any statistics of m(·).

The objective of an agent with opinion x is to adjust its

opinion based on the perceived mainstream opinion m[x](t).
This describes typical emulating effects where “to think

similarly” is rewarding.

Then, for the agents, consider a running cost g : R3 →
[0,+∞[, (x,m[x], u) 7→ g(x,m[x], u) of the form:

g(x,m[x], u) =
1

2

[

q
(

m[x]− x
)2

+ ru2

]

+Kδ(u), (2)

where q, r and K are constant positive values; and δ : R →
{0, 1} is defined as

δ(u) =

{

0 if u = 0

1 otherwise
. (3)

Also consider a final cost Ψ : R2 → [0,+∞[, (m[x], x) 7→
Ψ(m[x], x) of the form

Ψ(m[x], x) =
1

2
S
(

m[x]− x
)2

, (4)

where S is scalar and positive.

Problem statement. The problem in its generic form is the

following: given a finite horizon T > 0, an initial distribution

of opinions m0, a suitable running cost: g, as in (2); a final

cost Ψ, as in (4), and given a suitable dynamics for X as in

(1), minimize over U the following cost functional,

J(x, t, u(·)) = E{
∫ T

t

g(X(s),m[X(s)](s), u(s))ds+

+Ψ(m[X(T )](T ), X(T ))} (5)

where m(·) as time-dependent function is the evolution of

the mainstream opinion when every agent behaves optimally

and U is the set of all non-idle measurable functions from

[0, T ] to R. We say that a control function is non-idle if

no switching time exists, ŝ > 0, such that u(ŝ) = 0 and

u(s) 6= 0 for s > ŝ. If we call a player active (inactive) if

its control is nonnull (null), then a non-idle strategy forces a

player in one of the three following situations i) the player

is always active, ii) the player is always inactive, iii) the

player first is active and then inactive. In no case a player

can switch from being inactive to active. We call switching

time instant the time, if it exists, in which an optimal control

turns null.

III. STATIONARY AND GLOBAL INTERACTION

In this section we assume for the mainstream opin-

ion m(·) = m, where m is constant. In other words,

the mainstream opinion is constant all over the horizon

window. In addition to this, we denote the value func-

tion minu∈U J(x, t, u(·)) as v(x, t) and denote v0(x, t) :=
J(x, t, 0), the latter being the cost corresponding to null

controls over the horizon [t, T ].
Given the above notation, the Hamilton-Jacobi-Bellmann

conditions that characterize the optimal controls are

∂tv(x, t) +
σ2

2
∂2
xxv(x, t) = (6a)

= − inf
u∈R

{

u∂xv(x, t) +
1

2

[

q
(

m− x
)2

+ ru2

]

+Kδ(u)

}

v(x, T ) =
1

2
S
(

m− x
)2

. (6b)

Rearranging and isolating the cases where the minimizer

is u∗ = 0 or u∗ 6= 0, we obtain

∂tv(x, t) +
σ2

2
∂2
xxv(x, t) = (7)

=











− 1
2q

(

m− x
)2

for u∗ = 0

−u∗∂xv(x, t)− q
2

(

m− x
)2

− r
2u

∗2 −K, u∗ 6= 0
.

Hence, if the optimal control remains null from t to the end

of the horizon, i.e., u∗(x, s) = 0 for t ≤ s ≤ T , we obtain

v0(x, s) =
σ2S

2
(T−s)+

σ2q

4
(T−s)2+

q(T − s) + S

2
(m−x)2.

The above equality is useful as it provides an explicit com-

putation of the cost which we can plug into the Hamilton-

Jacobi-Bellmann equation.

Theorem 3.1 (Threshold optimal policy): There exists a

time-varying threshold function λ : [0, T ) → R such that

an agent optimal policy has structure:

u∗(X(t)) =

{

0 if |m[X(t)](t)−X(t)| ≤ λ(t),

6= 0 otherwise.
(8)

Function λ(·) is increasing over time and is equal to

λ(t) =

√
2Kr

q(T − t) + S
, 0 ≤ t ≤ T. (9)

Proof: Let s be the switching time instant, that is,

u(t) 6= 0 for t < s and u(t) = 0 for t > s. Then, in s

the following condition must hold

inf
u
{g(x(s),m, u) + v0(x(s) + dx, s+ dt)} ≥ v0(x(s), s)



that is, for all u ∈ R,

∂sv0(x, s) +
σ2

2
∂2
xxv0(x, s)+ (10)

+ u∂xv0(x, s) +
q

2

(

m− x
)2

+
r

2
u2 +K ≥ 0.

To see why (10) holds true, note that by dynamic pro-

gramming we have the following: the null control u∗ ≡ 0 is

optimal for (x, t) if and only if, for every τ > 0,

v0(x, t) = inf
u(·)

E

(
∫ t+τ

t

g(x(s),m, u(s))ds

+v(x(t+ τ), t+ τ)) ,

where v is the ”true” value function. This can be written as

inf
u(·)

(

E

(
∫ t+τ

t

g(x(s),m, u(s))ds

)

+E ((v(x(t+ τ), t+ τ)− v0(x, t))) = 0,

and, being v ≤ v0, this implies

inf
u(·)

(

E

(
∫ t+τ

t

g(x(s),m, u(s))ds

)

+E ((v0(x(t+ τ), t+ τ)− v0(x, t)))

≥ inf
u(·)

(

E

(
∫ t+τ

t

g(x(s),m, u(s))ds

)

+E ((v(x(t+ τ), t+ τ)− v0(x, t))) = 0

Since v0 is the cost associated to the null control u∗ ≡ 0,

we have

E

(
∫ t+τ

t

g(x(s),m, 0)ds

)

+E ((v0(x(t+ τ), t+ τ)− v0(x, t)) = 0,

which implies the following necessary and sufficient condi-

tion for the optimality of u∗:

inf
u(·)

(

E

(
∫ t+τ

t

g(x(s),m, u(s))ds

)

+E ((v0(x(t+ τ), t+ τ)− v0(x, t))) ≥ 0.

Dividing by τ > 0, passing to the limit as τ → 0+, and

using the expression (and the regularity) of v0, we then get

r

2
u2 − (q(T − s) + S)(m− x)u+K ≥ 0.

This last inequality holds for all u if |m− x| ≤
√
2Kr

q(T−s)+S .

The structure of λ(·) as defined in (9) can be immediately

derived by determining the values of x for which condition

the above condition holds as an equality.

Notice that if |m−X(0)| ≤
√
2Kr

q(T )+S then the correspond-

ing control policy yields controls constantly null over the

horizon. On the other hand, if |m − X(T )| >
√
2Kr
S then

the corresponding control policy yields controls constantly

nonnull over the horizon.

IV. THRESHOLD POLICY

Here, we study the consequence of the application of

threshold strategies in the case where m(·) is time-varying.

This corresponds to saying that players are myopic in that

they make their decisions as if the mainstream opinion

would remain constant. Specifically, we model the band-

wagon effect, that is the situation in which “the probability

of any individual adopting [an opinion] increases with the

proportion who have already done so” [2].

More formally, in the following we assume that

1) the players implement a non-idle threshold policy as

in (8) in spite of the possible time-varying nature of

m(·);
2) the mainstream opinion as perceived by a player in

state X(t) is a (distorted) mode defined as m[X(t)] =
argmax{h(|X(t)− y|)m(y)}, where m(y) is the den-

sity of the players’ states in y and h : [0,+∞[→
[0,+∞[ is a continuous fading function. Specifically,

h(·) is a non-increasing such that h(0) = 1. In presence

of multiple distorted modes then function arg(·) returns

the minimum among the distorted modes closest to

X(t).

We are interested in determining the initial distributions

m0 such that the initial controls are null for all the players,

i.e., u(x; 0) = 0 for all x in the support of m0. This condition

in turn implies that the controls, given the non-idleness of

the strategies considered, are then null all over the horizon,

provided that we assume by definition u(x; 0) = 0 also for

all x not in the support of m0. Hereafter, we refer to such

distributions as Null Control Inducing (NCI) distributions.

Lemma 4.1: Let a threshold policy (8) be implemented

and Assumptions 1 and 2 hold. A distribution m0 is NCI iff

∀x ∃y : (11)

|y − x| ≤ λ(t), m(y)h(|y − x|) ≥ m(z)h(|z − x|), ∀z.
Proof: By definition of threshold policy (8), u∗(x, t) =

0 iff |m[x]−x| ≤ λ(t). Since m(y)h(|y−x|) ≥ m(z)h(|z−
x|) for all z then we have y = m[x] and |y− x| ≤ λ(t) and

the lemma is proved.

We can restate the above lemma saying that m0 is NCI,

if each player with opinion x thinks that the mainstream

opinion is within I(x), where I(x) is the neighborhood of x

with radius λ(t). Then, it is immediate to verify the uniform

distribution is NCI as well as any distribution with a single

point mass (a Dirac impulsion a single point). In the former

case each player considers its opinion the mainstream one.

In the latter case all the players share the same opinion.

In the following, we introduce some particular non trivial

NCI distributions, in presence of fading functions of the

following types:

• linear: h(q) = max{1− αq, 0}, with α > 0;

• exponential: h(q) = e−αq , with α > 0;

• Gaussian: h(q) = e−αq2/2, with α > 0.

We will show that m0 is NCI if it is either sufficiently smooth

or sufficiently ”peaky”.



A. m(x) Lipschitz function

Let m(x) be such that m(x) = 0 outside a compact set

C, that infC m(x) > ε > 0 for a suitable ε, and that it is

a Lipschitz function on C, that is there exists L such that

|m(x)−m(y)| ≤ L|x− y| for all x, y ∈ C.

If h(·) is linear, m(x) is NCI if α ≥ L
inf{m(x)} , where

inf(·) is taken over the support of m(x).

Under the above hypotheses, condition (11) holds for y =
x, i.e., each player considers its opinion the mainstream one.

Indeed, for y = x, |y − x| ≤ λ(t) trivially holds, and the

second condition can be rewritten as

m(x) ≥ m(z)h(|z − x|), ∀z. (12)

As m(x) is a Lipschitz function, we have m(x) ≥ m(z) −
L|x− z|. Hence, (12) certainly holds as, for all z,

m(z)− L|x− z| ≥ m(z)h(|z − x|) ⇔
L|x− z| ≤ m(z)α|z − x| ⇔
L ≤ m(z)α,

and the last condition is certainly true as α ≥ L
inf{m(x)} .

B. log(m(x)) Lipschitz function

Let log(m(x)) be a Lipschitz function, i.e., | log(m(y))−
log(m(x))| ≤ L|x−y|. If h(·) is linear or exponential m(x)
is NCI if α ≥ L.

Even under these hypotheses, condition (11) holds for y =
x. In fact, (12) certainly holds as, for all z,

| log(m(x))− log(m(z))| ≤ L|x− z| ⇔
m(x) ≥ m(z)e−L|z−x|. (13)

Hence, m(x) ≥ m(z)h(|z − x|) holds if

m(z)e−L|z−x| ≥ m(z)h(|z − x|) ⇔
e−L|z−x| ≥ h(|z − x|) ⇔
e−L|z−x| ≥ 1− α|z − x| or e−L|z−x| ≥ e−α|z−x| ⇔
L ≤ α. (14)

Now, if log(m(x)) is a Lipschitz function and differen-

tiable, then distribution m(x) is NCI also if h(q) is Gaussian

kernel and L ≤ αλ(t) as, for all x, we have m[x] =
argmax{m(y)e−α(x−y)2/2} ∈ I(x). Indeed, we have

∂m(y)e−α(x−y)2/2

∂y
=

e−α(x−y)2/2(m′(y) + α(x− y)m(y)) = 0 ⇔
m′(y, t) + α(x− y)m(y) = 0.

Hence, ŷ = m[x] is such that
m′(ŷ)
m(ŷ) = α(ŷ − x)

As log(m(x)) is a Lipschitz function, we have

∣

∣

∣

m′(y)
m(y)

∣

∣

∣
≤

L for all y. Hence, y ∈ I(x) if |ŷ − x| ≤ L
α ≤ λ(t).

C. m(x) ”peaky” function

Let m(x) be characterized by a set Γ = {x1, x2, . . . , xn :
x1 < x2 < . . . < xn} of local maxima such that:

i) each xk ∈ Γ is an absolute maximum of function

m(x)h(|x − xk|), that is, each player in xk feels itself a

leader and considers its opinion the mainstream one;

ii) for all x ∈ ∂I(xk), m[x] ≥ supy∈I(xk)m(y, t)h(|y− x|),
for all xk ∈ Γ, that is, each player on the frontier of I(xk)
thinks that the mainstream opinion is not in I(xk);
iii)

⋃

xk∈Γ I(x
k) ⊇ [x0, xn+1], where [x0 ≥ 0, xn+1 ≤ 1]

is the minimum interval including the support set of m0 =
m(x), that is, the neighborhoods of the leaders cover all the

the possible opinions.

We have that m(x) is NCI if log h(·) is sublinear, that is,

for any p, q ≥ 0 h(p+ q) ≤ h(p)h(q).

To prove such a result we need to show that the following

critical properties hold true:

• first critical property: if x ∈ [xk, xk+1] then m[x] ∈
[xk, xk+1].

• second critical property: if x ∈ [xk, xk+1], then either

both x and m[x] are in I(xk) or both of them are in

I(xk+1).

If both properties hold we have that if x ∈ [xk, xk+1] then

|m[x]−x| ≤ λ(t), as assumption iii) implies that xk+1−xk ≤
2λ(t) and I(xk) (respectively I(xk+1)) has radius λ(t) and

is centered in xk (respectively is xk+1). Consequently, if both

such properties hold, condition (11) holds true as well since,

from assumption iii), all x in the support of m(x) belong to

some interval [xk, xk+1]. Hence m(x) is NCI.

To prove the first critical property, we observe that, given

x ∈ [xk, xk+1], if y = m[x] < xk were true, then it would

hold m(y)h(|y − x|) > m(xk)h(|xk − x|) in contradiction

with m(y)h(|y − x|) ≤ m(y)h(|y − xk|)h(|xk − x|) ≤
m(xk)h(|xk − x|), where the first inequality holds for the

logarithmic sublinearity of h(·) and the second inequality for

assumption i). Symmetric argument applies to y > xk+1.

To prove the second critical property, we observe that x ∈
[xk, xk+1] implies that either

1) x ∈ I(xk) \ I(xk+1) or

2) x ∈ I(xk) ∩ I(xk+1) or

3) x ∈ I(xk+1) \ I(xk).

If condition 2) holds the property is proved since the first

critical property implies m[x] ∈ I(xk)∪ I(xk+1). Condition

3) is symmetrical to condition 1), so we need to verify the

second critical property only when the latter condition holds.

Let z be the only element on the frontier of I(xk+1) in

[xk, xk+1], ẑ = m[z], x̂ = m[x]. By assumption ii) we have

xk ≤ ẑ ≤ z. If condition 1) holds then xk ≤ x < z and we

have to prove that also xk ≤ x̂ ≤ z is true. We demonstrate

the latter inequalities by contradiction, i.e., assuming that

z ≤ x̂ ≤ xk+1.

By definition of ẑ we have

m(ẑ)h(z − ẑ) ≥ m(x̂)h(x̂− z).



n xmin xmax r q T m01 m02 σ

103 0 1 1 2 10 0.25 0.75 0.001

TABLE I

CONSTANT SIMULATION PARAMETERS.

α λ std(m01) = std(m02)

I 2 {0.01, 0.06, 0.1} 0.09

II 0 {0.01, 0.06, 0.1} 0.05

TABLE II

VARYING SIMULATION PARAMETERS WITH DIFFERENT REGIMES.

If xk ≤ ẑ ≤ x and z ≤ x̂ ≤ xk+1, we also have

m(ẑ)h(x− ẑ) ≥ m(ẑ)h(z − ẑ) ≥
≥ m(x̂)h(x̂− z) ≥ m(x̂)h(x̂− x)

in contradiction with the definition of x̂ that implies

m(ẑ)h(x− ẑ) < m(x̂)h(x̂− x).
The proof concludes if also x < ẑ ≤ x and z ≤ x̂ ≤ xk+1

lead to a contradiction. Specifically, under these conditions,

we can write

m(ẑ)h(ẑ − x) ≥ m(ẑ)h(ẑ − x)h(z − ẑ) ≥
≥ m(x̂)h(x̂− z)h(ẑ − x) ≥ m(x̂)h(x̂− x),

where the first inequality holds as h(z − ẑ) ≤ 1, the second

inequality holds by definition of ẑ, the third inequality holds

by logarithmic sublinearity of the fading function. Again,

the above chain of inequalities is in contradiction with the

definition of x̂ that implies m(ẑ)h(ẑ − x) < m(x̂)h(x̂− x).

V. NUMERICAL EXAMPLES

Examples show two main evolution regimes (see Fig. 1-

4). The first regime presents how the system evolves in the

case of a bimodal distribution with linear fading function.

From an initial almost uniform distribution, because of the

influence of α, all agents do not converge to a single limit,

instead two limits are formed. The second regime simulates

two separate Gaussians that converge to a single point when

α = 0.

Simulations have been performed using the algorithm

below and the following parameters, also shown in Tables

I-II. The number of agents is set to n = 103. The set of

states is a discretization of the interval [0, 1[ with step size

dx = 10−4, i.e. X = {xmin, xmin + 0.001, . . . , xmax}. The

horizon length is T = 10, large enough to show convergence

of the population regimes. As regards the initial distribution,

Parameter σ is set to 0.001.

Regime I. The first set of simulations highlights the con-

vergence to two separate clusters in case of α different from

zero, although agents’ opinions start from an almost uniform

distribution. In Fig. 1, the graphics show the distribution

evolution from a macro perspective of all the opinions vs.

time. Figure 2 displays the distribution evolution m(t) at

Algorithm

Input: Set of parameters as in Tables I-II.

Output: Distribution function m(t)
1 : Initialize. Generate x0 from two Gaussian

distributions with m01, m02 and std(m0)
2 : generate Brownian Motion dB(t),
3 : for time t = 0, 1, . . . , T − 1 do

4 : if t > 0, then compute distribution m(t),
5 : end if

6 : for agent i = 1, 2, . . . , n do

7 : compute mode m[X(t)](t), control u∗(X(t))
from (8), and X(t+ 1) from (1)

8 : end for

9 : end for

10 : STOP
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Fig. 1. Regime I, macro perspective: starting from an almost uniform
distribution, the contribute of α is to separate the opinions into two clusters.

the beginning of the horizon, t = 0, and at the end of the

horizon, t = 10.

The initial distribution is a bimodal which is obtained as

the sum of two Gaussian distributions with mean m01 =
0.25 and m02 = 0.75, respectively, and standard deviation

std(m01) = std(m02) = 0.09. This value of standard

deviation is chosen to let the two Gaussians to almost collide

at t = 0, and such that the effect of α is visible at different

times, especially in T . From top to bottom, the threshold

is set to λ = 0.01 (top), λ = 0.06 (middle) and λ = 0.1
(bottom).

Regime II. The second set of simulations shows that,

when α is set to zero all agents come to an agreement, i.e.,

all opinions paths converge to a single point.

The graphics show the distribution evolution from a macro

perspective of all the opinions vs. time in Fig. 1 and the

distribution evolution mt at time t = 0 and t = T in

Fig. 2. Likewise in Regime I, the initial distribution is a

bimodal which is the sum of two Gaussians m̄01 = 0.25 and
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Fig. 2. Regime I, micro perspective: starting from an almost uniform
distribution, the contribute of α is to separate the opinions into two clusters.

m̄02 = 0.75 respectively and standard deviation std(m01) =
std(m02) = 0.05. From top to bottom, the threshold takes

on the values λ = 0.01 (top), λ = 0.06 (middle) and λ = 0.1
(bottom).
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Fig. 3. Regime II, macro perspective: the distribution evolution converges
to a limit, starting from a two separate clusters, from a macro perspective.

VI. CONCLUSIONS

This paper aims at an understanding of the bandwagon

effect using a mean-field game theoretic perspective. The

contribution includes the investigation of mean-field equilib-

rium strategies under local interactions. Future research will

address cases where agents’ opinions set the “anti-mode” as

target point.
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