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Abstract This paper applies mean field game theory to dynamic demand
management. For a large population of electrical heating or cooling appliances
(called agents), we provide a mean field game that guarantees desynchroniza-
tion of the agents thus improving the power network resilience. Second, for the
game at hand, we exhibit a mean field equilibrium, where each agent adopts a
bang-bang switching control with threshold placed at a nominal temperature.
At the equilibrium, through an opportune design of the terminal penalty, the
switching control regulates the mean temperature (computed over the popu-
lation) and the mains frequency around the nominal value. To overcome Zeno
phenomena we also adjust the bang-bang control by introducing a thermo-
stat. Third, we show that the equilibrium is stable in the sense that all agents’
states, initially at different values, converge to the equilibrium value or remain
confined within a given interval for an opportune initial distribution.
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1 Introduction

This paper applies mean field game theory to dynamic demand management
in the same spirit as [14,37]. The latter is a recent and promising research
area aiming at improving resilience in power networks [3,15,16]. In a nutshell,
the functioning of a power network is characterized by the system frequency,
also called the mains frequency, which represents an indicator of the balance
level between energy demand and supply. This frequency usually needs to be
stabilized around a nominal value (50 Hz in Europe). If electrical demand
exceeds generation then frequency will decline, and vice versa.

In this context, dynamic demand management aims at assigning part of
the regulation burden to the consumers by using “frequency responsive” ap-
pliances. In other words, each appliance regulates automatically and in a de-
centralized fashion its power demand based on the mains frequency. A similar
concept characterizes a recent literature on “load control” in power systems
[12,14,26,28,37]. In particular, [12] surveys issues related to the redistribution
of the load away from peak hours and the design of decentralized strategies
to produce a predefined load trajectory (see also [14]). A main challenge of
decentralized control is that local controllers may give rise to conflicts while
pursuing their goals. Indeed, local decisions may result in an over- or undersup-
ply of the required response. Thus the aforementioned conflicting objectives
have led scientists to adopt noncooperative games as paradigmatic models. In
[26] the authors present a large population game where the agents are plug-
in electric vehicles and the Nash-equilibrium strategies (see [9]) correspond
to distributed charging policies that redistribute the load away from peaks
(called valley-filling strategies). In this paper we adopt the same perspective
in that we show that network frequency stabilization can be achieved by giving
incentives to the agents to adjust their strategies in order to converge to a a
mean field equilibrium. To do this, in the spirit of prescriptive game theory
[6], a central planner or game designer has to design the individual objective
function so to penalize those agents that are in ON state in peak hours, as
well as those who are in OFF state in off-peak hours.

Valley-filling and coordination strategies have been shown particularly effi-
cient in thermostatically controlled loads such as refrigerators, air conditioners
and electric water heaters [28]. Thermostatically controlled loads are also the
focus of the present paper. Indeed, in most cases the capability for these electric
heating or cooling appliances (henceforth simply called appliances) of storing
thermal energy is greater than the capability of a battery of storing chemical
energy.

The results obtained in this paper are in accordance with the recent results
in [3], according to which, stochastic control laws are in general more appro-
priate than deterministic ones when it comes to desynchronize the appliances
functioning.

Highlights of main results. This paper presents three main contribu-
tions. First, it provides a mean field game which captures the interactions
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among a large number of appliances. Each single agent is characterized by a
temperature and can be in one of the two states ON or OFF. The dynamics of
a single agent describes the time evolution of its temperature, and takes on the
form of a linear ordinary differential equation. In addition to this, each agent
is given a cost function that accounts for i) energy consumption, ii) deviation
of mains frequency from the nominal one, and iii) deviation of the agent’s
temperature from reference value. With respect to item ii), we introduce in
the cost function a mean field term that incentivizes the agent to switch OFF
if the mains frequency is below the nominal value and to switch ON if the
mains frequency is above the nominal value.

A main feature of the game at hand is that it gives rise to the formation
of atomic parts in the distribution of temperatures. As such, the game can
describe both the case with a continuum of agents and the case with a finite
number of agents. While in the former case, the resulting mean field game
should be justified by a limit procedure of Nash equilibria of games with a
finite number of players, in the latter case such a limit procedure is no longer
needed. On one hand, this simplifies the tractability as, except for some special
cases, such a procedure is still far from being understood and satisfactory, see
[13] for a comprehensive account. On the other hand, the formation of atomic
parts in the distribution requires a suitably modified weak solution concept,
which is formally defined in Section 3.

In addition, the provided game differs from a standard mean field game in
[13] in at least two other aspects: first both controls and states are bounded,
and second we have an additional cross-term on distribution and controls in
the objective function, which is not monotonic on distributions.

As a second contribution, for the mean field game at hand, we compute
a mean field equilibrium and show that at the equilibrium each agent adopts
a bang-bang-like switching control with threshold placed at the nominal tem-
perature.

Through an opportune design of the final penalty of value function, we show
that the equilibrium regulates the mean temperature (computed over the pop-
ulation) and the means frequency as well around the nominal value. By doing
this, we address two main issues: one is related to the macroscopic behavior of
the system and the other one involves the microscopic behavior. The first issue
accounts for the synchronization of the appliances which is recognized as the
root cause of the mains frequency oscillation. At the equilibrium each agent
switches to ON with probability 1/2 and this gives a stochastic flavor to the
implemented control law in agreement with the results in [3]. The second issue
regards the so-called Zeno phenomenon which is common to many switching
control problems. To overcome such a phenomenon we adjust the bang-bang
control by introducing a static nonlinearity in the form of a hysteresis. To do
this we expand the state space by adding an additional state variable that
accounts for the number of switches up to the current time.

A third contribution analyzes the system behavior around the equilibrium.
Under certain assumptions, we show that the equilibrium is stable in the sense
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that all agents states, initially at different values, converge to the equilibrium
value or remain confined within a given interval.

Related literature on mean field games. The mean field theory of
dynamical games with large but finite populations of asymptotically negligible
agents (as the population size goes to infinity) originated in the work of M.Y.
Huang, P. E. Caines and R. Malhamé [18–20] and independently in that of
J. M. Lasry and P.L. Lions [23–25], where the now standard terminology of
Mean Field Games (MFG) was introduced. In addition to this, the closely
related notion of Oblivious Equilibria for large population dynamic games
was introduced by G. Weintraub, C. Benkard, and B. Van Roy [35] in the
framework of Markov Decision Processes.

Mean field games arise in several applicative domains such as economics,
physics, biology, and network engineering (see [1,17,20,22,37]).

With regard to network engineering, mean field games have been applied
to medium access control in wireless networks, resource allocation problem,
flow control, congestion management, demand and price formation in the
power grid market, energy management in cloud computing, consensus and
synchronization problems, state estimation, etc. More details can be found in
[31]. Mean field game formulations apply also to multi-inventory systems with
quadratic cost and additional set up costs, as discussed in [29]. Decision prob-
lems with mean field coupling terms have also been formalized and studied
in [11]. An example from production engineering has been first introduced by
[17] (see also [31]). A robust formulation of the production problem is also
available in [10].

From a mathematical point of view, the mean field approach leads to a
study of a system of two partial differential equations (PDEs), The first PDE
is the Hamilton-Jacobi-Bellman equation which is usually solved backwards in
time with penalty on final state and distribution (suppose a finite horizon for-
mulation). The second PDE is the Fokker-Planck equation which describes the
density of the players and is solved forwards in time with boundary conditions
on the initial population distribution (see, e.g., the Fokker-Planck-Kolmogorov
equation in [2,25,32,36] and in the lecture notes [13] and M.S. thesis [27]).

Explicit solution in terms of mean field equilibria are not common unless
the problem has a linear-quadratic structure, see [7]. In this sense, a variety of
solution schemes have been recently proposed based on discretization and or
numerical approximations. In [2], for instance, a fully discrete finite difference
approximation scheme of the coupled system has been proposed and studied.

Mean field games have connections to another stream of literature: evo-
lutionary games ([30,21,33]). Here, the so-called anonymous games and ag-
gregative games build upon the notion of mass interaction and can be seen
as a stationary mean field. A dynamic discrete time version of the mean field
game has been studied by [21] where a fundamental mean field system consist-
ing of value function and mean field evolution was proposed. This corresponds
to a backward-forward system. The equation satisfied by the value is essen-
tially a Bellman equation and the equation satisfied by the mean field term is
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a Kolmogorov equation. In [21] the authors provide sufficiency conditions for
existence of solutions to such systems.

More recently, robustness have been brought within the picture. Robust
mean field games aim to achieve robust performance or stability in the presence
of unknown disturbances when there is a large number of players; see [32]. Still
in [32] relations with risk-sensitive games and risk-neutral games have been
analyzed in [32].

The rest of the paper is organized as follows. In Section 2 we illustrate
the problem and introduce the model. In Section 3 we address the concept of
weak solution for the resulting mean field system. In Section 4 we exhibit a
mean field equilibrium for the problem at hand. In Section 5 we introduce a
thermostat in the switching control law. In Section 6 we analyze the system
behavior around the equilibrium. In Section 7 we provide numerical examples.
Finally, in Section 8 we draw some conclusions.

2 Model and problem set-up

Consider a population of homogeneous electric appliances (players), each one
characterized by a temperature X(s) at time t ≤ s ≤ T , where [t, T ] is the
time horizon window. The control variable is a measurable function of time
πON (·) defined as s 7→ {0, 1} and such that πON (s) = 1 means that, at time
s, the appliance is set to ON and πON (s) = 0 means that the appliance is set
to OFF .

When the appliance is ON the temperature decreases exponentially up to
a fixed lower temperature whereas in OFF position the temperature increases
exponentially up to a higher temperature. Then, the temperature of each ap-
pliance evolves according to the following differential equations:

X ′(s) =

{

−α(X(s)−XON ) if πON (s) = 1
−α(X(s)−XOFF ) if πON (s) = 0

, t < s < T (1)

with initial state X(t) = x and where α > 0 is a given scalar (the rate)
and XON , XOFF are the steady-state temperatures of the appliances when
in state ON or OFF, respectively. Here, considering a same rate for the two
states has the only meaning of simplifying future computations. We will see
that a different rate, though more realistic, adds no value as it affects in no
ways the solution approach.

Control design. The control πON (t) has to satisfy the following require-
ments, which will appear as additive terms in the cost function to minimize:

– minimization of power: WONπON (s) + WOFF (1 − πON )(s) where WON

and WOFF are the power consumed when the appliance is ON or OFF
respectively.

– network frequency stabilization: denoting by [w(s)−wref ]± the positive or
negative scalar part of the difference between the current frequency w(s),
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and the reference frequency wref , frequency stabilization corresponds to a
cost of type πON [w(s)−wref ]+ + (1− πON )[w(s)−wref ]− where w is the
current frequency, wref the reference frequency. Intuitively, the network
frequency w depends on the number of appliances in ON position at time
s. In general, for any scalar ξ, we denote by [ξ]± its positive or negative
scalar part. To see why the above cost incentivizes frequency stabilization
observe that the first term πON [w(s)− wref ]+ represents a penalty for all
those agents that are in ON state when w(s) > wref (load exceeds nominal
generation) while the second term (1 − πON )[w(s) − wref ]− is a penalty
for all those agents that are in OFF state when w(s) < wref (load is less
than nominal generation).

– stabilization of the temperature around a comfortable value xref := 0.
Note that taking xref 6= 0 is without loss of generality because i) we can
always translate the axis to xref without compromising the modeling and
solution approach.

Let us convexify the control set and consider the control of a single agent
as the probability of setting the appliance ON , thus we have u(t) ∈ U := [0, 1]
where U is the control set. It turns out that the dynamics (1) can be rewritten
in the formX ′ = f(X,u) where f : R×U → R is the following affine dynamics:

{

X ′(s) = −αX(s) + σu(s) + c, s > t,
X(t) = x,

(2)

where x ∈ [XON , XOFF ], t ∈ [0, T ] are the initial state and the initial time,
respectively, σ := −α(XOFF −XON ), c := αXOFF . For sake of simplicity and
without loss of generality we will take XOFF = −XON . Indeed, we can always
select lower and upper bounds of the temperature symmetric with respect to
xref . In addition, note that the closed set [XON , XOFF ] is invariant and that
the two extremes are not reachable from any other interior point. Hence, it is
not restrictive to assume that no appliances have the temperatures XON and
XOFF .

In light of the considerations provided above, and in order to introduce
a macroscopic description of the game, consider a probability density func-
tion m : [XON , XOFF ] × [0,+∞[→ [0,+∞[, (x, s) 7→ m(x, s) (in Section
3 we will weaken the regularity of such a density measure), which satisfies
∫XOFF

XON

m(x, s)dx = 1 for every s. Let us also define the mean temperature at

time s as m(s) :=
∫

R
xm(x, s)dx. Also, as any trajectory obtained from (2) can

never reach XON and XOFF , we can assume thatm(XON , s) = m(XOFF , s) =
0 for all s.

At every time s the network frequency w(s) depends linearly on the mean
temperature computed over all appliances, i.e., w(s)−wref = −(m(s)−mref ),
(the higher the mean temperature m(s), the lower the network frequency
w(s)).

Observe that we simply assume that a discrepancy between the average
(over appliances) and the desired temperature, (m(s) − mref ) induces a dis-
crepancy between demand and supply which in turn translates into a deviation
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of the network frequency from the nominal value. This mutual dependence is
usually captured by a higher order dynamics which we decided to approximate
using a steady-state relation. We do this as the spirit of the paper is to cap-
ture individuals’ conflicting and common goals into a large population setting.
Therefore, turning the problem into a higher order one would complicate the
tractability without adding a value to the approach.

Then w(s) = wref implies m(s) = mref . In the following, for sake of
simplicity and without loss of generality, we take all nominal values equal
to zero unless specified differently. We can do this as nonzero nominal values
would only add nonzero constant terms to the computations. Then, let us take
mref = 0. Also, for given scalars q, k, h > 0, take WOFF , wref , xref = 0, and
denote r := WON ; then consider a running cost g : R × U × R → [0,+∞[,
(x, u,m) 7→ g(x, u,m) of the form

g(x, u,m) = u
(

r + qx2 + h[m]+
)

+ (1− u)
(

qx2 + k[m]−
)

= ru+ qx2 + h[m]+u+ k[m]−(1− u). (3)

Observe that cost (3) includes three main terms. A first penalty term ru
which accounts for minimization of power. Second, the term qx2 which penal-
izes the deviation of the appliance’s temperature from zero (the target value).
Third, the term h[m]+u + k[m]−(1 − u) which accounts for the network sta-
bilization in that it penalizes those appliances that are ON whenever m > 0,
the latter condition meaning that demand exceeds supply. Likewise, it penal-
izes those appliances that are OFF whenever m < 0, i.e., whenever supply
exceeds demand. Note that the presence in the cost of the coupled terms
h[m]+u+ k[m]−(1− u) makes the model differ from the standard formulation
of mean field games in [13] where the terms depending on m and on the control
are decoupled. In addition, here the control set is bounded.

Also consider a terminal cost Ψ : R → [0,+∞[, x 7→ Ψ(x) to be yet
designed.

Problem statement. Given a finite horizon T > 0 and an initial distribu-
tion of temperatures m0 : [XON , XOFF ] → [0,+∞[, with mean m0, minimize
over U , subject to the controlled system (2), the cost functional

J(x, t, u(·)) =

∫ T

t

g(X(s), u(s),m(s))ds+ Ψ(X(T )),

where U is the set of all measurable functions u(·) : [0,+∞[→ U , and m(·)
is the time-dependent function describing the evolution of the mean of the
distribution of temperatures if every one of the agents behaves optimally, i.e.
minimizes J .

In the following, to make use of dynamic programming techniques based
on Bellman equation, we consider the evolution of the mean m as a datum
of the optimal control problem and look for a solution of the resulting fixed
point problem. In other words, we consider a cost functional of the form

gm(·) : R× U × [0,+∞[→ [0,+∞[, (x, u, s) 7→ g(x, u,m(s))
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and restate the problem as follows. For any fixed evolution of m(·), minimize,
over all measurable controls u(·) ∈ U and all corresponding trajectories of (2),
the cost functional

Jm(·)(x, t, u(·)) =

∫ T

t

gm(·)(X(s), u(s), s)ds+ Ψ(X(T )),

where m(·) is given by the “mean evolution equation”

m′(t) = −αm(t) + σu(t) + c, m(0) = m0. (4)

Here, the “mean control” u(·) : [0,+∞[→ [0, 1] is the mean over the agents of
all optimal feedback controls u∗ at every time t. The mean evolution equation
(4) can be obtained by averaging over all agents the the terms appearing
in the left-hand side of the first order Kolmogorov-Fokker-Planck equation
mt + (f(x, u∗)m)x = 0 (see, e.g., [10]). The Kolmogorov equation describes
the evolution of the distribution of the temperatures m when the temperature
of each appliance follows the law X ′ = f(X,u∗(X, t)).

We recall that the value function v = infu Jm of the optimal control
problem is a function defined on [XON , XOFF ] × [0, T ] as it is the solu-
tion of the corresponding Hamilton-Jacobi-Bellman equation for all (x, t) ∈
[XON , XOFF ]× [0, T ](see for instance [8]).

The problem results in the following mean field game system (we denote
by I, II, III, IV, V the five blocks of the system)























































































































−vt(x, t) + sup
u∈U

{

−f(x, u)vx(x, t)− gm(·)(x, u, t)
}

= 0

in [XON , XOFF ]×]0, T ],
v(x, T ) = Ψ(x) ∀ x ∈ [XON , XOFF ]

u∗(x, t) = argmaxu∈[0,1]{−f(x, u)vx(x, t)− gm(·)(x, u, t)}

mt(x, t) + (f(x, u∗(x, t))m(x, t))x = 0 in ]XON , XOFF [×]0, T [,
m(XON , t) = m(XOFF , t) = 0 ∀ t ∈ [0, T ],
m(x, 0) = m0(x) ∀ x ∈ [XON , XOFF ],
∫ XOFF

XON

m(x, t)dx = 1 ∀ t ∈ [0, T ],

u(t) =

∫ XOFF

XON

u∗(t, x)m(t, x)dx ∀ t ∈ [0, T ],

m′(t) = −αm(t) + σu(t) + c,
m(0) = m0.

(5)

Definition 1 Consider an initial distribution m0 and the corresponding mean
m0. By solution of (5) we mean any continuous function m : [0, T ] → R, such
that m(0) = m0, and that “solve” the following fixed point procedure. Given
m, solve I and take the solution vm(·). Use this to calculate u∗

m(·) from II.
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With such u∗
m(·)(·), solve III to obtain the distribution mm(·), and calculate

um(·) from IV . Use this to calculate a new function Mm(·)(·) from V . Require

that Mm(·)(·) = m(·).

It follows from the above definition that the problem has no solution if
there exist no m for which the above procedure produces a fixed point.

We apply such a procedure in Section 4 to prove that, starting from a
symmetric distribution, under a suitable choice of the terminal cost Ψ , there
exists a solution with constant and null mean m.

In the next section we elaborate more on the concept of weak solution
introduced above.

Remark 1 As the interval [XON , XOFF ] is invariant, there are no boundary
conditions on v in (5) I. Also note that V is redundant. Indeed, m, which
satisfies V , is the mean of m which can be calculated from III. However, we
prefer to include the ODE V because it plays a role in the sequel, and because
our model is centered around the evolution of the mean m. Furthermore, the
distribution m is used in the calculation of the mean control u. In the special
case when the optimal feedback is linear in space, u∗(t, x) = γ(t)x, and the
mean control u can be calculated directly from the mean distribution m:

u(t) =

∫ XOFF

XON

γ(t)xm(t, x)dx = γ(t)m(t).

So, the equationm′ = −αm+σγ(t)m+c, can replace the Kolmogorov equation
III.

In addition to this, note that given a solution of (5) as defined in Definition
1, the distribution m is, in general, determined from III provided that equation
II yields a unique optimal control.

3 Weak solutions in the system (5)

In this section, we address two main issues. First, a solution of the Bellman
equation I does not necessarily have a spatial derivative and therefore we
need to introduce the notion of viscosity solution (see for instance [8]). Sec-
ond, even if the optimal feedback exists, it is often discontinuous and so the
field f(·, u∗(·, ·)) is discontinuous too. We must then consider solutions m in
the distributional sense (see for instance [13]). Moreover, in our particular case,
as we will see in Section 4, we need to consider distributions m which are not
absolutely continuous with respect to the Lebesgue measure, that is, distribu-
tions that cannot be defined through a function. Indeed, even starting from
smooth data, the probability measure may be characterized by the formation
of atomic parts (i.e. Dirac masses). Atomic parts of the distribution together
with the discontinuity of the optimal field f(·, u∗(·, ·)) give rise, in general, to
challenging aspects related to the definition itself of solutions.



10 Fabio Bagagiolo, Dario Bauso

To address the above issues, we next introduce a rigorous definition of weak
solution.

Let P denote the set of positive probability measures on [XON , XOFF ]
endowed with the weak-star topology, that is, µn → µ in P if and only if, for
every continuous function ϕ on [XON , XOFF ],

∫ XOFF

XON

ϕ(x)dµn →

∫ XOFF

XON

ϕ(x)dµ,

where
∫

(·)dµ stands for the integral with respect to the measure µ.
Let the initial datum m0 belong to P and be of compact support in

]XON , XOFF [. Suppose that the optimal feedback u∗ as in II is in L1 and
that it is defined everywhere in such a way that the corresponding trajectory
X ′ = f(X,u∗) is (optimal and) unique. Hence, a weak solution of the Kol-
mogorov equation III is a continuous function m : [0, T ] → P, t 7→ m[t], such
that, for every test function ϕ ∈ C1

c ([XON , XOFF ] × [0, T [), (C1
c is the space

of continuously differentiable function with compact support)

∫ XOFF

XON

ϕ(x, 0)dm0+

∫ T

0

∫ XOFF

XON

[ϕt(x, t) + f(x, u∗(x, t))ϕx(x, t)] dm[t]dt = 0.

(6)
Note that the null boundary condition is here taken into account because ϕ
is not required to vanish at XON and at XOFF and (6) does not contain
(spatial-) boundary pieces.

We expect a solution m of the form

m[t] = m̃(·, t) +

ℓ
∑

i=1

γi(t)δyi(t), (7)

where m̃ : [XON , XOFF ]×[0, T ] is a L1 function (the continuous part of the so-
lution), δyi(t) is the Dirac mass concentrated on the point yi(t) ∈ [XON , XOFF ]
with yi(·) continuous, and γi(·) is a positive continuous function.

Note that, in general, a measure m ∈ P is not of the form as in (7), because
singular (Cantor) parts may occur and the jump part (atomic part) may be
more complicated than a finite sum of Dirac masses. However, as the model is
one-dimensional, in the next section we consider initial data and solutions of
the form (7).

Now, possible discontinuities of the integral of f(·, u∗(·, ·)) with respect to
a Dirac mass may be an issue. Indeed the integral turns out to be the value of
the integrand in the point of concentration of the Dirac mass.

A way to overcome the issue is the requirement that u∗, although discon-
tinuous, be defined everywhere in such a way that the optimal trajectory exists
for every times. By doing this, we obtain a unique value for u∗ in the point of
discontinuity, which guarantees that the trajectory is unique.

Once we have a solution m of III (recall that it must be a continuous func-
tion from [0, T ] to P), the equation V is certainly satisfied by the continuous
mean m(t) in a distributional sense, that is, for every ϕ ∈ C1

c ([0, T [),
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∫ T

0

m(t)ϕt(t)dt = −m0ϕ(0)−

∫ T

0

(−αm(t) + σu(t) + c)ϕ(t)dt.

To see this, for any test function ϕ ∈ C1
c ([0, T [), let us set ϕ̃(x, t) = xϕ(t) and

apply (6) with ϕ̃ as test function. Now, being m continuous and bounded, we
get that m satisfies V in the usual integral sense:

m(t) = m0 +

∫ t

0

(−αm(s) + σu(s) + c)ds ∀ t ∈ [0, T ].

Hence, we can formally state the following definition of solution of (5) in
a weak sense, which will be considered in the rest of the paper.

Definition 2 Consider an initial distribution m0 ∈ P and the corresponding
mean m0. A probability measure m ∈ P and corresponding continuous map
m : [0, T ] → [0,+∞[, satisfying m(0) = m0 are a solution of (5) if the cor-
responding unique locally Lipschitz continuous viscosity solution of I yields
a solution with the following properties: i) once substituted in II the solu-
tion yields a unique feedback control u∗ which is defined almost everywhere,
and ii) whenever II is not defined, there exists a unique feedback control u∗

that guarantees that the optimal trajectory X ′ = f(X,u∗) exists for all times.
With such u∗ and m, there exists a distributional solution of III which, once
entered into IV , defines u such that m is solution of V .

4 Looking for a mean field game equilibrium

A stationary mean distribution m0 can be regarded as a mean field game
equilibrium if it is a fixed point of the fixed point procedure given by (5),
in the sense of Definition 2. In this section we show that, starting from a
symmetric initial distribution, we can design the terminal cost Ψ such that
m0 = 0 is a mean field equilibrium. We refer the reader to [8] for further
details on the theory of viscosity solutions.

Theorem 1 Let the initial distribution m0 ∈ P have mean value equal to
zero, and be symmetric with respect to the mean, and be of compact support in
the open interval ]XON , XOFF [. In addition, let m0 be absolutely continuous
and still denote its density by m0, which we also suppose to be continuous.
Finally, assume that m0 is separately C1 in the open intervals ]XON , 0[ and
]0, XOFF [. Then, there exists a terminal cost Ψ such that m0 = 0 is a mean
field equilibrium.

Proof For m0 to be a mean field equilibrium, we need that, given the cor-
responding mean field optimal control u(·), this is also stationary and equal
to
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u ≡
αm0 − c

σ
=

XOFF −m0

XOFF −XON

,

where the second equality is obtained by replacing parameters σ and c by their
expressions in terms of XOFF and XON , namely, σ := −α(XOFF −XON ), and
c := αXOFF . Let us suppose that m0 = 0 is a mean field game equilibrium.
The Hamilton-Jacobi part of (5) becomes

−vt + αvxx− cvx − qx2 + [−σvx − r]+ = 0 in R× [0, T [, v(x, T ) = Ψ(x). (8)

Now, our goal is to find a terminal cost Ψ such that there exists a solution
with m ≡ 0. First, let us start by looking for a solution Ψ of the stationary
equation

αΨxx− cΨx − qx2 + [−σΨx − r]+ = 0 in R. (9)

If Ψ0 is solution and −σΨ0
x − r ≤ 0, then we get (recall that c = αXOFF )

Ψ0
x =

qx2

αx− c
in the half-open interval [XON , XOFF [

whose primitives are

Ψ0(x) =
q

α3

(

(αx− c)2

2
+ 2αcx+ c2 log(c− αx)

)

+k in [XON , XOFF [. (10)

Note that Ψ0
x ≤ 0 in the half-open interval [XON , XOFF [ and so −σΨ0

x − r < 0
(recall σ < 0, r > 0). This means that Ψ0 is a classical solution of (9) in the
open interval ]XON , XOFF [. Analogously, if Ψ1 is a solution with −σΨ1

x−r > 0,
then we get

Ψ1
x =

qx2 + r

αx− σ − c
=

qx2 + r

αx+ c
in the half-open interval]XON , XOFF ].

Note that Ψ1
x is positive and that −σΨ1

x − r > 0 everywhere and hence any
primitive Ψ1 is a solution of (9) in the half-open interval ]XON , XOFF ].

Now, with the same controlled dynamics and control set as above, we con-
sider two optimal control problems in [XON , XOFF [×[0, T ] and ]XON , XOFF ]×
[0, T ] respectively. The two problems consist in the minimization of the cost

functional
∫ T

t
g(x(s), u(s), 0)ds, with terminal costs given by Ψ0 and Ψ1, re-

spectively. The stationary functions Ψ0, Ψ1 themselves are then solutions of
the corresponding final condition in the Hamilton-Jacobi equation (8). And so
they are the value functions of the corresponding control problem.

To see this, observe that Ψ0 and Ψ1 are unbounded on their domains,
and hence the uniqueness of the viscosity solution of the Hamilton-Jacobi
equation with those terminal conditions is not straightforward. However, with
respect, for instance, to the case of Ψ0 in the half-open interval [XON , XOFF [,
we can see that our controlled dynamics is such that the state never exits
through XON nor can reach XOFF when starting from x ∈ [XON , XOFF [.
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Given any x ∈ [XON , XOFF [ we can then consider the finite horizon problem
with exit time from [XON , x] and exit-cost and terminal cost both equal to
Ψ0. We then get that Ψ0 is the unique viscosity solution of the corresponding
boundary conditions problem for the Hamilton-Jacobi equation, and as such
it is also the value function of the exit-time time problem. By the arbitrariness
of x ∈ [XON , XOFF [, Ψ

0 is then the value function of the final-time problem
in the whole [XON , XOFF ].

With regards to the control law, the feedback optimal controls for these
problems are, respectively,

u0(x, t) ≡ 0 and u1(x, t) ≡ 1.

Now we consider the function on the closed interval [XON , XOFF ]

Ψ(x) =







Ψ0(x) if x < 0,
Ψ1(x) if x > 0,
0 = Ψ0(0) = Ψ1(0) if x=0,

(11)

where the last line means that we have glued Ψ0 and Ψ1 in x = 0. We then
consider the final-time problem in [XON , XOFF ] × [0, T ] given by the run-
ning cost g(·, ·, 0) and by the continuous terminal cost Ψ . For every 0 6= x ∈
[XON , XOFF ], we denote by t∗(x) the time of arrival at x = 0 under the feed-
back control u0 if x < 0 and u1 if x > 0. Through direct computations, it
holds

t∗(x) = −
1

α
log

(

c

c− αx

)

if x < 0, t∗(x) = −
1

α
log

(

c

c+ αx

)

if x > 0.

Then, we affirm that the value function of this problem is given by

v(x, t) =

{

Ψ(x) if T − t < t∗(x),

Ψ(x) +
r

2
(T − t∗(x)− t) otherwise.

To prove this, we first observe that such a function corresponds to the cost of
the feedback control

u∗(x, t) = 0 for x < 0, u∗(x, t) = 1 for x > 0, u∗(x, t) =
1

2
for x = 0. (12)

To see this observe that i) Ψ0 and Ψ1 are the value functions of the problems
whose terminal costs are Ψ0 and Ψ1 and ii) the corresponding controls are
the ones considered above. Then v is continuous and bounded and satisfies
the final condition. Hence, it is a viscosity subsolution of (8). Also, when
differentiable, it satisfies the equation. On the other hand, in the points where
it is not differentiable (i.e. the points (0, t) and (x, t∗(x)), the superdifferential
is empty. Indeed, Ψ is convex and non differentiable at x = 0, and, for every
x 6= 0, the function t 7→ v(x, t) is convex and non differentiable at t = t∗(x).

Being a subsolution, v must be less than or equal to the value function. At
the same time, being the cost of a particular control, it must be greater than
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or equal to the value function. We conclude that v is the value function and
the feedback control (12) is optimal.

Now, suppose that the initial distribution m0 ∈ P has mean value equal to
zero, and it is symmetric with respect to the mean, and that it is of compact
support in the open interval ]XON , XOFF [. In addition, let m0 be absolutely
continuous, and still denote its density by m0, which we also suppose to be
continuous. Finally, assume that m0 is separately C1 in the open intervals
]XON , 0[ and ]0, XOFF [. Then, considering the evolution of X(t) with control
(12), there is a solutionm of the Kolmogorov equation III in (5) which remains
zero-mean valued and symmetric. Hence, the mean control u is constant and
equal to 1/2 and stabilizes the mean to 0. Som0 = 0 is a mean field equilibrium.

First, note that the optimal feedback control u∗ (12) satisfies the conditions
in Definition 2. For x < 0 consider the dynamics f(x, 0) and let m̃(x, t) be the
corresponding solution of III in (5) (this procedure holds also if we include zero
in the support of m0). In other words, m̃ is the solution of the Kolmogorov
equation in [XON , 0[×[0, T [ with field f(x, 0). Likewise, for x > 0, consider
dynamics f(x, 1) and let m̃(x, t) be the corresponding solution of III in (5).
Note that, by continuity, m̃ is well defined also for x = 0. Now take γ(t) =

1−
∫XOFF

XON

m̃(t, x)dx and define

m[t] = m̃(·, t) + γ(t)δ0.

The first term takes into account the translation of the distribution towards the
reference temperature x = 0, and the second one captures the accumulation of
agents at x = 0. The function m[·] is continuous in time, and m̃ is symmetric
with respect to its zero mean (note that f(x, 0) = −f(x, 1)). Recalling that
f(0, u∗(0, t)) = f(0, 1/2) = 0, we can infer that such a symmetric and mean
zero-valued distribution is a solution of (6). To see this observe that
∫ T

0

∫ XOFF

XON

[ϕt(x, t) + f(x, u∗(x, t))ϕx(x, t)] dm[t]dt

=

∫ T

0

∫ XOFF

XON

[ϕt(x, t) + f(x, u∗(x, t))ϕx(x, t)] dm̃(x, t)dxdt+

∫ T

0

w(t)ϕt(0, t)dt

=

∫ T

0

∫ 0

XON

[ϕt(x, t) + f(x, 0)ϕx(x, t)] dm̃(x, t)dxdt

+

∫ T

0

∫ XOFF

0

[ϕt(x, t) + f(x, 1)ϕx(x, t)] dm̃(x, t)dxdt

+

∫ T

0

(

1−

∫ XOFF

XON

m̃(x, t)dx

)

ϕt(0, t)dt

= −

∫ XOFF

XON

ϕ(x, 0)dm0 + (f(0, 0)− f(0, 1))

∫ T

0

m̃(0, t)ϕ(0, t)dt

+

∫ T

0

(

d

dt

∫ XOFF

XON

m̃(x, t)

)

ϕ(0, t)dxdt.

We can conclude by observing that, by definition of m̃ and by the fact that m̃
satisfies the Kolmogorov equation for x < 0 and for x > 0 independently, the
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term in the last line is exactly the opposite of the second one in the previous
line. ⊓⊔

Remark 2 This calculation also extends to absolutely continuous initial dis-
tribution m0 even if we relax some of the regularity assumptions introduced
above. For instance, we could consider an initial distribution with a finite
number of Dirac masses located symmetrically with respect to the origin.

5 Introducing a thermostat

The mean field equilibrium discussed above shows that all agents tend to the
reference temperature x = 0 which also coincides with the reference mean.
Note that, for x = 0, the optimal feedback implies u = 1/2, which is also the
control that stabilizes the equation for the mean in 0. According to a possible
interpretation of the control u ∈ [0, 1] as a stochastic control, this means that
the agents at x = 0 are in the state ON with probability 1/2. The advantage
of the above control law is that, at a macroscopic level the system is stabilized
(the mean is constant and null). This is due to the fact that the devices are
not all in the ON or OFF state at the same time (we say that the devices are
desynchronized). However, at a microscopic level, every single agent shows a
fast switching ON − OFF control. It must be noted that the fast switching
behavior is undesirable as well as troublesome. To overcome this issue, we then
change the terminal cost Ψ in order to force the agents to avoid fast switchings
while maintaining the desynchronization.

On this purpose, note that the fast switching behavior is due to the fact
that, in the definition of Ψ in (11), we have only one threshold, x = 0, where
the agents switch from Ψ0 to Ψ1 and back. Hence, the main idea is to split
such threshold in two different thresholds, one determining the switches from
Ψ0 to Ψ1 and the other one determining the switches from from Ψ1 to Ψ0.
This translates to inserting a hysteretic thermostatic rule in the mathematical
model.

Let ε > 0 be fixed and denote by z(·) = hε[x(·)](·) the thermostat with
thresholds ε,−ε and switching between the values z = 0, 1 as a result of the
evolution of the continuous scalar function x(·). The thermostat modifies the
relation between state and control as illustrated in Figure 1, left.

For the analytical definition and for the properties of such an operator
(which acts between the space of continuous functions and the space of func-
tions with bounded variation) see [34]. Now let Ψ0 and Ψ1 be as in (11), that
is Ψ0(0) = Ψ1(0) = 0. The idea is to consider the terminal cost Ψ0 up to the
upper threshold ε, and the terminal cost Ψ1 up to the lower threshold −ε.
This is illustrated in Figure 1 right, where the continuous line is the graph of
Ψ0 and the dashed line is the graph of Ψ1. To allow for the above behavior,
we define below two “jumps on the threshold” of the terminal cost: the first
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Fig. 1 Thermostat and associated terminal costs.

condition characterizes the switching from 0 to 1 and the second condition
characterizes the switching from 1 to 0:

ξ01 = Ψ1(ε)− Ψ0(ε) > 0, ξ10 = Ψ0(−ε)− Ψ1(−ε) > 0.

Moreover, let η01(s) ∈ N be the total number of switches of the thermostat
from 0 to 1 from time zero to time s. Similarly, let η10(s) ∈ N be the total
number of switches of the thermostat from 1 to 0 from time zero to time s. The
number of switches of z in a time interval [t, s] is given by its total variation
in that interval, Var[t,s](z). Indeed the total variation changes of a quantity
equal to 1 at every swtching instant. Hence we have, for s ≥ t

η10(s) =

[

Var[t,s](z)

2
+

1

2
(1− z(t))

]

, η01(s) =

[

Var[t,s](z)

2
+

1

2
z(t)

]

, (13)

where z(t) ∈ {0, 1} is the output state of the thermostat at the initial time t;
and [ξ] indicates the integer part of ξ ∈ R (i.e. the largest integer not greater
than ξ). The new state variable of the system is the 4-uple (X, z, η01, η10) ∈
[XON , XOFF ] × {0, 1} × N × N, which evolves according to the following dy-
namics subject to a control u(·) ∈ [0, 1]:















































X ′(s) = −αX(s) + σu(s) + c s > t

X(t) = X̃
z(s) = hε[X(·)](s) s > t
z(t) = z̃

η10(s) =

[

Var[t,s](z)

2
+

1

2
(1− z(t))

]

+ η̃10 s > t

η01(s) =

[

Var[t,s](z)

2
+

1

2
z(t)

]

+ η̃01 s > t.

(14)

In order to guarantee that the initial point (X̃, z̃, η̃01, η̃10) ∈ [XON , XOFF ] ×
{0, 1} × N × N is consistent and equal to the final point for the preceding
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evolution, some compatibility conditions have to be satisfied:

X̃ < −ε =⇒ z̃ = 0, X̃ > ε =⇒ z̃ = 1,
z̃ = 0 =⇒ η̃10 − 1 ≤ η̃01 ≤ η̃10,
z̃ = 1 =⇒ η̃01 − 1 ≤ η̃10 ≤ η̃01.

(15)

Now, we consider a final time optimal control problem with the same run-
ning cost g(X,u,m) as before, but with different terminal cost given by,

Ψ̃(X(T ), z(T ), η01(T ), η10(T )) = Ψz(T )(X(T ))− ξ01η01(T )− ξ10η10(T ),

where Ψ0, Ψ1 are as before. The presence of the last two addenda in the right-
hand side, is due to the fact that, for instance in the point X = ε, when the
possible terminal cost drastically changes from Ψ0 to Ψ1, then the agent’s cost
suddenly increases of the value ξ01 > 0. Hence, those two addenda are useful
to obtain a continuous terminal cost.

The final time optimal control with swtiching terminal cost Ψ̃ , can be stud-
ied, via dynamic programming and Hamilton-Jacobi approach, by considering
it as the result of several coupled exit-time (non switching) optimal control
problems:

[XON , ε] as exit set, z(t) ≡ 0, η01 ≡ η̃01 ∈ N, η10 ≡ η̃10 ∈ N,
(Ψ0 − ξ01η̃01 − ξ10η̃10) as terminal cost,

[−ε,X0FF ] as exit set, z(t) ≡ 1, η01 ≡ η̃01∈N, η10 ≡ η̃10 ∈ N,
(Ψ1 − ξ01η̃01 − ξ10η̃10) as terminal cost.

In particular, this family of problems are mutually coupled by their exit cost,
which is not a-priori given, but instead depends on the value function itself
evaluated for the other problems. Several examples of optimal control problems
of this kind are studied, for instance, in [4], [5] and [6]. In particular, it is proved
that the value function is characterized as the unique viscosity solutions of a
system of Hamilton-Jacobi equations (one per every branch), suitably coupled
via the boundary conditions.

When the evolution of the mean frequency m(·) is given, then the final time
optimal control problem with terminal cost Ψ̃ and running cost g(X,u,m(·))
is then well-posed from a Hamilton-Jacobi point of view. This consideration
extends also to the corresponding mean field game.

In our particular case, supposing the mean frequency constant and equal to
zero, it is not difficult to see (also thank to the results of the previous section)
that an optimal feedback control is

u(x, z, η01, η10, t) = z, (16)

Then, all the agents first converge to the interval [−ε, ε] and then oscillate
from −ε to ε.

If the initial distribution m has null mean and it is symmetric with respect
to its mean, and if the initial distribution of output initial states z̃, for states
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X ∈ [−ε, ε], is also symmetric, then the evolution of the mean m(·) is again
constant (as in the case without thermostatic hysteresis), and so it is a mean
field equilibrium for the thermostatic mean field game. With respect to the
symmetric distribution of z̃ observe that for every inital time t and for every
initial state X ∈ [−ε, ε] we need to consider symmetric initial output state
z̃ = z(X, t) ∈ {0, 1}; for the other states, z̃ is uniquely determined (and
symmetric), see (15).

Finally, it is obvious that the feedback control (16) is ε-optimal for the
mean field equilibrium of the previous section.

6 Stability

The next theorem establishes that each individual best-response control is a
0-1 bang-bang-like function (Heaviside function).

Theorem 2 Given m : [0, T ] → R continuous and such that m(0) = m0. The
individual best-response control strategy of each single player is a function
um(·) : R× [0, T ] → [0, 1], (x, t) 7→ um(·)(x, t) of the form:

um(·)(x, t) =

{

1 if −σvx(x, t)− r − h[m(t)]+ + k[m(t)]− > 0
0 otherwise

. (17)

Proof From the first line of (5), and using the explicit expressions for f(·) and
gm(·)(·) as in (2) and (3) we obtain

arg sup
u∈U

{

−f(x, u)vx(x, t)− gm(·)(x, u, t)
}

= arg sup
u∈[0,1]

{−σvx(x, t)u(t)− ru(t)− h[m(s)]+u(t) + k[m(t)]u(t))}

from which we have the thesis. ⊓⊔

An immediate consequence of the above result applies to the case where
m is stationary and equal to zero and as such we can drop the last two terms
(which depends on m) in the first line of (17). Note that the control strategy
is now stationary (we drop explicit dependence on time t).

Corollary 1 If m0 = 0 is stationary (a mean field game equilibrium), each
player’s best-response is a function um0

: R → [0, 1], x 7→ um0
(x) of the form:

um0
(x) =

{

1 if −σvx(x, t)− r > 0
0 otherwise

. (18)

Now, likewise in Section 4 where the terminal cost is convex, we here as-
sume that the value function v is convex as well. Denote by percm(x) the
percentile of a given distribution m and let percm(x) := 1 − percm(x). Es-
sentially, percm(x) indicates the percentage of players with state x greater
than or equal to x according to the distribution m. We can alternatively write
percm(x) =

∫

ξ≥x
m[ξ](s)dx.

Also, let us define the threshold (on state x) of the bang bang control (18).
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Definition 3 (threshold) Let a stationary mean distributionm0 ≥ 0 be given.

Also, let Sm0
:= infx{x| vx(x, t) = − r+h[m0]+

σ
}. The bang-bang control strat-

egy (18) takes on the form:

um0
(x) =

{

1 if x > Sm0

0 otherwise
.

The definition with m0 ≤ 0 is analogous with the sup rather than inf and
s[m0]− in state of h[m0]+.

According to (18) all appliances with temperature greater than or equal to
Sm0

set to ON, while the rest set to OFF.

Theorem 3 A mean distribution m0 is a mean field equilibrium if

percm0
(Sm0

) =
XOFF −m0

XOFF −XON

, (19)

where m0 is the underlying probability distribution function.

Proof It holds um0
=
∫

R
um0

(x)dx = percm0
(Sm0

). Then (19) implies um0
=

XOFF−m0

XOFF−XON
and this in turns implies m′(t) = 0 for all t ≥ 0. ⊓⊔

Definition 4 (Bounds) Let a distribution m[·] and its mean m[·] be given.
We define the upper bound and lower bound as

m+ := min
0≤µ≤XOFF

{

µ|
XOFF − µ

XOFF −XON

≤ percm(Sµ)

}

;

m− := max
XON≤µ≤0

{

µ|
XOFF − µ

XOFF −XON

≥ percm(Sµ)

}

.

Theorem 4 (controlled invariant set) Let an initial distribution m0 and its
mean m0 be given such that m−(0) ≤ m0 ≤ m+(0). Let m[·](·) and m[·](·) be
the evolution of the distribution and its mean over the horizon [0, T ] according
to mt + div(f(X,u)m) = 0 and denote by m±(t) the corresponding bounds.
Then it holds for every 0 ≤ t ≤ T

m−(t) ≤ m(t) ≤ m+(t).

Proof It is sufficient to prove that if ∃ t such thatm(t) = m+(t) thenm′(t) ≤ 0.
Actually should such a t exist, from the continuity ofm′(s) thenm(s) ≤ m+(s)
for every 0 ≤ s ≤ t. To see that m(t) = m+(t) implies m′(t) ≤ 0 observe that

by the definition of m+ we have um+
(t) = percm(Sm+

) ≥ XOFF−m+

XOFF−XON
which

proves the thesis. The case m(t) = m−(t) implying m′(t) ≥ 0 can be proved
similarly. ⊓⊔
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n xmin xmax dt std(m0) T m̄0

103 −50 50 0.01 {3,5,7} 40 {0,−20, 20}

Table 1 Simulation parameters.

7 Numerical examples

Numerical studies show three main evolution plots for different initial distribu-
tions as summarized in Figg. 2-4. In a first example, the mean distribution mt,
initially at zero, remains at zero and the standard deviation std(mt) decreases
rapidly to zero. The second example shows the stabilizing effects of the bang
bang control: the mean distribution mt, initially at -20, increases to zero and
the standard deviation std(mt) decreases rapidly to zero. In the third exam-
ple, we visualize again the influence of the bang bang control: both the mean
distribution m̄t and the standard deviation std(mt) decrease monotonically.

The numerical studies have been conducted using the algorithm displayed
below and considering a number of players n = 103 and a discretized set of
states X = {xmin, xmin + 1, . . . , xmax} where xmin = 50 (minimum tempera-
ture) and xmax = 50 (maximum temperature). The simulation parameters are
listed in Table 1. We assume that the step size for the simulation is dt = 0.01.
The horizon length (number of iterations) is T = 40, large enough to show
convergence of the population regimes. With the above parameters’ values,
the dynamic equation (2) takes on the form

{

dX(t) = (−αX(t) + σu(t) + c)dt,
X0 ∈ {xmin, xmin + 1, . . . , xmax}.

(20)

As regards the initial distribution, we assume m0 to be gaussian with mean
m0 equal to 0,−20, and 20 for Example 1, 2, and 3, respectively. For each
example the standard deviation std(m0) is equal to 3, 5, and 7. To simplify the
dependence of the threshold Smt

on mt we assume the relation Smt
= 0.5mt.

We recall here that the exact relation is

Smt
:= infx

{

x| vx(x, t) = −
r + h[mt]+ − k[mt]−

σ

}

.

However, we can always set the coefficients involved in the above relation so to
approximate Smt

≈ 0.5mt. In Example 2 and 3, the coefficient 0.5 (we could
take for it any value less than 1) plays a crucial role. Simulations carried out
for coefficients values greater than 1, which we omit for sake of conciseness,
have shown that zero is no longer a stable equilibrium for mt.

Figure 2, left, from top to bottom, shows the distribution evolution mt

vs. the state xt at different times. The initial distribution m0 has mean zero
m0 = 0 and standard deviation std(m0) = 3 (top), std(m0) = 5 (middle),
std(m0) = 7 (bottom). The graphics on the right column display the time plot
mt (solid line and y-axis labeling on the left) and the evolution of the standard
deviation std(mt) (dashed line and y-axis labeling on the right). Note that, the
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Algorithm

Input: Set of parameters as in Table 1
Output: Distribution function mt, mean mt and standard deviation std(mt).
1 : Initialize. Generate x0 as n random samples from Gaussian distribution

with mean m0 and standard deviation std(m0),
2 : for time t = 0, 1, . . . , T − 1 do
3 : if t > 0, then compute distribution mt, mean distribution mt,

standard deviation std(mt),
4 : end if
5 : compute threshold Smt

,
6 : for player i = 1, 2, . . . , n do
7 : compute bang bang control ut based on Smt

,
8 : compute new state X(t+ 1) by executing (20),
9 : end for
10 : end for
11 : STOP

mean distribution mt is fixed to zero and at approximately t = 8 (top), t = 10
(middle), and t = 20 (top), the standard deviation std(mt) decreases to zero,
which means that all the appliances have reached the reference temperature.
In correspondence to this, the mains frequency has reached the nominal value.

Example 2 shows the stabilizing effects of the bang bang control. Indeed,
the standard deviation std(mt) as well as sparsity decrease with time and the
mean distribution mt, initially at −20, increases to zero. This is summarized in
Figure 3, left. From top to bottom, the figure shows the distribution evolution
mt vs. the state xt at different times. Again, initial standard deviation increases
from top to bottom, and in particular is std(m0) = 3 (top), std(m0) = 5
(middle), std(m0) = 7 (bottom). The graphics on the right column display the
time plot mt (solid line and y-axis labeling on the left) and the evolution of
the standard deviation std(mt) (dashed line and y-axis labeling on the right).
Note that, at approximately t = 20 (top) (t = 30 in the plot below), the mean
distribution mt reaches zero as well as the standard deviation std(mt).

Example 3 highlights once more the stabilizing effects of the bang bang
control, see Figure 4, left. From top to bottom, the figure displays the distri-
bution evolution mt vs. the state xt at different times. As before, the initial
standard deviation increases from top to bottom, and takes on the values
std(m0) = 3 (top), std(m0) = 5 (middle), std(m0) = 7 (bottom). The graph-
ics on the right column displays the time plot mt (solid line and y-axis labeling
on the left) and the evolution of the standard deviation std(mt) (dashed line
and y-axis labeling on the right). Note that both the mean distribution mt

and the standard deviation std(mt) decrease monotonically to zero.
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Fig. 2 Example 1: distribution at different times (left) and time plot of mean distribution
and standard deviation (right).

8 Conclusions

This paper shows that the theory of mean field games captures interesting
phenomena in dynamic demand management in power grids. Mean field games
have been used to improve the network resilience in the case where part of
the regulation is shifted to the consumer side. As such we have considered a
large population of electrical appliances (the agents) and have shown that an
opportune design of the terminal penalty leads the agents to desynchronize
their functioning thus reducing systems frequency oscillations.
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