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Abstract

This paper reframes approachability theory within the context of pop-
ulation games. Thus, whilst one player aims at driving her average payoff
to a predefined set, her opponent is not malevolent but rather extracted
randomly from a population of individuals with given distribution on
actions. First, convergence conditions are revisited based on the com-
mon prior on the population distribution, and we define the notion of
1st-moment approachability. Second, we develop a model of two coupled
partial differential equations (PDEs) in the spirit of mean-field game the-
ory: one describing the best-response of every player given the population
distribution (this is a Hamilton-Jacobi-Bellman equation), the other cap-
turing the macroscopic evolution of average payoffs if every player plays
its best response (this is an advection equation). Third, we provide a
detailed analysis of existence, nonuniqueness, and stability of equilibria
(fixed points of the two PDEs). Fourth, we apply the model to regret-
based dynamics, and use it to establish convergence to Bayesian equilib-
rium under incomplete information.

1 Introduction

We consider a game played by a large population of individuals in continuous
time. At every time, each individual engages in play with a random opponent
extracted from the population and the resulting payoff, which depends on the
action profiles of both players, is a vector. Such vector payoffs can be interpreted
as deriving from a collection of noninterchangeable goods. Let us think, for
instance, of a negotiation between an employer and a candidate employee over
salary, career prospects, maximal number of days off and so forth. Formally,
we can think of the completeness axiom being satisfied along each dimension
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of our vector but failing across them, giving a special case of Aumann’s [4]
framework. Indeed, vector payoffs may also be appropriate when the continuity
axiom fails (see [12]). Alternatively, each player may be representative of a group
of individuals whose preferences may not be aggregated into a single ordering,
so that the vector payoff has one component for each individual in the group.
Finally, payoff vectors also naturally arise when considering their regret at not
having made each possible deviation.
Main results. First, we provide a new model that combines approachability
and population games. Given that the opponent is randomly extracted from the
population, the approach by Blackwell—which looks at the worst-case payoff—
may appear conservative. Thus, we relax Blackwell’s conditions, assuming that
the opponent is not malevolent but instead is simply extracted from a popula-
tion with given distribution; we call this 1st-moment approachability. Second, we
build upon the theory of mean-field games and adapt the concept of mean-field
equilibrium to our evolutionary set-up; we call this self-confirmed equilibrium.
Third, we discuss existence and nonuniqueness of the equilibrium. Finally, we
explore the regret interpretation of our model; whereas 1st-moment approacha-
bility of nonpositive regrets no longer implies Nash equilibrium (as in [20]), we
show that nonpositive maximal regret does imply Bayesian equilibrium under
incomplete information.
Related literature. The theory of “approachability” dates back to Blackwell
[10] and culminates in the well known Blackwell’s Theorem. Approachability
arises in several areas of game theory, such as allocation processes in coalitional
games [28], regret minimization [30, 20], adaptive learning [13, 16, 18, 19], ex-
cludability and bounded recall [31], and weak approachability [39], just to name
a few. For instance, in coalitional games one asks whether the core is an ap-
proachable set, and which allocation processes can drive the complaint vector
to that set. In regret minimization, one considers the nonpositive orthant in the
space of regrets; a player tries to adjust her strategy based on the current regret
so as to make that set approachable by the regret vector. Once all players have
nonpositive regret, the resulting outcome is an equilibrium for the game. This
idea of adapting the new action to the current state of the game is common to
adaptive learning and evolutionary games as well, but in regret-based dynamics
the state is in payoff (rather than strategy) space. Evolution under incomplete
information has been relatively little studied, with the notable exception of Ely
and Sandholm [15, 36], who analyse a best response dynamic with a subpopu-
lation for each possible type; here, by contrast, we have a single population of
agents with nonconstant types who adopt (type-dependent) Bayesian strategies
through time.

Despite its discrete-time nature in the original Blackwell formulation, ap-
proachability has been extended to continuous-time repeated games, thus show-
ing common elements with Lyapunov theory [20]. Though first formalized in
finite-dimensional spaces, a definition of approachability in infinite-dimensional
space has been provided by Lehrer [29]. Approachability can be reframed within
differential games and as such can be studied using differential calculus and sta-
bility theory [33, 37]. In particular, in [33] the authors show that, beyond being
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an extension (to a vector space) of the von Neumann minmax theorem [40], the
approachability principle also has elements in common with differential inclu-
sions [2]. In addition to this, [37] establishes connections with viability theory
[1], and set-valued analysis [3] (see, cfg., the comparison between an approach-
able set and a discriminating set) and set invariance theory [11].1

The approachability principle is also behind the notion of excludability;
along this line, some authors investigate which sets are approachable and which
ones excludable under imperfect information (bounded recall, delayed and/or
stochastic monitoring) [31]. Connected to approachability as well is the con-
cept of “attainability.” Attainability is a new notion developed in [9, 32] in
the context of 2-player continuous-time repeated games with vector payoffs.
Attainability arises in many contexts such as transportation networks, distribu-
tion networks, production networks applications. The main question is: “Under
what conditions does a strategy for player 1 exist such that the cumulative pay-
off converges (in the lim sup sense) to a preassigned set (in the space of vector
payoffs) independently of the strategy used by player 2?”

A second stream of literature we follow in the present study is the one
on mean field games. This theory originated in the work of M. Y. Huang,
P. E. Caines and R. Malhamé [23, 21, 22], and independently in that of J.
M. Lasry and P. L. Lions [25, 26, 27], where the now standard terminology
of Mean Field Games (MFG) was introduced. Explicit solutions in terms of
mean field equilibria are not common unless the problem has a linear-quadratic
structure, see [8]. Mean field games have connections to evolutionary games
(see for instance [24]) and large games [5]. Actually, both the anonymous game
in [24] and the large game in [5] build upon the notion of mass interaction and
can be seen as a stationary mean field.

This paper is organized as follows. In Section 2, we set up the problem. In
Section 3, we provide our population game motivation for the problem at hand.
In Section 4, we establish the main results of the paper. In Section 5, we apply
the model to a regret-based setting, and show under incomplete information
that nonpositive maximal regrets that are approachable in 1st moment must be
Bayesian equilibria. Finally, in Section 6, we draw concluding remarks.
Notation. We view vectors as columns. For a vector x, we use xi to denote its
ith coordinate component. Occasionally we may write (x)i=1,...,m to denote an
m-dimensional column vector. For two vectors x and y, we use x < y (x ≤ y)
to denote xi < yi (xi ≤ yi) for all coordinate indices i. We let xT denote the
transpose of a vector x, and ‖x‖ its Euclidean norm. We write P (x) to denote
the projection of a vector x on a set X , and dist(x,X) for the distance from x
to X , i.e. P (x) = argminy∈X ‖x− y‖ and dist(x,X) = ‖x−P (x)‖, respectively.
We also denote by conv the convex hull of a given set of points. ∂x indicates
the first partial derivative with respect to x.

1Still within the realm of differential games, it is worth noting that the notion of nonan-
ticipative behavior strategies has a long history [7, 14, 37, 35, 38]. Actually, it turns out that
classical feedback strategies in differential games are special nonanticipative strategies.
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2 The Model

With the above preamble in mind, the game at hand is a two-player repeated
game with vector payoffs in continuous time.2 We assume that the players use
nonanticipating behavior strategies with delay. This means that the behavior of
a player may depend only on past play. In other words, the way a player plays
during a given interval of time does not affect the way the opponent plays during
that block. Still, it may affect the other player’s play in subsequent intervals.

Let A = {1, 2, . . . , n} be a discrete set, ai : [0, T ] → A a measurable function
of time and aj : [0, T ] → A a random disturbance. Let u : A × A → M where
M = {Mlk, l, k ∈ A} and Mlk ∈ R

m (each entry Mlk is an m-dimensional
vector). Let X := conv{Mlk| l, k ∈ A}, where conv denotes the convex hull, and
consider the differential equation in X

{

dx(t) = 1
t
(Eu(ai(t), aj(t))− x(t))dt, ∀t ∈ [0, T ],

x(0) = x0 ∈ X,
(1)

where x0 is generated according to a distribution law ρ0(x). More specifically,
consider a probability density function ρ : X × [0,+∞[→ R, (x, t) 7→ ρ(x, t),
representing the density of the players whose state is x at time t, which satisfies
∫

R
ρ(x, t)dx = 1 for every t. Let us also define the mean state over players at

time t as ρ(t) :=
∫

X
xρ(x, t)dx. We also have ρ(x, 0) = ρ0(x).

The objective of a player is to approach a given target y : [0, T ] → X . Then,
for each group, consider a running cost g : X ×X → [0,+∞[, (x, y) 7→ g(x, y)
of the form:

g(x, y) =
1

2

[

(y − x)
T
Q (y − x)

]

, (2)

where Q > 0 and symmetric.
The above cost describes i) the (weighted) square deviation of an individual’s

state from the target.
Also consider a terminal cost Ψ : X ×X → [0,+∞[, (x, y) 7→ Ψ(x, y) of the

form

Ψ(x, y) =
1

2
(y − x)TS(y − x), (3)

where S > 0. The problem in its generic form is then the following:

Problem 1 Let the initial state x(0) be given and with density ρ0. Given a finite
horizon T > 0, a suitable running cost: g : X ×X → [0,+∞[, (x, y) 7→ g(x, y),
as in (2); a terminal cost Ψ : X × X → [0,+∞[, (y, x) 7→ Ψ(y, x), as in (3),
and given a suitable dynamics for x as in (1), solve

inf
ai(·)∈C

{

J(x0, ai(·), aj(·)) =

∫ T

0

g(x(t), y)dt +Ψ(x(T ), y)

}

, (4)

2Whilst the game is repeated, opponents are constantly rematched, and hence no su-
pergame considerations arise.
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where C is the set of all measurable functions ai(·) from [0,+∞[ to Ai, and Eu(·)
in (1) must be consistent with the evolution of the distribution ρ(·) if every player
behaves optimally.

3 Motivation: Population Games

Consider a population game where continuously in time every individual matches
with an opponent randomly extracted from the population and the resulting
payoff is a vector. The resulting game is a two-player repeated game with vec-
tor payoffs in continuous time Γ that every individual plays against a population
with given (evolving) distribution over actions. Let A be the finite set of ac-
tions of every individual, then the instantaneous payoff is given by a function
u : A × A → R

m, where m is a natural number. We assume w.l.o.g. that pay-
offs are bounded and correspond to the elements of the following discrete set
M = {Mlk, l, k ∈ A} where Mlk ∈ R

m, so that u : A×A→M . We extend u to
the set of mixed-action pairs, ∆(A)×∆(A), in a bilinear fashion. The one-shot
vector-payoff game (A,A, u) is denoted by G and we will say that the game in
continuous time Γ is based on G.

The game Γ is played over the time interval [0,∞). We assume that the
players use markovian strategies

σ : X × [0, T ] → A such that ai(t) := σ(x, t),

where X := conv{Mlk| l, k ∈ A} and x is the average (over time) expected (over
opponent’s play) payoff defined as:

x(t) =
1

t

∫ t

0

Eu(ai(t), aj(t))dt ∈ R
m (5)

In the above equation,















Eu(ai(t), aj(t)) := u(ai(t), q(t))

q ∈ ∆(A) s.t. qk =
∫

Rk
ρ(x, t)dx,

Rk := {x ∈ R
m|σ(x, t) = k}, ∀k ∈ A.

(6)

Once we differentiate (5) with respect to t we obtain the equation (1) in the
same spirit as in Hart and Mas-Colell’s paper [20] on continuous-time approach-
ability. Then, Problem 1 analyzes the approachability of a given target in the
space of vector payoffs on the part of a population of individuals.

Example 1 (Prisoners’ Dilemma) Suppose, for instance, that players target
the average payoffs across the population. Consider the following game:

Cooperate Defect
Cooperate (3, 3) (0, 4)
Defect (4, 0) (1, 1)
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Figure 1 depicts the payoff space in the continuous-time game based on this Pris-
oner’s Dilemma. Here, the state space is X = conv{(3, 3), (1, 1), (0, 4), (4, 0)}
(the boundary is in solid line), and the target y is the barycenter assuming a uni-
form distribution. One can visualize the supporting hyperplane H (dot-dashed
line) passing through the barycenter, and the vector field dx(t) converging to
(32 ,

7
2 ) for those who cooperate (region below H) and to (52 ,

1
2 ) for those who

defect (region above H). The set conv{(32 ,
7
2 ), (

5
2 ,

1
2 )} is the set of approachable

points with population strategy q = ((12 ,
1
2 ), (

1
2 ,

1
2 )), and the barycenter is at the

equilibrium with uniform distribution over X. This will be explained in Theorem
2.

(1, 1)
(4, 0)

(0, 4)

(3, 3)

(32 ,
7
2 )

(52 ,
1
2 )

Figure 1: Payoff space of Prisoners’ dilemma: State space X =
conv{(3, 3), (1, 1), (0, 4), (4, 0)} (boundary in solid line), supporting hyperplane
H (dot-dashed line) passing through the barycenter, vector field dx(t) converg-
ing to (32 ,

7
2 ) for those who cooperate (region below H) and to (52 ,

1
2 ) for those

who defect (region above H), conv{(32 ,
7
2 ), (

5
2 ,

1
2 )} is set of approachable points

with population strategy q = ((12 ,
1
2 ), (

1
2 ,

1
2 )), barycenter is self-confirmed with

uniform distribution over X .

4 Main results

This section outlines the main results of this paper. After introducing the
expected value of the projected game, Theorem 1 establishes conditions for ap-
proachability in 1st-moment. Theorem 2 introduces the notion of self-confirmed
equilibrium. Theorems 3 and 4 elaborate on existence and nonuniqueness re-
spectively.
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4.1 Expected value of the projected game

Given the above game, we wish to analyze convergence properties in the space
of distributions of the cumulative or average payoff xi(t), in the spirit of ap-
proachability. We will make use of the notion of projected game which we recall
next. Let λ ∈ R

m and denote by 〈λ,G〉 the one-shot zero sum game whose set
of players and their actions are as in game G, and the payoff that player j pays
to player i is λTu(ai(t), aj(t)) for every (ai(t), aj(t)) ∈ Ai × Aj . Observe that,
as a zero-sum one-shot game, the game 〈λ,G〉 has a value, val(λ), obtained as

val(λ) := min
ai(t)

max
aj(t)

λTu(ai(t), aj(t)).

Given the stochastic nature of aj(t) the above min-max operation is not useful to
our purposes. Then, we rather consider the expected value of the game (where
the inner maximization is replaced by an expectation) and discuss approacha-
bility in expectation. In the light of this, and using the bilinear structure of the
utility function, and assuming markovian strategies

σ : X × [0, T ] → A such that ai(t) := σ(x, t)

we can rewrite the expected value as






















Eval(λ) := minai(t) Eλ
Tu(ai(t), aj(t))

= minai(t) λ
Tu(ai(t), q(t)),

q ∈ ∆(A) s.t. qk =
∫

Rk
ρ(x, t)dx,

Rk := {x ∈ R
m|σ(x, t) = k}, ∀k ∈ A.

(7)

In the case of state-dependent payoff, which occurs when we consider the game
whose payoff is

f(u(ai(t), aj(t)), x(t)) =
1

t
(Eu(ai(t), aj(t))− x(t)) =

1

t
(u(ai(t), q(t)) − x(t)),

the above expression can be modified as:






























Evalx(λ) := minai(t) Eλ
T f

(

u(ai(t), aj(t)), xi)
)

= minai(t) λ
T f

(

u(ai(t), q(t)), xi

)

q ∈ ∆(A) s.t. qk =
∫

Rk
ρ(x, t)dx,

Rk := {x ∈ R
m|σ(x, t) = k}, ∀k ∈ A.

(8)

Note that here we use the notation u(ai(t), q(t)) to mean Eu(ai(t), aj(t)).

4.2 Approachability in 1st-moment

Approachability theory was developed by Blackwell in 1956 [10] and is cap-
tured in the well known Blackwell’s Theorem. We recall next the geometric
(approachability) principle that lies behind Blackwell’s Theorem.

7



To introduce the approachability principle, let Φ be a closed and convex set
in R

m and let P (x) be the projection of any point x ∈ R
m (closest point to x

in Φ).

Definition 1 (Approachable set) A closed and convex set Φ in R
m is approach-

able by player 1 if there exists a strategy for player 1 such that (9) holds true
for every strategy of player 2:

lim
t→∞

dist(x(t),Φ) = 0. (9)

The next result is the Blackwell approachability theorem.

Proposition 1 (Approachability principle [10, 33]) A closed and convex set Φ
in R

m is approachable by player 1 if for every x(t) there exists a strategy for
player 1 such that (10) holds true for every strategy of player 2:

[x(t)− P (x(t))]T [x(t) − P (x(t)) + f(ui(σ(x, t), aj(t)), xi(t))] ≤ 0, ∀ t. (10)

Note that in the above statement, condition (10) is equivalent to saying that

i) for every x taking λ = x−P (x)
‖x−P (x)‖ ∈ R

m the value of the projected game satisfies

[x(t)− P (x(t))]T [x(t) − P (x(t))] + ‖x− P (x)‖valx(λ) ≤ 0, ∀ t. (11)

Now, if we assume that the opponent is committed to play a mixed strategy
q ∈ ∆(A), condition (10) turns into

[x(t)− P (x(t))]T [x(t) − P (x(t)) + f(u(σ(x, t), q(t)), x(t))] ≤ 0, ∀ t, (12)

and the corresponding condition (11) can be rewritten as

{

[x(t) − P (x(t))]T [x(t)− P (x(t))] + ‖x− P (x)‖Evalx(λ) ≤ 0, ∀ t,
Evalx(λ) := minai(t) λ

T f(ui(ai(t), q(t)), xi).
(13)

Theorem 1 (Approachability in 1st-moment) Let q ∈ ∆(A) be given. The
set of approachable targets is

T (q) = {y | y =
∑

l,k∈A

plqkMlk, ∀p ∈ ∆(A)}.

Furthermore, there exists a partitioning R1, . . . , Rn such that the approachable
strategies are markovian and bang-bang:

σ(x) =

{

ai = k if x ∈ Rk := {ξ| (ξ − y)T (u(k, q)− y) ≤ 0}
ai 6= k otherwise.

(14)

Proof. Sketch. (sufficiency) Let y ∈ T (q). Rewrite as y =
∑

l,k∈A plqkMlk

where where p, q ∈ ∆(A). Let us also take Φ = {y(t)}.
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Then for every x ∈ X , taking λ = x−y
‖x−y‖ ∈ R

m the value of the projected

game satisfies
{

[x(t)− y]T [x(t) − y] + ‖x− y‖Evalx(λ) ≤ 0, ∀ t.

Evalx(λ) := minai(t) λ
T f

(

u(ai(t), q(t)), x
)

(15)

(necessity) Let y 6∈ T (q). Then the above does not hold. Q.E.D.

In the problem at hand, one additional challenge is that q must be self-
confirmed. This means that the mixed strategy q entering the computation of
the expected value of the projected games Evalx(λ) must reflect the current
state distribution. In formulas, this corresponds to expanding (15) as follows:



















[x(t) − y]T [x(t)− y] + ‖x− y‖Evalx(λ) ≤ 0, ∀ t.

Evalx(λ) := minai(t) λ
T f

(

u(ai(t), q(t)), x
)

q ∈ ∆(A) s.t. qk =
∫

Rk
ρ(x, t)dx,

Rk := {ξ| (ξ − y)T (u(k, q)− y) ≤ 0} ∀k ∈ A.

(16)

In the rest of the paper we look for self-confirmed solutions, which we call
equilibria.

4.3 The mean field game

Let us denote by v(x, t) the value of the optimization problem starting from
time t at state x. The first step is to show that the problem results in the
following mean field game system for the unknown scalar functions v(x, t), and
ρ(x, t) when each group behaves according to (4):







































∂tv(x, t) + inf
ai

{f(u(ai, q), x)∂xv(x, t) + g(x, y)} = 0 in R
m × [0, T [,

v(x, T ) = Ψ(x, y) ∀ x ∈ R
m,

∂tρ(x, t) + div(ρ(x, t) · f(u(a∗i , q), x)) = 0,

ρ(0) = ρ0,

(17)

where a∗i (t, x) and q are the optimal time-varying state-feedback controls of
players i and j, respectively, obtained as















a∗i = σ(x) ∈ argminai∈Ai
{f(u(ai, q), x)∂xv(x, t) + g(x, y)},

q ∈ ∆(A) s.t. qk =
∫

Rk
ρ(x, t)dx,

Rk := {x ∈ R
m|σ(x) = k}, ∀k ∈ A.

(18)

The mean field game system (17) appears in the form of two coupled PDEs
intertwined in a forward-backwardway. The first equation in (17) is theHamilton-
Jacobi-Bellman (HJB) equation with variable v(x, t) and parametrized in ρ(·).
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Given the boundary condition on final state (second equation in (17)), and
assuming a given population behavior captured by ρ(·), the HJB equation is
solved backwards and returns the value function and best-response behavior of
the individuals (first equation in (18)) as well as the worst adversarial response
(second equation in (18)). The HJB equation is coupled with a second PDE,
known as Fokker-Planck-Kolmogorov (FPK) (third equation in (17)), defined
on variable ρ(·) and parametrized in v(x, t). Given the boundary condition on
initial distribution ρ(0) = ρ0 (fourth equation in (17)), and assuming a given
individual behavior described by u∗, the FPK equation is solved forward and
returns the population behavior time evolution ρ(t).

Let condition (12) hold true. Now, for given x, take for λ the value λ(∂xv) =
∂xv(x,t)

‖∂xv(x,t)‖
which is the gradient direction on x. Then, we can introduce the

expected value of the projected anti-gradient game

Evalx[∂xv(x, t)] := λ(∂xv)
T f(ui(a

∗
i , q), x).

We can then establish the following result.

Theorem 2 (Self-confirmed equilibria) Let condition (12) hold true. Then,
the mean-field game formulation of Problem 1 is















































∂tv(x, t) + ‖∂xv‖Evalx[∂xv] +
1
2 (y(t)− x)TQ(y(t)− x) = 0,

in R
m × [0, T [,

v(x, T ) = Ψ(y(T ), x), in R
m,

∂tρ(x, t) + div(ρ(x, t) · f(ui(a∗i , q)) = 0, in R
m × [0, T [,

ρ(x, 0) = ρ0(x) in R
m.

(19)

Furthermore, the optimal controls for players 1 and 2 are















a∗i = σ(x) ∈ argminai∈Ai
λ(∂xv)

T f(u(ai, q), x)
q ∈ ∆(A) s.t. qk =

∫

Rk
ρ(x, t)dx,

Rk := {ξ| (ξ − y)T (u(k, q)− y) ≤ 0} ∀k ∈ A,
σ(x) = k, such that x ∈ Rk.

(20)

Proof. Due to the bilinear structure of f , we can deduce that the best-
response strategy u∗ and worst adversarial disturbance w∗ are on a vertex of
the associated simplices in R

p and R
q, respectively. This corresponds to saying

that both strategies are pure strategies. We recall here that pure strategies
are such that each player chooses as a result a single predetermined action, in
contrast with mixed strategies where players select probabilities on actions and
at time of play a random mechanism consistent with the selected probability
distribution determines the actual action. A consequence of this is that the
mean field equilibrium, if exists, is in pure strategies as well.
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We can rewrite the value of the anti-gradient projected game as

Evalx[∂xv] = inf
l∈A

∑

k∈A

1

t
(qkMlk − x)Tλ(∂xv),

Best responses and adversarial strategies are then given by

a∗i = argmin
l∈A

∑

k∈A

1

t
(qkMlk − x)Tλ(∂xv).

With the above definition of Evalx[∂xv] in mind, the Hamilton-Jacobi part
of (17) can be rewritten as

∂tv + ‖∂xv‖Evalx[∂xv] +
1

2
(y(t)− x(t))

T
Q (y(t)− x(t)) = 0 in R

m × [0, T [,

v(x, T ) = Ψ(x) ∀ x ∈ R
m. (21)

It is left to observe that f(u∗, w∗) = Ai∗j∗ and proves the third equation
(FPK equation). Q.E.D.

In principle, to find the optimal control input we need to solve the two
coupled PDEs in (19) in v and ρ with given boundary conditions (second and
last conditions).

4.4 Existence and nonuniqueness of equilibria

In this section we investigate existence and nonuniqueness of equilibria. To do
this, we analyze the time-dependence of an estimate error ν(t), which accounts
for the deviation between an estimated density q(t) and a current one q̃(t) at
time t:

ν(t) = q(t)− q̃(t),

where
{

q̃k(t) =
∫

Rk
ρ(x)dx

Rk := {ξ| (ξ − y(t))T (u(k, q)− y(t)) ≤ 0}.
(22)

Observe that the time-dependence of q̃(t) enters in the above through the time-
varying nature of the target y(t). Now, according to our procedure, we wish to
hypothesize a pair (p, q), which constitutes the input, and obtain a new density
q̃(p, q) as an output. To see this, from y =

∑

l,k∈A plqkMlk, ∀p, q ∈ ∆(A) the
expression (22) can be rewritten as

{

q̃k(p, q) =
∫

Rk
ρ(x)dx,

Rk := {ξ| (ξ −
∑

l,k∈A plqkMlk)
T (u(k, q)−

∑

l,k∈A plqkMlk) ≤ 0}.
(23)

Eventually, the procedure should return a fixed point. In other words, if we
think of an equilibrium as the pair (p∗, q∗) such that ν(p∗, q∗) = 0, existence
of an equilibrium is now related to existence of a fixed point for the above
procedure, i.e.,

q̃(p1, q1) = q.

11



The above means that, given a (p, q) as input to our procedure, the output
q̃(p, q) coincides with the hypothesized density q. It is natural to represent the
above algorithmic procedure, as a continuous-time dynamical system and thus
to relate convergence to a fixed point to the asymptotic stability of the dynamics.
The next assumption introduces conditions for the asymptotic stability to hold.

Assumption 1 There exists a pair (ṗ, q̇) such that
















−∂pq̃1ṗ+ q̇1 − ∂q q̃1q̇
...

−∂pq̃iṗ+ q̇i − ∂q q̃iq̇
...

−∂pq̃mṗ+ q̇m − ∂q q̃mq̇

















:= (−∂pq̃iṗ+ q̇i−∂q q̃iq̇)i=1,...,m ≤ −κ(q− q̃). (24)

The above describes the possibility of varying (p, q) in order to reduce the es-
timate error ν, whatever the current error is. The next result establishes the
existence of an equilibrium based on the above condition.

Theorem 3 (existence) Let Assumption 1 hold. Then, the estimate error
decays exponentially fast, i.e.

ν(t) ≤ e−κtν(0).

Proof. This proof is based on a Lyapunov stability approach. In particular,
let us introduce a quadratic (in the error) Lyapunov function

L =
1

2
νT ν,

and show that its derivative is strictly negative. The time derivative can be
decomposed as sum of two terms involving the gradient of L with respect to the
two variables p and q. More specifically,

L̇ = (∂pL)T ṗ+ (∂qL)T q̇

= νT ν̇ = (q − q̃)T
[

(

(∂pνi)
T ṗ

)

i=1,...,m
+
(

(∂qνi)
T q̇

)

i=1,...,m

]

= (q − q̃)T (−∂pq̃iṗ+ q̇i − ∂q q̃iq̇)i=1,...,m.

(25)

From condition (24), we also have

L̇ ≤ −κ(q − q̃)T (q − q̃) = −κνT ν,

which proves the thesis. Q.E.D.
Essentially the above theorem shows that if we let the algorithm run for a

long time the estimate error asymptotically converges to zero, namely,

lim
t→∞

ν = 0,

which proves the existence of an equilibrium.
We are now in the position to study nonuniqueness of equilibria. In particu-

lar, we provide a variational condition under which the equilibrium is nonunique.
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Theorem 4 (nonuniqueness) Starting at an equilibrium where L = 0, if for
all λ ∈ R

m, ‖λ‖ = 1 we have

minṗ,q̇ λ
T ν̇ = minṗ,q̇ λ

T (−∂pq̃iṗ+ q̇i − ∂q q̃iq̇)i=1,...,m

< 0 < maxṗ,q̇ λ
T ν̇ = maxṗ,q̇ λ

T (−∂pq̃iṗ+ q̇i − ∂q q̃iq̇)i=1,...,m,
(26)

then there exists a (ṗ, q̇) such that L̇ = 0 and thus the current equilibrium is
nonunique.

Proof. There exists a (ṗ, q̇) such that

q̃(p+ ṗdt, q + q̇dt) = q + q̇dt.

The above also means that the error

ν = q̃(p+ ṗdt, q + q̇dt)− (q + q̇dt) = 0.

Q.E.D.

4.5 Solution of the mean field game

This section investigates on the microscopic dynamics of every player given an
equilibrium (p, q) and the corresponding target which is common prior, where
the target is denoted by

y =
∑

l,k∈A

plqkMlk.

As a result we obtain that such a dynamics is a “potential” one, in the sense
that every player’s current average payoff, which we can call state of the player,
describes a trajectory along the anti-gradient of a potential function, the latter
being the value function of the mean-field game introduced earlier. To this
purpose, let us denote by e(t) the deviation between the target y that every
player wishes to approach, and the current average payoff x(t), namely

e(t) = y − x(t).

Given that our running cost is quadratic, from dynamic programming, it is
natural to assume that the value function has also a quadratic structure. This
is a recurrent approach which needs an a posteriori verification of the consistency
of the quadratic assumption. In particular, let us assume that the upper bound
for the value function takes the form

ϕ(x, t) =
1

2
eTΦte, (27)

where Φt is an opportune matrix which is positive definite, i.e., Φt > 0. Likewise,
consider a quadratic function for the terminal penalty, namely,

Ψ(x) =
1

2
e(T )Tψe(T ).

13



Then, the HJB equation in (29) can be rewritten as

∂tϕ(x, t) + ‖∂xϕ(x, t)‖Evalx[∂xϕ(x, t)] +
1

2
e(t)TQe(t) = 0 in R

m × [0, T [,

ϕ(x, T ) = Ψ(x) ∀ x ∈ R
m. (28)

Substituting the expression (27) for the value function in (28) we obtain

1

2
e(t)T Φ̇te(t)−

1

2
e(t)TΦte(t) +

1

2
e(t)TQe(t) = 0 in R

m × [0, T [,

1

2
e(T )TΦT e(T ) = Ψ(x) ∀ x ∈ R

m. (29)

The advantage of writing the HJB as above is in that all terms are explicitly
written as quadratic terms in the error e(t). Considering that the HJB has to
hold true for every e(t), we can drop e(t) and thus we have an expression in the
only matrix variable Φt as displayed next:

{

Φ̇t − Φt +Q = 0 in [0, T [,
ΦT = ψ ∀ x ∈ R

m.

The above has the form of a classical differential Riccati equation which can be
solved backwardly given the boundary conditions on the matrix in the terminal
penalty, ΦT = ψ. We can use such a result to analyze the microscopic dynamics
of each player as detailed in the next subsection.

4.5.1 Microscopic model

Every single player is characterized by the following system of equations involv-
ing the evolution of the average payoff (first equation), its best-response (second
equation), and the expression for the density (third equation):















dx(t) = 1
t

(
∑

k∈A qkMa∗k − x(t)
)

dt,
a∗(x, t) = argmina∈A(Φte(t))

T
(
∑

k∈A qkMak − x(t)
)

,
q ∈ ∆(A) s.t. qk =

∫

Rk
ρ(x, t)dx,

Rk := {x ∈ R
m|σ(x, t) = k}, ∀k ∈ A.

(30)

Note that the expression for the best-response is obtained from (20) where ∂xv
is now replaced by Φte(t). This is a straightforward consequence from assuming
the value function quadratic as in (27).

Let t = es then

ẋ(s) =
∑

k∈A

qkMa∗k − x(s) = u(a∗, q)− x(s).

For all x the supporting hyperplane H := {ξ| (ξ − y)T (u(a∗, q) − y) = 0}
separates x from u(a∗, q), i.e.,

(x− y)T (u(a∗, q)− y) = (x− y)T (
∑

k∈A

qkMa∗k − y) ≤ 0.

Then from Theorem 1 approachability follows.
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5 Application: Regret and Bayesian equilibrium

Perhaps the leading application of games with vector payoffs is in the study of
regret-based dynamics, to which we now turn.

5.1 Regret targeting in classical two-player games

Given a symmetric normal-form game with common action set A and symmetric
payoff function π : A → R, let the regret of player i from not having played
action k ∈ A under action profile α ∈ A2 be

r(k, α) = π(k, α−i)− π(αi, α−i).

A straightforward way to justify the vector payoffs introduced earlier is to make
them coincide with the regret vector associated to each action profile, i.e.

u(α) :=
(

r(k, α)
)

k∈A
.

In Hart and Mas-Colell [20], approachability of the nonpositive orthant implies
convergence to Nash equilibrium under such payoffs. This is no longer true for
1st-moment approachability, which drives expected—rather than maximum—
regret to zero, so that some deviations could still have positive regret.

In the following, we turn standard games like the Prisoners’ Dilemma, coor-
dination games and Hawk–Dove games into games with regret vectors of type

Left Right

Top

(

0
a

) (

0
b

)

Bottom

(

−a
0

) (

−b
0

)

and analyse the resulting dynamics of a population targeting expected regret.

Example 2 (Prisoners’ Regret) Consider again the Prisoners’ Dilemma,
and the following bimatrix, which represents the regret vector of player 1:

Cooperate Defect

Cooperate

(

0
1

) (

0
1

)

Defect

(

−1
0

) (

−1
0

)

Putting ourselves in the position of the Row player, and supposing that the Col-
umn player is randomly extracted from the population, we have that if Column
is playing D, then if Row switched from D(efect) to C(ooperate), he would lose
his payoff of 1, whereas if he stuck to D the regret would be 0. This explains the
vector payoff (−1, 0) for the action profile (D,D). Likewise, if Row switched
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from C to D he would earn a payoff of 1, in comparison with a regret of 0 when
sticking to C. This is represented by the regret vector (0, 1) for the action pro-
file (C,D). The reasoning would be analogous if Column were to play C. Note
that at the pure Nash equilibrium (D,D) the regret vector is component-wise
nonpositive.

(−1, 0)

(0, 1)

ρ(x, 0)

Figure 2: Regret space of Prisoners’ dilemma: State space X =
conv{(−1, 0), (0, 1)} (solid line), initial distribution ρ(x, 0) (grey area), and vec-
tor field dx(t) converging to y = (−0.5, 0.5).

Figure 2 depicts the state space X = conv{(−1, 0), (0, 1)} (solid line) in the
case with an initial distribution m(x, 0) (grey area) of players. The arrows indi-
cate the vector field dx(t) if every player in state x ∈ conv{(−1, 0), (−1/2,−1/2)}
cooperates, i.e. ai = 1 and every player in state x ∈ conv{(0, 1), (−1/2,−1/2)}
defects. The vector field is such that eventually all players converge to the
targety = (−1/2, 1/2). Consequently, the distribution converges asymptotically
to a Dirac impulse in y.

Example 3 (Coordination game) Consider now the coordination game in
the bimatrix on the left, with associated regret-vector game on the right:

Mozart Mahler
Mozart (2, 2) (0, 0)
Mahler (0, 0) (1, 1)

Mozart Mahler

Mozart

(

0
−2

) (

0
1

)

Mahler

(

2
0

) (

−1
0

)

In Fig. 3 we illustrate the state space X = conv{(−1, 0), (0, 1), (0,−2), (2, 0)}
(the boundary is in solid line). With a target y = (0,−1), suppose we have a
distribution on actions q = (2/3, 1/3), i.e. 2/3 of the population plays Mozart,
then u(1, q) = (0,−1) and u(2, q) = (1, 0) (here k = 2 means playing Mahler).
The set of approachable points with mixed population strategy q = (2/3, 1/3)
is conv{(1, 0), (0,−1)} (dashed line), namely, any point in the convex hull of
u(1, q) = (0,−1) and u(2, q) = (1, 0). The arrows indicate the vector field
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(0,−2)

(−1, 0) (2, 0)

(0, 1)

(1, 0)

(0,−1)

Figure 3: Regret space of the coordination game: State space X =
conv{(−1, 0), (0, 1), (0,−2), (2, 0)} (boundary in solid line), and vector field
dx(t) converging to (1, 0) (grey area) and (0,−1) (white area), approachable
point is y = (0,−1), set of approachable points is conv{(1, 0), (0,−1)} (dashed
line) with mixed population strategy q = (23 ,

1
3 ).

dx(t) if every player in state x ∈ R2 := {ξ| (ξ − y)T (u(2, q) − y) ≤ 0} (grey
area) plays Mahler, namely, ai = σ(x) = 2. On the other hand, every player in
state x ∈ R1 := {ξ| (ξ−y)T (u(1, q)−y) ≤ 0} (white area) plays Mozart, namely,
ai = σ(x) = 1. Obviously we need that the integral of the distribution m over R2

is consistent with the initial assumption, which means q2 =
∫

R2

ρ(x, t)dx = 1/3.
If this occurs, the vector field is such that eventually all players converge to
y = (0,−1). Consequently, the distribution converges to a Dirac impulse in y.

Example 4 (Hawk–Dove game) We can likewise transform the Hawk–Dove (or
chicken) game on the left into the corresponding regret-vector game on the right:

Hawk Dove

Hawk
(

− 1,−1
)

(4,0)

Dove (0,4)
(

2, 2
)

Hawk Dove

Hawk

(

0
1

) (

0
−2

)

Dove

(

−1
0

) (

2
0

)

We have two pure Nash equilibria (Dove,Hawk) and (Hawk,Dove), whose
corresponding regret vectors are nonpositive.

More generally, let us now consider the parametric game introduced earlier:

Left Right

Top

(

0
a

) (

0
b

)

Bottom

(

−a
0

) (

−b
0

)
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Fig. 4 illustrates the state space X = conv{(0, a), (−a, 0), (−b, 0), (0, b)} (the
boundary is in solid line) where a < 0 < b. The target y = (0, a) is in the
negative orthant. Here we consider a distribution on actions q = (1, 0), i.e.
everybody plays k = 1, then u(1, q) = (0, a) and u(2, q) = (−a, 0). The arrows
indicate the vector field dx(t) for which eventually all players converge to y =
(0, a). Consequently, the distribution converges to a Dirac impulse in y. Note
that the supporting hyperplane H := {ξ| (ξ− y)T (u(2, q)− y) = 0} (dot-dashed
line) intersects X at only one point (the vertex), which is proven to be necessary
for the vertex to be at the equilibrium. This will be explained in Theorem 2.

(0, a)

(−b, 0) (−a, 0)

(0, b)

Figure 4: Regret space of parametric game with a < 0 < b: State space
X = conv{(0, a), (−a, 0), (−b, 0), (0, b)} (boundary in solid line), vector field
dx(t) converging to (0, a) which is also an approachable vertex with population
strategy q = (1, 0), supporting hyperplane H (dot-dashed line) intersects X
only in one point (the vertex).

Fig. 5 depicts the state space X = conv{(0, a), (−a, 0), (−b, 0), (0, b)} (the
boundary is in solid line) where 0 < b < a. The target y = (−b, 0) is again
in the negative orthant. Here we consider a distribution on actions q = (0, 1),
i.e. everybody plays k = 2, then u(1, q) = (0, b) and u(2, q) = (−b, 0). The
arrows indicate the vector field dx(t) for which eventually all players converge
to y = (−b, 0). Consequently, the distribution converges to a Dirac impulse
in y. However, there is an issue here related to the fact that the vertex y is
not at the equilibrium. To see this, note that the supporting hyperplane H :=
{ξ| (ξ − y)T (u(1, q) − y) = 0} (dot-dashed line) partitions X into two regions,
which is proven to be necessary for the vertex not to be at the equilibrium. This
will be explained in Theorem 2.
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(0, b)

(0, a)

(−a, 0)

(−b, 0)

Figure 5: Regret space of parametric game with 0 < b < a: State space
X = conv{(0, a), (−a, 0), (−b, 0), (0, b)} (boundary in solid line), supporting hy-
perplane H (dot-dashed line) passing through the vertex (−b, 0), vector field
dx(t) converging to (0, b) left ofH and to (−b, 0) right of H , conv{(0, b), (−b, 0)}
is set of approachable points with population strategy q = (0, 1), vertex (−b, 0) is
not self-confirmed, while vertex (0, a) is self-confirmed with population strategy
q = (1, 0).

5.2 Maximum regret and Bayesian equilibrium

Whilst 1st-moment approachability gives interesting dynamics in population
games based on regret then, it does not give convergence to Nash equilibrium. In
this section, however, we show how the model can be applied to an incomplete-
information setting to yield convergence to Bayesian equilibrium.

Suppose then that the continuous-time population game Γ is based on a
game of incomplete information; in particular, we are given a Harsanyi game
G (as described in [41]) with state of the world ω = (s(ω); t1(ω), t2(ω)) chosen
by Nature from a finite set Y using a probability distribution θ. Players then
learn their own types ti(ω) ∈ Ti, choose actions βi from a common finite set
B(ω), and receive symmetric payoffs ̟i(β;ω), β = (β1, β2); the state of nature
is s(ω) = (B(ω), ̟), ̟ = (̟1, ̟2). Each player i then has a common finite set
Σ of (Ti-measurable) pure Bayesian strategies σi : Y → B(ω), which we identify
with the action set A in our general framework. Given a strategy profile σ ∈ Σ2,
let the vector payoffs be given by maximal regrets,

u(σ) :=
(

max
k∈Σ

r(k(ω), σ(ω))
)

ti∈Ti

.

Players are continuously rematched against new opponents to play this game
G, and a new state of the world is chosen for each such matching; hence, each
play of G is one-shot in Nature, as distinct from repeated games of incomplete
information (see [6] and Ch. 14 of [34]), where the opponents and state remain
constant through time. 1st-moment approachability of the nonpositive orthant
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in Γ then implies that

Eθ max
k∈Σ

̟i(k(ω), σ−i(ω))−̟i(σ(ω)) ≤ 0.

But since the maximum of convex functions is convex, Jensen’s inequality im-
plies that the left-hand side is no less than

max
k∈Σ

Eθ̟i(k(ω), σ−i(ω))− Eθ̟i(σ(ω)),

which is hence also nonpositive. Thus, we have a Nash equilibrium of the
Harsanyi game, which is also a Bayesian equilibrium of the incomplete-information
game by Harsanyi’s [17] Theorem I.

For example, consider a game G where each player’s payoffs are randomly
determined; with probability 1/2, the Row player R has the payoffs in the left-
hand “l” matrix, and with probability 1/2, she has the payoffs in the right-hand
“h” matrix:

l Opera Football
Opera 3 1
Football 0 2

h Opera Football
Opera 1 3
Football 2 0

The Column player C’s payoffs are determined in a symmetric manner. Each
player observes her own payoffs, but not those of her opponent. There are thus
four possible states of the world Y = {ωll, ωlh, ωhl, ωhh}:















ωll =
(

sll; [
1
2ωll,

1
2ωlh], [

1
2ωll,

1
2ωhl]

)

ωlh =
(

slh; [
1
2ωll,

1
2ωlh], [

1
2ωlh,

1
2ωhh]

)

ωhl =
(

shl; [
1
2ωhl,

1
2ωhh], [

1
2ωll,

1
2ωhl]

)

ωhh =
(

shh; [
1
2ωhl,

1
2ωhh], [

1
2ωlh,

1
2ωhh]

)

,

(31)

each occurring with probability 1/4. Furthermore, there are two possible types
of each player,

{Rl, Rh} =

{[

1

2
ωll,

1

2
ωlh

]

,

[

1

2
ωhl,

1

2
ωhh

]}

,

{Cl, Ch} =

{[

1

2
ωll,

1

2
ωhl

]

,

[

1

2
ωll,

1

2
ωhl

]}

,

and each player assigns probability 1/2 to each of her opponents’ possible types.
Representing this situation as a Bayesian game, the Row player’s vector payoffs
are:

Ol, Oh Ol, Fh Fl, Oh Fl, Fh

Ol, Oh

(

3
1

) (

2
2

) (

2
2

) (

1
3

)

Ol, Fh

(

3
2

) (

2
1

) (

2
1

) (

1
0

)

Fl, Oh

(

0
1

) (

1
2

) (

1
2

) (

2
3

)

Fl, Fh

(

0
2

) (

1
1

) (

1
1

) (

2
0

)
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where, for example, Ol, Fh denotes the pure Bayesian strategy {σR(Rl) =
{Opera}, σR(Rh) = {Football}}. The Column player’s payoffs are symmetric.
This game has one pure-strategy equilibrium where Row plays Ol, Fh and Col-
umn plays Ol, Oh, and a symmetric one where Row plays Ol, Oh and Column
plays Ol, Fh.

Now convert this game into one with maximal-regret payoffs:

Ol, Oh Ol, Fh Fl, Oh Fl, Fh

Ol, Oh

(

0
1

) (

0
0

) (

0
0

) (

1
0

)

Ol, Fh

(

0
0

) (

0
1

) (

0
1

) (

1
3

)

Fl, Oh

(

3
1

) (

1
0

) (

1
0

) (

0
0

)

Fl, Fh

(

3
0

) (

1
1

) (

1
1

) (

0
3

)

For instance, if Row is playing Fl, Oh and Column is playing Ol, Oh, Row
type Rl’s expected payoff is 0, whereas he could have had 3 by playing Ol,
Oh, giving a maximal regret of 3; similarly, type Rh’s payoff is 1, whereas he
could have had 2 by playing Fl, Fh, giving a maximal regret of 1. 1st-moment
approachability of the nonpositive orthant with these maximal-regret payoffs
then implies Bayesian equilibrium.

In this respect, from Theorem 1 we know that, for instance, for any pure
strategy q we have

T (q) =















{y | y ∈ conv((0, 1), (0, 0), (3, 1), (3, 0))}, q = (1, 0, 0, 0),
{y | y ∈ conv((0, 0), (0, 1), (1, 0), (1, 1))}, q = (0, 1, 0, 0),
{y | y ∈ conv((0, 0), (0, 1), (1, 0), (1, 1))}, q = (0, 0, 1, 0),
{y | y ∈ conv((1, 0), (1, 3), (0, 0), (0, 3))}, q = (0, 0, 0, 1).

(32)

This means that for any pure strategy q the origin (0, 0) is reachable and in
particular the corresponding strategy is

σ(x) =















ai = 2 for all x, q = (1, 0, 0, 0),
ai = 1 for all x, q = (0, 1, 0, 0),
ai = 1 for all x, q = (0, 0, 1, 0),
ai = 3 for all x, q = (0, 0, 0, 1).

(33)

However, note none of the above strategies corresponds to a self-confirmed equi-
librium according to Theorem 2. Indeed, let us take for instance the first strat-
egy, ai = 2, for all x when q = (1, 0, 0, 0). But ai = 2, for all x implies R2 = X
and R1 = R3 = R4 = ∅ which implies in turn q = (0, 1, 0, 0) and this contradicts
the assumption q = (1, 0, 0, 0). We can repeat the same reasoning for any other
strategy.
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6 Conclusion

This paper has combined approachability theory, evolutionary games, and mean-
field games in a unified framework. The game studied has a vector payoff, a large
number of players, and admits classical mean-field game representation involv-
ing two coupled PDEs, the Hamilton-Jacobi-Bellman equation and the advection
equation. We have highlighted multiple contributions. First, we coin the no-
tion of 1st-moment approachability and analyze the corresponding convergence
conditions. Second, we use the mean-field game to introduce the self-confirmed
equilibrium. Third we discuss on existence, non uniqueness, and stability of
equilibria as fixed points of the two PDEs.

Future work involves the stochastic analysis of the same game in the pres-
ence of an additional Brownian motion in the dynamics. This would capture
uncertainty or model-misspecification. In a different direction, we are interested
in extending the study to the case where each player can adopt a mixed strat-
egy, which would imply a new definition of density distribution on the space of
mixed strategies; so far, the density distribution is defined on the space of pure
strategies. A third development will be a further analysis of the connections
with the Bayesian approach.
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