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Abstract

Within the realm of dynamic of smart buildings and smart cities, dynamic re-

sponse management is playing an ever-increasing role thus attracting the attention

of scientists from different disciplines. Dynamic demand response management in-

volves a set of operations aiming at decentralizing the control of loads in large and

complex power networks. Each single appliance if fully responsive and readjusts

its energy demand to the overall network load. A main issue is related to mains

frequency oscillations resulting from an unbalance between supply and demand. In

a nutshell, this paper contributes to the topic by equipping each signal consumer

with strategic insight. In particular, we highlight three main contributions and a

few other minor contributions. First, we design a mean-field game for the TCLs

application, study the mean-field equilibrium for the deterministic mean-field game

and investigate on asymptotic stability for the microscopic dynamics. Second, we

extend the analysis and design to imperfect models which involve both stochastic

or deterministic disturbances. This leads to robust mean-field equilibrium strategies

guaranteeing stochastic and worst-case stability, respectively. Minor contributions

involve the use of stochastic control strategies rather than deterministic, and some

numerical studies illustrating the efficacy of the proposed strategies.
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1 Introduction

Demand response management involves a set of operations aiming at decentralizing load

control in power networks [3, 13, 14, 31]. In particular, it calls for the alteration of

the timing, of the level of instantaneous demand, or of the total electricity by end-use

customers from their normal consumption patterns in response to changes in the price

of electricity over time. This is possible also through an opportune design of incentive

payments to induce lower electricity use at off-peak times.

A communication protocol aggregates relevant information on the past, current and

forecasted demand and transmits it to each fully responsive load controller or decision

mechanism, which will adopt opportune actions such as increasing or decreasing the proper

load or energy demand. The novelty of this paper is in that fully responsive load control

together with the many cooperative and competitive aspects involved in the process, are

now reviewed as a game with a large number of indistinguishable players, these being

the single loads. For illustrative purposes, in this paper, fully responsive load control is

reviewed in the context of thermostatically controlled loads (TCLs), in smart buildings

or plug-in electric vehicles [4, 22, 23, 25, 29], see Fig. 1.

Figure 1: Demand response involves populations of electrical loads (lower block) and
energy generators (upper block) intertwined in a feedback-loop scheme.

A first idea of this work, which is common also to [4, 6], is to adopt stochastic response

strategies rather than deterministic. This means that each TCL selects a probability with

which to activate one of the two functioning modes, on and off. Thus a probability value of

1/2 means that the TCL is 50% on and 50% off. It has been shown in [4, 6] that stochastic

response strategies outperform deterministic ones, especially in terms of attenuating the
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mains frequency oscillations. These are due to the unbalance between energy demand

and supply (see e.g. [26]). The mains frequency usually needs to be stabilized around a

nominal value (50 Hz in Europe). If electrical demand exceeds generation then frequency

will decline, and vice versa.

A qualitative plot of such an oscillatory phenomenon is displayed in Fig. 2. The two

rows depict the time plot of the state of each TCL, namely the temperature in the top row

and the mode of functioning in the bottom row. Here each TCL increases or decreases

its proper load in response to the current network load, and as clear visually, this induces

oscillations in the mains frequency due to an undesired synchronized reaction of the whole

population of TCLs.

This preamble introduces the main aim of this paper, which studies constructive design

methods of distributed demand response management strategies in order to reduce the

mains frequency oscillations and stabilize both the temperature and the functioning mode

of the TCLs.
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Figure 2: Example of oscillations: qualitative time plot of the state of each TCL, namely
temperature (top row) and mode of functioning (bottom row).
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The model used in this paper is as follows. Each single TCL is a player and is char-

acterized by two state variables, the temperature and the functioning mode. The state

dynamics of a TCL — henceforth referred to as microscopic dynamics to distinguish

it from the dynamics of the aggregate temperature and functioning mode of the whole

population, the latter called macroscopic dynamics — describes the time evolution of its

temperature and mode in the form of a linear ordinary differential equation in the deter-

ministic case, and of a stochastic differential equation in the stochastic case. In addition

to the state dynamics, each TCL is programmed with a given finite-horizon cost func-

tional that accounts for i) energy consumption, ii) deviation of mains frequency from the

nominal one, and iii) deviation of the TCL’s temperature from a reference value. More

formally, the mains frequency involved in the specifics ii) is used in a cross-coupling mean-

field term that incentivizes the TCL to switch to off if the mains frequency is below the

nominal value and to switch to on if the mains frequency is above the nominal value. In

other words, the cross-coupling mean-field term models all kinds of incentive payments,

benefits, or smart pricing policies aiming at shifting demand from high-peak to off-peak

periods.

1.1 Highlights of contributions

This paper provides three main results. First, in the spirit of prescriptive game theory and

mechanism design [5] we design a mean-field game for the TCLs application, study the

mean-field equilibrium for the deterministic mean-field game and investigate on asymp-

totic stability for the microscopic dynamics. Asymptotic stability means that both the

temperature and the mode functioning of each TCL converges to the reference value. A

second result relates to the stochastic case, characterized by a stochastic disturbance in

the form of a Brownian motion in the microscopic dynamics. After establishing a mean-

field equilibrium, we provide some results on stochastic stability. In particular, we focus

on two distinct scenarios. In one case, we assume that the stochastic disturbance expires

in a neighborhood of the origin. This reflects in having the Brownian motion coefficients

linear in the state. The resulting dynamics is well-known in the literature as geometric

Brownian motion. As for any geometric Brownian motion, we can study conditions for it

to be stochastically stable almost surely. This means that the state trajectories converge

to zero with probability one. In a second case, the stochastic disturbance is independent

on the state and the Brownian motion coefficients are constant. This leads to a dynamics

which resembles the Langevin equation. Following well-known results on the Langevin

equation, the dynamics is proven to be stochastically stable in the second-moment. An

expository work on stochastic analysis and stability is [21]. A third result deals with ro-
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bustness for the microscopic dynamics. The dynamics is now influenced by an additional

adversarial disturbance, with bounded resource or energy. Even for this case, we study the

mean-field equilibrium and investigate on conditions that guarantee worst-case stability.

1.2 Literature overview

We introduce next two streams of literature. One is related to dynamic response manage-

ment, while the second one is about the theory of differential games with a large number

of indistinguishable players, also known as mean-field games.

1.2.1 Related literature on demand response

Examples of papers developing the idea of dynamic demand management are [11, 12,

22, 23]. In particular, [11] provides an overview on the redistribution of the load away

from peak hours and the design of decentralized strategies to produce a predefined load

trajectory. This idea is further developed in [12]. To understand the role of game theory

in respect to this specific context the reader is referred to [22]. There, the authors present

a large population game where the agents are plug-in electric vehicles and the Nash-

equilibrium strategies (see [8]) correspond to distributed charging policies that redistribute

the load away from peaks. The resulting strategies are known with the name of valley-

filling strategies. In this paper we adopt the same perspective in that we show that

network frequency stabilization can be achieved by giving incentives to the agents to

adjust their strategies in order to converge to a mean field equilibrium. To do this, in the

spirit of prescriptive game theory [5], a central planner or game designer has to design the

individual objective function so to penalize those agents that are in on state in peak hours,

as well as those who are in off state in off-peak hours. Valley-filling and coordination

strategies have been shown particularly efficient in thermostatically controlled loads such

as refrigerators, air conditioners and electric water heaters [23].

The results obtained in this paper are in accordance with the recent results in [4],

according to which, stochastic control laws are in general more appropriate than deter-

ministic ones when it comes to desynchronize the appliances functioning.

1.2.2 Related literature on mean-field games

A second stream of literature related to the problem at hand is on mean-field games.

Mean-field games were formulated by Lasry and Lions in [20] and independently by M.Y.

Huang, P. E. Caines and R. Malhamé in [18, 19]. The mean-field theory of dynamical

games is a modeling framework at the interface of differential game theory, mathematical
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physics, and H∞-optimal control that tries to capture the mutual influence between a

crowd and its individuals.

From a mathematical point of view the mean-field approach leads to a system of two

PDEs. The first PDE is the Hamilton-Jacobi-Bellman (HJB) equation. The second

PDE is the Fokker-Planck-Kolmogorov (FPK) equation which describes the density of

the players. Explicit solutions in terms of mean-field equilibria are available for linear-

quadratic mean-field games [7], and have been recently extended to more general cases

in [15]. In addition to explicit solutions, a variety of solution schemes have been recently

proposed based on discretization and/or numerical approximations, see e.g. [1, 2, 24].

The idea of extending the state space, which originates in optimal control [27, 28], has

been also used to approximate mean-field equilibria in [9]. More recently, robustness and

risk-sensitivity have been brought into the picture of mean-field games [10, 30], where the

first PDE is now the Hamilton-Jacobi-Isaacs (HJI) equation. For a survey on mean-field

games and applications we refers the reader to [16]. A first attempt to apply mean-field

games to demand management is in [6].

The paper is organized as follows. In Section 2 we state the problem and introduce

the model. In Section 3 we review some preliminary results. In Section 4 we state and

discuss the main results. In Section 6 we provide some discussion. In Section 5 we carry

out some numerical studies. Finally, in Section 7 we provide some conclusions.

1.3 Notation

The symbol E indicates the expectation operator. We use ∂x and ∂2
xx to denote the first

and second partial derivatives with respect to x, respectively. Given a vector x ∈ R
n

and a matrix a ∈ R
n×n we denote by ‖x‖2a the weighted two-norm xTax. The symbol ai•

means the ith row of a given matrix a. We denote by Diag(x) the diagonal matrix in R
n×n

whose entries in the main diagonal are the components of x. We denote by dist(X,X∗)

the distance between two points X and X∗ in R
n. We denote by ΠM(X) the projection

of X onto set M. The symbol “:” denotes the Frobenius product.

2 Population of TCLs through mean-field games

In this section, in the spirit of prescriptive game theory and mechanism design [5], we

design a mean-field game for the TCLs application, with the aim of incentivizing cooper-

ation among the TCLs through an opportune design of distributed cost functionals, one

per each TCL.

Consider a population of hybrid controlled thermostat loads (TCLs) and a time horizon
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window [0, T ]. Each TCL is characterized by a continuous state, namely the temperature

x(t), and a binary state πon(t) ∈ {0, 1}, representing the condition on or off at time

t ∈ [0, T ]. When the TCL is set to on the temperature decreases exponentially up to

a fixed lower temperature xon whereas in the off position the temperature increases

exponentially up to a higher temperature xoff . Then, the temperature of each appliance

evolves according to the following differential equations:

ẋ(t) =

{

−α(x(t)− xon) if πon(t) = 1

−β(x(t)− xoff ) if πon(t) = 0
, t ∈ [0, T ), (1)

with initial state x(0) = x and where the rates α, β are given positive scalars.

In accordance with [4, 6] we set the problem in a stochastic framework where each TCL

is in one of the two states on or off with given probabilities πon ∈ [0, 1] and πoff ∈ [0, 1].

The control variable is the transitioning rate uon from off to on and the transitioning

rate uoff from on to off . This is illustrated in the automata in Fig. 3.

πon πoff

uon

uoff 1− uon

1− uoff

Figure 3: Automata describing transition rates from on to off and viceversa.

The corresponding dynamics is then given by











π̇on(t) = uon(t)− uoff(t), t ∈ [0, T ),

π̇off (t) = uoff(t)− uon(t), t ∈ [0, T ),

0 ≤ πon(t), πoff (t) ≤ 1, t ∈ [0, T ).

(2)

As π̇on(t) + π̇off (t) = 0, we can simply consider only one of the above dynamics.

Then, let us denote y(t) = πon(t) and introduce a stochastic disturbance in the form of

a Brownian motion, denote it B(t), and a deterministic disturbance w(t) = [w1(t) w2]
T .

For any x, y in the

“set of feasible states” S :=]xon, xoff [×]0, 1[,

7



the resulting dynamics in a very general form is given by































































dx(t) =
(

y(t)
[

− α(x(t)− xon)
]

+ (1− y(t))
[

− β(x(t)− xoff )
]

+d11w1(t) + d12w2(t)
)

dt+ σ11(x)dB(t),

=:
(

f(x(t), y(t)) + d11w1(t) + d12w2(t)
)

dt+ σ11(x)dB(t), t ∈ [0, T ),

x(0) = x,

dy(t) =
(

uon(t)− uoff(t) + d21w1(t) + d22w2(t)
)

dt+ σ22(y)dB(t)

=:
(

g(u(t)) + d21w1(t) + d22w2(t)
)

dt+ σ2(y)dB(t), t ∈ [0, T ),

y(0) = y,

(3)

where σij and dij, i, j = 1, 2 are positive scalar coefficients.

For a mean-field game formulation, consider a probability density function m : [xon, xoff ]×

[0, 1]× [t, T ] → [0,+∞[, (x, y, t) 7→ m(x, y, t), which satisfies
∫ xoff

xon

∫

[0,1]
m(x, y, t)dxdy = 1

for every t. Let us also define as mon(t) :=
∫ xoff

xon

∫

[0,1]
ym(x, y, t)dxdy. Likewise we denote

by moff (t) = 1−mon(t).

At every time t the network or mains frequency depends linearly on the discrepancy

between the percentage of TCLs in on position and a nominal value. We call such a

discrepancy as error and denote it by e(t) = mon(t) − mon, where mon is the nominal

value (the higher the percentage of TCLs in on position with respect to the nominal

value, the lower the network frequency).

We then consider the running cost below, which depends on the distribution m(x, y, t)

through the error e(t):

c(x(t), y(t), u(t), m(x, y, t)) = 1
2

(

qx(t)2 + ronuon(t)
2 + roffuoff(t)

2
)

+y(t)(Se(t) +W ),
(4)

where q, ron, roff , and S are opportune positive scalars.

Note that cost (4) includes four terms. The term 1
2
qx(t)2 penalizes the deviation of the

TCLs’ temperature from the nominal value, which we set to zero. The terms 1
2
ronuon(t)

2

introduces a cost for fast switching; namely this cost is zero when either uon(t) = 0 (no

switching) and is maximal when uon(t) = 1 (probability 1 of switching). Similar comment

applies 1
2
roffuoff(t)

2. The term y(t)Se(t) accounts for the network stabilization in that

it penalizes those appliances that are on whenever e(t) > 0, the latter condition meaning

that demand exceeds supply. The same term turns into a revenue if an appliance is

on whenever e(t) < 0, i.e., whenever supply exceeds demand. Finally, the penalty term

y(t)W accounts for the minimization of power, namely, whenever the TCL is on the power
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consumption is W .

Also consider a terminal cost Ψ : R → [0,+∞[, x 7→ Ψ(x) to be yet designed.

Problem statement. Given a finite horizon T > 0 and an initial distribution m0 :

[xon, xoff ] × [0, 1] → [0,+∞[, minimize over U and maximize over W , subject to the

controlled system (3), the cost functional

J(x, y, t, u(·)) = E

∫ T

0

(c(x(t), y(t), u(t), w(t), m(x, y, t))−
1

2
γ2‖w(t)‖2)dt+Ψ(X(T )),

where γ is a positive scalar, U and W are the sets of all measurable state feedback closed-

loop policies u(·) : [0,+∞[→ R respectively, and w(·) : [0,+∞[→ R and m(·) is the

time-dependent function describing the evolution of the mean of the distribution of the

TCLs’ states.

3 Preliminary results

This section reviews first- and second-order mean-field games in preparation to apply the

game to the problem at hand. In the first case, the microscopic dynamics is deterministic

and the resulting mean-field game involves only the first derivatives of the value function

and of the density function. In the second case, the microscopic dynamics is a stochastic

differential equation driven by a Brownian motion, which leads to the involvement of

second derivatives of the value function and density function. In addition to this, this

section specializes the model to the case under study, involving a population of TCLs and

introduced in the previous section.

3.1 First- and second-order mean-field games

This section streamlines some preliminary results on mean-field games. To this purpose,

consider a generic cost and dynamics

J(X, 0, U(.)) = infU(.)

∫ T

t=0
c(X(t), m, U(.))dt+Ψ(X(T )),

Ẋ(t) = F (X(t), U(.)) in R
n,

(5)

where c(.) is the running cost, Ψ(X) ∀ X ∈ in R
n is the terminal penalty, and where U(.)

is any state-feedback closed loop control policy. Let v(X, t) be the value function, i.e., the

optimal value of J(X, t, U(·)). Then from [20] it is well-known that the problem results

in the following mean-field game system

9

































−∂tv(X, t)− F (X,U∗(X))∂Xv(X, t)− c(X,m,U∗(X)) = 0 (a)

in R
n×]0, T ],

v(X, T ) = Ψ(X) ∀ X ∈ in R
n,

U∗(X, t) = argmaxU∈R{−F (X,U)∂Xv(X, t)− c(X,m,U)}, (b)

(6)

{

∂tm(X, t) + div(F (X,U∗(X))m(X, t)) = 0 in R
n×]0, T ],

m(X, 0) = m0(X), ∀ X ∈ in R
n.

(7)

The partial differential equation (PDE) 6 (a) is the Hamilton-Jacobi-Bellman equation

which returns the value function v(X, t) once we fix the distribution m(X, t); This PDE

has to be solved backwards with boundary conditions at final time T , represented by the

last line in 6 (a). In 6 (b) we have the optimal closed-loop control U∗(X, t) as maximizer of

the Hamiltonian function in the rhs. The PDE 7 represents the transport equation of the

measure m immersed in a vector field F (X,U∗(X)); It returns the distribution m(X, t)

once fixed the the optimal closed-loop control U∗(X, t) and consequently the vector field

F (X,U∗(X)). Such a PDE has to be solved forwards with boundary condition at the

initial time (see the last line) of (7).

In a second order mean-field game, the dynamics is a stochastic differential equation

driven by a Brownian motion, and the cost function is considered through its expected

value, namely,

J(X, 0, U(.)) = infU(.) E
∫ T

t=0
c(X(t), m, U(X(t)))dt+Ψ(X(T ))

dX(t) = F (X(t), U(.))dt+ σ(X)dB(t) in R
n,

(8)

where B(t) ∈ R
n is the Brownian motion and σ(X) ∈ R

n×n is the coefficient matrix.

From [20] the second-order mean-field game system is then given by































−∂tv(X, t)− F (X,U∗(X))∂Xv(X, t)− c(X,m,U∗(X))

−1
2
σ(X)σ(X)T : ∂XXv(X, t) = 0in R

n×]0, T ], (a)

v(X, T ) = Ψ(X) ∀ X ∈ in R
n,

U∗(X, t) = argmaxU∈R{−F (X,U)∂Xv(X, t)− c(X,m,U)}, (b)

(9)











∂tm(X, t) + div(F (X,U∗(X))m(X, t))

−1
2

∑n

i=1

∑n

j=1 ∂
2
XiXj

(σ̃ijm(X, t)) = 0 in R
n×]0, T ],

m(X, 0) = m0(X), ∀ X ∈ in R
n,

(10)
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where the symbol “:” denotes the Frobenius product and σ̃ij =
∑n

k=1 σik(X)σjk(X).

In a second-order mean-field game the Hamilton-Jacobi-Bellman equation, as in 9 (a),

involves the second-order derivatives of the value function in the additional term repre-

sented by the Frobenius product; Likewise, also the transport equation as in (10) involves

the second-order derivatives of the density function. The rest of the system is similar

to the first-order case. Let us now specialize the above model to the TCLs application

introduced in the previous section.

3.2 Mean-field game for the TCL application

Specializing to our TCLs application, let v(x, y,m, t) be the value function, i.e., the opti-

mal value of J(x, y, t, u(·)). Let us denote by

k(x(t)) = x(t)(β − α) + (αxon − βxoff ).

Then, the problem at hand can be rewritten as in terms of the state, control and distur-

bance vectors

X(t) =

[

x(t)

y(t)

]

, u(t) =

[

uon(t)

uoff(t)

]

, w(t) =

[

w1(t)

w2(t)

]

and yields the linear quadratic problem:

inf
{ut}t

E

∫ T

0

[

1

2

(

‖X(t)‖2Q + ‖u(t)‖2R − γ2‖w(t)‖2
)

+ LTX(t)

]

dt

dX(t) = (AX(t) +Bu(t) + C +Dw(t))dt+ ΣdB(t), in S

(11)

where

Q =

[

q 0

0 0

]

, R = r =

[

ron 0

0 roff

]

, L(e) =

[

0

Se(t) +W

]

,

A(x) =

[

−β k(x(t))

0 0

]

, B =

[

0 0

1 −1

]

, C =

[

βxoff

0

]

,

(12)

and

D =

[

d11 d12

d21 d22

]

, Σ =

[

σ11(x) 0

0 σ22(y)

]

. (13)
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The resulting mean-field game is given by































































∂tVt(X) + infu supw

{

∂XVt(X)T (AX +Bu+ C +Dw) + 1
2

(

‖X‖2Q

+‖u‖2R − γ2‖w‖
)

+ LTX
}

+ 1
2
(σ11(x)

2∂xxv(X, t), (a)

+σ22(y)
2∂yyv(X, t)) = 0, in S × [0, T [,

v(X, T ) = g(x), in S

u∗(x, t) = argminu∈R

{

∂XVt(X)T (AX +Bu+ C +Dw) +
1

2
‖u(t)‖2R

}

, (b)

w∗(x, t) = argmaxu∈R

{

∂XVt(X)T (AX +Bu+ C +Dw)−
1

2
γ2‖w(t)‖2

}

(14)

and






































∂tm(x, y, t) + div[(AX +Bu+ C +Dw) m(x, y, t)]

−1
2

∑2
i=1

∑2
j=1 ∂

2
XiXj

(σ̃ijm(X, t)) = 0 in S×]0, T [,

m(xon, y, t) = m(xoff , y, t) = 0 ∀ y ∈ [0, 1], t ∈ [0, T ],

m(x, y, 0) = m0(x, y) ∀ x ∈ [xon, xoff ], y ∈ [0, 1]
∫ xoff

xon

m(x, t)dx = 1 ∀ t ∈ [0, T ],

(15)

where σ̃ij =
∑n

k=1 σik(X)σjk(X).

Essentially, the partial differential equation (PDE) (14) (a) is the Hamilton-Jacobi-

Isaacs equation which returns the value function v(x, y,m, t) once we fix the distribution

m(x, y, t); This PDE has to be solved backwards with boundary conditions at final time

T , represented by the last line in 14 (a). In 14 (b) we have the optimal closed-loop

control u∗(x, t) and worst-case disturbance w∗(x, t) as min-maximizers of the Hamiltonian

function in the RHS. The PDE (15) represents the transport equation of the measure m

immersed in a vector field AX +Bu+C+Dw; It returns the distribution m(x, y, t) once

fixed both u∗(x, t) and w∗(x, t) and consequently the vector field AX +Bu∗ + C +Dw∗.

Such a PDE has to be solved forwards with boundary condition at the initial time (see

the fourth line) of 15. Finally, once given m(x, y, t) from (c) and entered into the running

cost c(x, y,m, u) in (a), we obtain the error

{

mon(t) :=
∫ xoff

xon

∫

[0,1]
ym(x, y, t)dxdy ∀ t ∈ [0, T ],

e(t) = mon(t)−mon.
(16)

Note that

X̄(t) =

[

x̄(t)

ȳ(t)

]

=

[

x̄(t)

mon

]

=

[

∫ xoff

xon

∫

[0,1]
xm(x, y, t)dxdy

∫ xoff

xon

∫

[0,1]
ym(x, y, t)dxdy

]

,
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and therefore, henceforth we can refer to as mean-field equilibrium solutions any pair

(v(X, t), X̄(t)) which is solution of (14)-(15).

4 Main results

This paper contributes in three directions with respect to the TCLs application introduced

earlier. First, it analyzes and computes the mean-field equilibrium for the deterministic

mean-field game and proves that under certain conditions the microscopic dynamics is

asymptotically stable. We repeat the analysis for the stochastic case, assuming that the

microscopic dynamics is uncertain. Even for this case, a mean-field equilibrium is com-

puted, and stochastic stability is studied. We distinguish two cases. On the one hand, we

consider a stochastic disturbance which fades to zero the closer the state is to zero. The

Brownian motion coefficients are linear in the state and the resulting dynamics is also

known as geometric Brownian motion. On the other hand, we take the stochastic distur-

bance being independent on the state. The Brownian motion coefficients are constant and

the resulting dynamics mirrors the Langevin equation. In both cases we prove stochastic

stability of second-moment for the stochastic process at hand. This section ends with a

detailed analysis of robustness properties. The microscopic dynamics is now subject to

an addition exogenous input, the disturbance, with bounded resource or energy. Even for

this case, we study the mean-field equilibrium and investigate on condition that guarantee

stability.

4.1 Mean-field equilibrium and stability

In this section we establish an explicit solution in terms of mean-field equilibrium for the

deterministic case and study stability of the microscopic dynamics. This case is obtained

by fixing to zero the coefficients of both stochastic and adversarial disturbance.

The linear quadratic problem we wish to solve is then:

inf
{ut}t

∫ T

0

[

1

2

(

X(t)TQX(t) + u(t)TRu(t)T
)

+ LTX(t)

]

dt

Ẋ(t) = AX(t) +Bu(t) + C in S.

(17)

The next result shows that the problem reduces to solving three matrix equations.

Theorem 1 (Mean-field equilibrium) Let D,Σ = 0 in the game (14)-(15). A mean-

13



field equilibrium for (14)-(15) is given by











v(X, t) = 1
2
XTP (t)X +Ψ(t)TX + χ(t),

˙̄X(t) = [A(x)−BR−1BTP ]X̄(t)−BR−1BT Ψ̄(t) + C,

(18)

where































Ṗ + PA(x) + A(x)TP − PBR−1BTP +Q = 0 in [0, T [, P (T ) = φ,

Ψ̇ + A(x)TΨ+ PC − PBR−1BTΨ+ L = 0 in [0, T [, Ψ(T ) = 0,

χ̇ +ΨTC − 1
2
ΨTBR−1BTΨ = 0 in [0, T [, χ(T ) = 0,

(19)

and Ψ̄(t) =
∫ xoff

xon

∫

[0,1]
Ψ(t)m(x, y, t)dxdy. Furthermore, the mean-field equilibrium strate-

gies are given by

u∗(X, t) = −R−1BT [PX +Ψ]. (20)

Proof. Given in the appendix. �

Let us note that by substituting the mean-field equilibrium strategies u∗ = −R−1BT [PX+

Ψ] given in (20) in the open-loop microscopic dynamics Ẋ(t) = AX(t) + Bu(t) + C as

defined in (17), the closed-loop microscopic dynamics is

Ẋ(t) = [A(x)− BR−1BTP ]X(t)− BR−1BTΨ(x, e, t) + C. (21)

Now, let X be the set of equilibrium points for (21), namely, the set of X such that

X = {(X, e) ∈ R
2 × R| [A(x)− BR−1BTP ]X(t)− BR−1BTΨ(x, e, t) + C = 0},

and let V (X(t)) = dist(X(t),X ). The next result establishes a condition under which the

above dynamics converges asymptotically to the set of equilibrium points.

Corollary 1 (Asymptotic stability) If it holds

∂XV (X, t)T
(

[A− BR−1BTP ]X(t)−BR−1BTΨ∗(x(t), e(t)) + C
)

< −‖X(t)− ΠX (X(t))‖2
(22)

then dynamics (21) is asymptotically stable, namely, limt→∞ dist(X(t),X ) = 0.

Proof. Given in the appendix. �
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4.2 Stochastic case

In this section we study the case where the dynamics is given by a stochastic differential

equation driven by a Brownian motion. In other words, the model is uncertain and the

uncertainty is modeled as a stochastic disturbance.

The problem at hand is then:

inf
{ut}t

E

∫ T

0

[

1

2

(

X(t)TQX(t) + u(t)TRu(t)T
)

+ LTX(t)

]

dt

dX(t) = (AX(t) +Bu(t) + C)dt+ ΣdBt,

(23)

where all matrices are as in (12) and

Σ =

[

σ11(x) 0

0 σ22(y)

]

. (24)

This section investigates on the solution of the HJI equation under the assumption that

the time evolution of the common state is given. We show that the problem reduces to

solving three matrix equations. To see this, by isolating the HJI part of (14) for fixed mt,

for t ∈ [0, T ], we have















































−∂tv(X, t)− supu

{

− ∂Xv(X, t)T (AX +Bu+ C)− 1
2

(

XTQX

−uTRu
)

− LTX
}

+ 1
2
(σ11(x)

2∂xxv(X, t)

+σ22(y)
2∂yyv(X, t)) = 0, in S × [0, T [,

v(X, T ) = g(x) in S,

u∗(x, t) = −r−1BT∂yv(X, t).

(25)

Let us consider the following value function

v(X, t) =
1

2
XTP (t)X +Ψ(t)TX + χ(t),

and

u∗ = −R−1BT [PX +Ψ],

so that (48) can be rewritten as
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1
2
XT Ṗ (t)X + Ψ̇(t)X + χ̇(t) + (P (t)X +Ψ(t))T

[

−BR−1BT
]

(P (t)x+Ψ(t))

+(P (t)x+Ψ(t))T (AX + C) + 1
2

(

X(t)TQX(t) + u(t)TRu(t)T
)

+LTX(t) + 1
2
(σ11(x)

2P11(t) + σ22(y)
2P22(t)) = 0 in S × [0, T [,

P (T ) = φ, Ψ(T ) = 0, χ(T ) = 0.

(26)

The boundary conditions are obtained by imposing that

v(X, T ) =
1

2
XTP (T )X +Ψ(T )X + χ(T ) =

1

2
XTφX.

4.2.1 Case I: state dependent variance

The first case we consider involves coefficients for the Brownian motion linear in the state,

namely

Σ(X) =

[

σ̂11x 0

0 σ̂22y

]

(27)

Theorem 2 (stochastic mean-field equilibrium: case I) A mean-field equilibrium

for the game (9) with Σ(X) as in (27) is given by











v(X, t) = 1
2
XTP (t)X +Ψ(t)TX + χ(t),

˙̄X(t) = [A− BR−1BTP ]X̄(t)− BR−1BTΨ∗(X̄(t)) + C,

(28)

where































Ṗ (t) + P (t)A+ ATP − PBR−1BTP +Q + P̃ = 0 in [0, T [, P (T ) = φ,

Ψ̇(t) + ATΨ+ PC − PBR−1BTΨ+ L = 0 in [0, T [, Ψ(T ) = 0,

χ̇(t) + Ψ(t)TC − 1
2
ΨTBR−1BTΨ = 0 in [0, T [, χ(T ) = 0,

(29)

and

P̃ = Diag((σ̂2
iiPii)i=1,2) =

[

σ̂2
11P11 0

0 σ̂2
22P22

]

. (30)

Furthermore, the mean-field equilibrium strategy is

u∗ = −R−1BT [PX +Ψ] (31)
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Proof. Given in the appendix. �

Based on the above result, let us now substitute the expression of the mean-field equilib-

rium strategy u∗ = −R−1BT [PX +Ψ] as in (31) in the open-loop microscopic dynamics

dX(t) = (AX(t) + Bu(t) + C)dt + ΣdB(t) given in (23) so to obtain the closed-loop

microscopic dynamics

dX(t) =
[

(A(x)− BR−1BTP )X(t)−BR−1BTΨ∗(x(t), e(t)) + C
]

dt+ ΣdB(t) (32)

Now, let X be the set of equilibrium points for (32), namely, the set of X such that

X = {(X, e) ∈ R
2 × R| (A(x)− BR−1BTP )X(t)−BR−1BTΨ∗(x, e) + C = 0},

and let V (X(t)) = dist(X(t),X ). The next result establishes a condition under which the

above dynamics converges asymptotically to the set of equilibrium points.

Corollary 2 (2nd moment boundedness) Let a compact set M ⊂ R
2 be given. Sup-

pose that for all X 6∈ M

∂XV (X, t)T
(

[A− BR−1BTP ]X(t)−BR−1BTΨ∗(x(t), e(t)) + C
)

< −1
2
(σ2

11(x)∂xxV (X, t) + σ2
22(x)∂yyV (X, t))

(33)

then dynamics (32) is a stochastic process with 2nd moment bounded.

Proof. Given in the appendix. �

4.2.2 Case II: state independent variance and Langevin equation

The second case we consider involves coefficients for the Brownian motion which are

constant, namely

Σ =

[

σ̂11 0

0 σ̂22

]

(34)

Theorem 3 (stochastic mean-field equilibrium: case II)

Let Σ be as in (34). A mean-field equilibrium for the game (14)-(15) is given by











v(X, t) = 1
2
XTP (t)X +Ψ(t)TX + χ(t),

˙̄X(t) = [A−BR−1BTP ]X̄(t)−BR−1BTΨ∗(X̄(t)) + C

(35)
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where































Ṗ (t) + P (t)A+ ATP − PBR−1BTP +Q = 0 in [0, T [, P (T ) = φ,

Ψ̇(t) + ATΨ+ PC − PBR−1BTΨ+ L = 0 in [0, T [, Ψ(T ) = 0,

χ̇(t) + Ψ(t)TC − 1
2
ΨTBR−1BTΨ+ P̃ = 0 in [0, T [, χ(T ) = 0,

(36)

and

P̃ =

[

σ̂2
11 0

0 σ̂2
22

]

. (37)

Furthermore, the mean-field equilibrium strategies are given by

u∗(X, t) = −R−1BT [PX +Ψ]. (38)

Proof. Given in the appendix. �

Based on the above result, let us now substitute the expression of the mean-field equilib-

rium strategy u∗ = −R−1BT [PX +Ψ] as in (38) in the open-loop microscopic dynamics

dX(t) = (AX(t) + Bu(t) + C)dt + ΣdB(t) given in (23) so to obtain the closed-loop

microscopic dynamics

dX(t) =
[

(A(x)− BR−1BTP )X(t)−BR−1BTΨ∗(x(t), e(t)) + C
]

dt+ ΣdB(t) (39)

Now, let X be the set of equilibrium points for (21), namely, the set of X such that

X = {(X, e) ∈ R
2 × R| (A(x)− BR−1BTP )X(t)−BR−1BTΨ∗(x, e) + C = 0},

and let V (X(t)) = dist(X(t),X ). The next result establishes a condition under which the

above dynamics converges asymptotically to the set of equilibrium points.

Corollary 3 (2nd moment boundedness) Let a compact set M ⊂ R
2 be given. Sup-

pose that for all X 6∈ M

∂XV (X, t)T
(

[A−BR−1BTP ]X(t)

−BR−1BTΨ∗(x(t), e(t)) + C
)

< −1
2
(σ̂2

11∂xxV (X, t) + σ̂2
22∂yyV (X, t))

(40)

then dynamics (39) is a stochastic process with 2nd moment bounded.

Proof. Given in the appendix. �
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4.3 Model miss-specification

This section deals with model miss-specification, this being represented by an additional

exogenous and adversarial disturbance. The disturbance is supposed to be of bounded

energy. Thus, the linear quadratic problem we wish to solve is:

inf
{ut}t

E

∫ T

0

[

1

2

(

X(t)TQX(t) + u(t)TRu(t)− γ2w(t)Tw(t)
)

+ LTX(t)

]

dt

Ẋ(t) = AX(t) +Bu(t) + C +Dw(t) in S.

(41)

This section investigates on the solution of the HJI equation under the assumption that

the time evolution of the common state is given. We show that the problem reduces to

solving three matrix equations. To see this, by isolating the HJI part of (14) for fixed mt,

for t ∈ [0, T ], we have

Theorem 4 (worst-case mean-field equilibrium) A mean-field equilibrium for (14)-

(15) is given by











v(X, t) = 1
2
XTP (t)X +Ψ(t)TX + χ(t),

˙̄X(t) = [A− BR−1BTP ]X̄(t)− BR−1BTΨ∗(X̄(t)) + C,

(42)

where































Ṗ (t) + P (t)A+ ATP + P (−BR−1BT + 1
γ2DDT )P +Q = 0 in [0, T [, P (T ) = φ,

Ψ̇(t) + ATΨ+ PC + (−BR−1BT + 1
γ2DDT )Ψ + L = 0 in [0, T [, Ψ(T ) = 0,

χ̇(t) + Ψ(t)TC + 1
2
ΨT (−BR−1BT + 1

γ2DDT )Ψ = 0 in [0, T [, χ(T ) = 0,

(43)

Furthermore, the mean-field equilibrium control and disturbance are

u∗ = −R−1BT [PX +Ψ]

w∗ = 1
γ2D

T [PX +Ψ].
(44)

Proof. Given in the appendix. �

Let us note that by substituting the mean-field equilibrium strategies u∗ = −R−1BT [PX+

Ψ] and w∗ = 1
γ2D

T [PX + Ψ] as given in (44) in the open-loop microscopic dynamics

Ẋ(t) = AX(t)+Bu(t)+C+Dw as defined in (41), the closed-loop microscopic dynamics
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α β xon xon ron, roff q std(m0) m̄0

1 1 −10 10 10 1 1 0

Table 1: Simulation parameters

is

Ẋ(t) = [A(x)+ (−BR−1BT +
1

γ2
DDT )P ]X(t)+ (−BR−1BT +

1

γ2
DDT )Ψ∗(x(t), e(t))+C

(45)

Now, let X be the set of equilibrium points for (21), namely, the set of X such that

X = {(X, e) ∈ R
2×R| [A(x)+(−BR−1BT+

1

γ2
DDT )P ]X(t)−BR−1BTΨ(x, e, t)+C = 0},

and let V (X(t)) = dist(X(t),X ). The next result establishes a condition under which the

above dynamics converges asymptotically to the set of equilibrium points.

Corollary 4 (worst-case stability) If it holds

∂XV (X, t)T
(

[A+ (−BR−1BT + 1
γ2DDT )P ]X(t) + (−BR−1BT + 1

γ2DDT )

·Ψ∗(x(t), e(t)) + C
)

< −‖X(t)− ΠX (X(t))‖2
(46)

then dynamics (45) is asymptotically stable, namely, limt→∞ dist(X(t),X ) = 0.

Proof. Given in the appendix. �

5 Numerical studies

In this section a system consisting of n = 102 indistinguishable TCLs. All simulations are

carried out with MATLAB on an Intel(R) Core(TM)2 Duo, CPU P8400 at 2.27 GHz and

a 3GB of RAM. The number of iterations is T = 30. We consider a discrete time version

of (17)

X(t+ dt) = X(t) + (A(x(t))X(t) +Bu(t) + C)dt. (47)

The parameter are as shown in Table 1 and in particular the step size dt = 0.1, the

cooling and heating rates are α = β = 1, the lowest and highest temperatures are xon =

−10, and xoff = 10, respectively, the penalty coefficients are ron = roff = 1, and q = 1,

and the initial distribution is normal with zero mean and standard deviation std(m(0)) =

1.
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Input: Set of parameters as in Table 1.
Output: TCLs’ states X(t)
1 : Initialize. Generate X(0) given m̄0 and std(m0)
2 : for time iter = 0, 1, . . . , T − 1 do

3 : if iter > 0, then compute mt, m̄t, and std(mt)
4 : end if

5 : for player i = 1, . . . , n do

6 : Set t = iter · dt and compute control ũ(t) using current m̄(t)
7 : compute new state X(t+ dt) by executing (47)
8 : end for

9 : end for

10 : STOP

Table 2: Simulation algorithm

The numerical results are obtained using the algorithm in Table 2 for a discretized set

of states.

The optimal control is taken as

u∗ = −R−1BT [PX +Ψ]

where P is obtained from running the MATLAB command [P]=care(A,B,Q,R), which

receives the matrices as input and returns the solution P to the algebraic Riccati equation.

Under the assumption BR−1BTΨ ≈ C the resulting closed-loop dynamics is given by

X(t+ dt) = X(t) + [A− BR−1BTP ]X(t)dt.

Figure 4 displays the time plot of the state of each TCL, namely its temperature x(t)

(top row) and mode y(t) (bottom row). In contrast with what we observed in Fig. 2,

the TCLs show a stable behavior. The simulation is carried out assuming that any 10

seconds the states are subject to an impulse. The TCLs react to the impulse very fast

and converge to the equilibrium point before a new impulse is activated, as clear visually

in the plot.

We repeat the simulation for the two stochastic cases discussed earlier. The stochastic

version of the dynamics appears now as

X(t+ dt) = X(t) + (A(x(t))X(t) +Bu(t) + C + ΣW (t))dt
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Figure 4: Time plot of the state of each TCL, namely temperature x(t) (top row) and
mode y(t) (bottom row).

or for the first case, and

X(t+ dt) = X(t) + (A(x(t))X(t) +Bu(t) + C + Σ(x)W (t))dt

for the second case. Here W (t) is a random walk. The corresponding closed-loop dynamics

are then

X(t+ dt) = X(t) + [A− BR−1BTP ]X(t)dt+ ΣW (t)dt

and

X(t+ dt) = X(t) + [A−BR−1BTP ]X(t)dt+ Σ(x)W (t))dt

respectively. Figure 5 displays the time plot of the state of each TCL, namely its tem-

perature x(t) (top row) and mode y(t) (bottom row) in the first case. Even in this case,

differently from what observed sin Fig. 2, the TCLs react to the impulse and converge

to the equilibrium point before a new impulse is activated. The effects of the Brownian
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Figure 5: Time plot of the state of each TCL, namely temperature x(t) (top row) and
mode y(t) (bottom row).

motion is the one of enlarging the domain of attraction.

The experiment is repeated in Figure 6 for the geometric Brownian motion. As in

the previous cases the figure displays the time plot of the state of each TCL, namely its

temperature x(t) (top row) and mode y(t) (bottom row) in the first case. As the Brownian

motion is not weighted by the state (in modulus), its effects are attenuated and the plot

is more similar to the one in Fig. 4.

Note that except for the Langevin-type dynamics, in the remainder two cases the TCLs

states are driven to zero. For the Langevin-type dynamics the state is confined within a

neighborhood of zero.

6 Discussion

With regards to the problem at hand, the topic of dynamic response management has

sparked the attention of scientists from different disciplines. This is witnessed by the
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Figure 6: Time plot of the state of each TCL, namely temperature x(t) (top row) and
mode y(t) (bottom row).

rapid growing of publications in journals of different research areas, from differential game

theory [6, 12, 25], to control and optimization [4, 11, 22, 23, 26], to computer science [29].

One reason for this is that dynamic response management intersects research programs in

smart buildings and smart cities. The problem is relevant due to an ever-increasing size

of network systems and the consequent impossibility of centralizing the management of

the whole system.

Fully aware of the importance of the topic, let us discuss the relevance of the results

of this paper. First, it must be said that the game-theoretic approach presented here

is a natural way to deal with larges scale, complex and distributed systems where no

central planner may be capable of processing all information data and in order to control

the whole system online. One way to deal with this issue, and which is the main idea

of dynamic demand management, aims at assigning part of the regulation burden to

the consumers by using frequency responsive appliances. In other words, each appliance

regulates automatically and in a decentralized fashion its power demand based on the
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mains frequency.

In this respect, the provided model builds upon the strategic interaction among the elec-

trical appliances. Note that here we look at the problem in more general terms and talk

about electrical appliances rather than TCLs. The model suits the case where where the

latter are numerous and indistinguishable. Indistinguishable means that any appliance in

the same condition will react at the same way. We wish to highlight that indistinguisha-

bility is not a limitation, as in the case of heterogeneity of the electrical appliances, more

complex multi-population models may be derived based on the same modeling approach

used here.

The results provided in this paper shed light on the existence of mean-field equilibrium

solutions. By this we mean strategies based on the current and forecasted demand, which

are proven to attenuate oscillations of mains frequency. A first feature of the model at

hand is that the considered strategies are stochastic. This means that the TCL sets a

probability with which to switch on or off . Stochastic linear strategies are designed

as closed-loop feedback strategies on current state, temperature and switching mode.

Such strategies are computed over a finite horizon and therefore are based on forecasted

demand. From another angle, we may say that mean-field equilibrium strategies represent

the asymptotic limit of Nash equilibrium strategies, and as such they are the best-response

strategies of even single player, for fixed behavior of other players. The proven stability

of the microscopic dynamics confirms the asymptotic convergence of the TCLs’s states to

an equilibrium point, this being expressed in terms of temperature and switching mode.

The several cases studied in the paper have shown that this holds true in the cases of

both perfect and imperfect modeling. This is a clear evidence of a certain degree of

robustness characterizing the proposed strategies. In the case of imperfect modeling,

model mis-specifications is considered both in a stochastic and deterministic worst-case

scenario. Assuming imperfect models both with a stochastic or worst-case deterministic

disturbance acting on the state dynamics, conditions for convergence of the microscopic

dynamics are provided.

7 Concluding remarks

We have illustrated robust mean-field games as a paradigm for crowd-averse systems. We

have discussed these systems in the context of stock market, production engineering, and

dynamic demand management in power systems. As main contributions we first have

formulated the problem as a robust mean-field game; second, we have presented a new

approximation method based on the extension of the state space; third we have discussed
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a relaxation method to minimize the approximation error. Further results are obtained

for a scalar microscopic dynamics, for which we have established performance bounds,

and analyzed stochastic stability of both the microscopic and the macroscopic dynamics.

We can extend our study in at least three directions. These include i) the extension of

the approximation method to more general cost functionals, ii) the study of the case with

“local” mean-field interactions rather than “global” as in the current scenario, and iii) the

analysis of crowd-seeking scenarios in contrast to the crowd-averse cases analyzed in this

paper.

Appendix

Proof of Theorem 1

Let us start by isolating the HJI part of (14). For fixed mt and for t ∈ [0, T ], we have















































−∂tv(x, y, t)−
{

y
[

− α(x− xon)
]

+ (1− y)
[

− β(x− xoff )
]}

∂xv(x, y, t)

+ supu∈R

{

−Bu ∂yv(x, y, t)−
1
2
qx2 + 1

2
uT ru+ y(Se+W )

}

= 0

in S×]0, T ],

v(x, y, T ) = Ψ(x) in S,

u∗(x, t) = −r−1BT∂yv(x, y, t)

(48)

which in a more compact form can be rewritten as



































−∂tv(X, t)− supu

{

∂Xv(X, t)T (AX +Bu+ C) + 1
2

(

XTQX

+uTRuT
)

+ LTX
}

= 0, in S × [0, T [,

v(X, T ) = g(x) in S,

u∗(x, t) = −r−1BT∂yv(X, t).

(49)

Let us consider the following value function

v(X, t) =
1

2
XTP (t)X +Ψ(t)TX + χ(t),

and the corresponding optimal closed-loop state feedback strategy

u∗ = −R−1BT [PX +Ψ].
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Then (48) can be rewritten as



































1
2
XT Ṗ (t)X + Ψ̇(t)X + χ̇(t) + (P (t)X +Ψ(t))T

[

−BR−1BT
]

(P (t)x+Ψ(t))

+(P (t)x+Ψ(t))T (AX + C) + 1
2

(

X(t)TQX(t) + u(t)TRu(t)T
)

+LTX(t) = 0 in S × [0, T [,

P (T ) = φ, Ψ(T ) = 0, χ(T ) = 0.

(50)

The boundary conditions are obtained by imposing that

v(x, T ) =
1

2
xTP (T )x+Ψ(T )x+ χ(T ) =

1

2
xTφx.

Since (50) is an identity in x, it reduces to three equations:































Ṗ + PA(x) + A(x)TP − PBR−1BTP +Q = 0 in [0, T [, P (T ) = φ,

Ψ̇ + A(x)TΨ+ PC − PBR−1BTΨ + L = 0 in [0, T [, Ψ(T ) = 0,

χ̇+ΨTC − 1
2
ΨTBR−1BTΨ = 0 in [0, T [, χ(T ) = 0.

(51)

To understand the influence of the congestion term on the value function, let us now

develop the expression for Ψ and obtain

[

Ψ̇1

Ψ̇2

]

+

[

−β 0

k(x(t)) 0

][

Ψ1

Ψ2

]

+

[

P11 P12

P21 P22

][

βxoff

0

]

−

[

P12(r
−1
on + r−1

off)Ψ2

P22(r
−1
on + r−1

off)Ψ2

]

+

[

0

Se+W

]

.

(52)

The expression of Ψ then can be rewritten as











Ψ̇1 − βΨ1 + P11βxoff − P12(r
−1
on + r−1

off )Ψ2 = 0,

Ψ̇2 + k(x(t))Ψ1 − P22(r
−1
on + r−1

off )Ψ2 + (Se+W ) = 0,

(53)

which is of the form










Ψ̇1 + aΨ1 + bΨ2 + c = 0,

Ψ̇2 + a′Ψ1 + b′Ψ2 + c′ = 0.

(54)
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From the above set of inequalities, we obtain the solution Ψ(x(t), e(t), t). Note that the

term a′ depends on x and c′ depends on e(t).

Substituting the expression of the mean-field equilibrium strategies u∗ = −R−1BT [PX+

Ψ] as in (20) in the open-loop microscopic dynamics Ẋ(t) = AX(t) + Bu(t) + C intro-

duced in (17), and averaging both LHS and RHS we obtain the following closed-loop

macroscopic dynamics

˙̄X(t) = [A(x)− BR−1BTP ]X̄(t)− BR−1BT Ψ̄(t) + C,

where Ψ̄(t) =
∫ xoff

xon

∫

[0,1]
Ψ(x, e, t)m(x, y, t)dxdy and this concludes our proof.

Proof of Corollary 1

Let X(t) be a solution of dynamics (21) with initial value X(0) 6∈ X . Set t = {inf t >

0|X(t) ∈ X} ≤ ∞. For all t ∈ [0, t]

V (X(t+ dt))− V (X(t)) = ‖X(t+ dt)−ΠX (X(t))‖ − ‖X(t)−ΠX (X(t))‖

= ‖X(t) + dX(t)− ΠX (X(t))‖ − ‖X(t)− ΠX (X(t))‖

= 1
‖X(t)+dX(t)−ΠX (X(t))‖

‖X(t) + dX(t)−ΠX (X(t))‖2

− 1
‖X(t)−ΠX (X(t))‖

‖X(t)−ΠX (X(t))‖2.

(55)

Taking the limit of the difference above we obtain

V̇ (X(t)) = limdt→0
V (X(t+dt))−V (X(t))

dt

= limdt→0
1
dt

[

1
‖X(t)+dX(t)−ΠX (X(t))‖

‖X(t) + dX(t)− ΠX (X(t))‖2

− 1
‖X(t)−ΠX (X(t))‖

‖X(t)−ΠX (X(t))‖2
]

≤ 1
‖X(t)−ΠX (X(t))‖

[

∂XV (X, t)T
(

[A−BR−1BTP ]X(t)

−BR−1BTΨ∗(x(t), e(t)) + C
)

+ ‖X(t)− ΠX (X(t))‖2
]

< 0,

(56)

which implies LV (X(t)) < 0, for all X(t) 6∈ X and this concludes our proof.

Proof of Theorem 2

This proof follows the same reasoning as the proof of Theorem 1. However, differently

from there, here for the quadratic terms in (26) we have

σ11(x)
2P11(t) + σ22(y)

2P22(t) = σ̂2
11x

2P11(t) + σ̂2
22y

2P22(t).
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Reviewing (26) as an identity in x, this leads to the following three equations to solve in

the variable P (t), Ψ(t), and χ(t):































Ṗ (t) + P (t)A+ ATP − PBR−1BTP +Q + P̃ = 0 in [0, T [, P (T ) = φ,

Ψ̇(t) + ATΨ+ PC − PBR−1BTΨ+ L = 0 in [0, T [, Ψ(T ) = 0,

χ̇(t) + Ψ(t)TC − 1
2
ΨTBR−1BTΨ = 0 in [0, T [, χ(T ) = 0,

(57)

where

P̃ = Diag((σ̂2
iiPii)i=1,2) =

[

σ̂2
11P11 0

0 σ̂2
22P22

]

. (58)

Proof of Corollary 2

Let X(t) be a solution of dynamics (32) with initial value X(0) 6∈ X . Set t = {inf t >

0|X(t) ∈ X} ≤ ∞ and let V (X(t)) = dist(X(t),X ). For all t ∈ [0, t]

V (X(t+ dt))− V (X(t)) = ‖X(t+ dt)−ΠX (X(t))‖ − ‖X(t)−ΠX (X(t))‖

= ‖X(t) + dX(t)− ΠX (X(t))‖ − ‖X(t)− ΠX (X(t))‖

= 1
‖X(t)+dX(t)−ΠX (X(t))‖

‖X(t) + dX(t)−ΠX (X(t))‖2−
1

‖X(t)−ΠX (X(t))‖
‖X(t)− ΠX (X(t))‖2.

(59)

From the definition of infinitesimal generator

LV (X(t)) = limdt→0
EV (X(t+dt))−V (X(t))

dt

= limdt→0
1
dt

[

E

(

1
‖X(t)+dX(t)−ΠX (X(t))‖

‖X(t) + dX(t)−ΠX (X(t))‖2
)

− 1
‖X(t)−ΠX (X(t))‖

‖X(t)− ΠX (X(t))‖2
]

≤ 1
‖X(t)−ΠX (X(t))‖

[

∂XV (X, t)T
(

[A− BR−1BTP ]X(t)

−BR−1BTΨ∗(x(t), e(t)) + C
)

+1
2
(σ2

11(x)∂xxV (X, t) + σ2
22(y)∂yyV (X, t))

]

.

(60)

From (33) the above implies that LV (X(t)) < 0, for all X(t) 6∈ M and this concludes

our proof.
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Proof of Theorem 3

From (34), in the HJB equation (26) we now have constant terms

1

2

2
∑

i=1

σii(.)
2Pii(t) = σ̂2

11P11(t) + σ̂2
22P22(t).

Again, since the HJB equation (26) is an identity in x, it reduces to three equations:































Ṗ (t) + P (t)A+ ATP − PBR−1BTP +Q = 0 in [0, T [, P (T ) = φ,

Ψ̇(t) + ATΨ+ PC − PBR−1BTΨ + L = 0 in [0, T [, Ψ(T ) = 0,

χ̇(t) + Ψ(t)TC − 1
2
ΨTBR−1BTΨ+ P̃ = 0 in [0, T [, χ(T ) = 0,

(61)

where

P̃ =

[

σ̂2
11 0

0 σ̂2
22

]

. (62)

Substituting the expression of the mean-field equilibrium strategy u∗ = −R−1BT [PX+

Ψ] as in (38) in the open-loop microscopic dynamics dX(t) = (AX(t)+Bu(t)+C)dt+ΣdBt

given in (23) and averaging both LHS and RHS we obtain the following closed-loop

macroscopic dynamics

˙̄X(t) = [A−BR−1BTP ]X̄(t)−BR−1BTΨ∗(X̄(t)) + C,

and this concludes our proof.

7.1 Proof of Corollary 3

Let X(t) be a solution of dynamics (39) with initial value X(0) 6∈ X . Set t = {inf t >

0|X(t) ∈ X} ≤ ∞ and let V (X(t)) = dist(X(t),X ). For all t ∈ [0, t]

V (X(t+ dt))− V (X(t)) = ‖X(t+ dt)−ΠX (X(t))‖ − ‖X(t)−ΠX (X(t))‖

= ‖X(t) + dX(t)− ΠX (X(t))‖ − ‖X(t)− ΠX (X(t))‖

= 1
‖X(t)+dX(t)−ΠX (X(t))‖

‖X(t) + dX(t)−ΠX (X(t))‖2−
1

‖X(t)−ΠX (X(t))‖
‖X(t)− ΠX (X(t))‖2

(63)
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From the definition of infinitesimal generator

LV (X(t)) = limdt→0
EV (X(t+dt))−V (X(t))

dt

= limdt→0
1
dt

[

E

(

1
‖X(t)+dX(t)−ΠX (X(t))‖

‖X(t) + dX(t)−ΠX (X(t))‖2
)

− 1
‖X(t)−ΠX (X(t))‖

‖X(t)− ΠX (X(t))‖2
]

≤ 1
‖X(t)−ΠX (X(t))‖

[

∂XV (X, t)T
(

[A− BR−1BTP ]X(t)

−BR−1BTΨ∗(x(t), e(t)) + C
)

+1
2
(σ̂2

11∂xxV (X, t) + σ̂2
22∂yyV (X, t))

]

.

(64)

From (40) the above implies that LV (X(t)) < 0, for all X(t) 6∈ M and this concludes

our proof.

Proof of Theorem 4

Isolating the HJI equation in (14), we have



























−∂tVt(X)− supu infw

{

∂XVt(X)T (AX +Bu+ C +Dw) + 1
2

(

X(t)TQX(t)

+u(t)TRu(t)− γ2w(t)Tw(t)
)

+ LTX(t)
}

= 0, in S × [0, T [,

VT (X) = g(x) in S.

(65)

Let us consider the following value function

v(X, t) =
1

2
XTP (t)X +Ψ(t)TX + χ(t),

and the corresponding mean-field equilibrium control and worst-case disturbance

u∗ = −R−1BT [PX +Ψ],

w∗ = 1
γ2D

T [PX +Ψ].
(66)

so that (65) can be rewritten as

31





































1
2
XT Ṗ (t)X + Ψ̇(t)X + χ̇(t) + (P (t)X +Ψ(t))T

[

− BR−1BT + 1
γ2DDT

]

(P (t)x+Ψ(t))

+(P (t)x+Ψ(t))T (AX + C) + 1
2

(

X(t)TQX(t) + u(t)TRu(t)− γ2w(t)Tw(t)
)

+LTX(t) + 1
2

∑2
i=1 σii(.)

2Pii(t) = 0 in R
2 × [0, T [,

P (T ) = φ, Ψ(T ) = 0, χ(T ) = 0.

(67)

The boundary conditions are obtained by imposing that

v(X, T ) =
1

2
XTP (T )X +Ψ(T )X + χ(T ) =

1

2
XTφX.

The above set of identities in x yields the following three equations in the variable P (t),

Ψ(t), and χ(t):































Ṗ (t) + P (t)A+ ATP + P (−BR−1BT + 1
γ2DDT )P +Q = 0 in [0, T [, P (T ) = φ,

Ψ̇(t) + ATΨ+ PC + (−BR−1BT + 1
γ2DDT )Ψ + L = 0 in [0, T [, Ψ(T ) = 0,

χ̇(t) + Ψ(t)TC + 1
2
ΨT (−BR−1BT + 1

γ2DDT )Ψ = 0 in [0, T [, χ(T ) = 0.

(68)

Substituting the expressions of the mean-field equilibrium strategies u∗ = −R−1BT [PX+

Ψ] and w∗ = 1
γ2D

T [PX + Ψ] as in (44) in the open-loop microscopic dynamics Ẋ(t) =

AX(t) +Bu(t) + C introduced in (41), and averaging both LHS and RHS we obtain the

following closed-loop macroscopic dynamics

˙̄X(t) = [A+ (−BR−1BT +
1

γ2
DDT )P ]X̄(t) + (−BR−1BT +

1

γ2
DDT )Ψ∗(X̄(t)) + C,

and this concludes our proof.
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Proof of Corollary 4

Let X(t) be a solution of dynamics (45) with initial value X(0) 6= X . Set t = {inf t >

0|X(t) ∈ X} ≤ ∞ and let V (X(t)) = dist(X(t),X ). For all t ∈ [0, t]

V (X(t+ dt))− V (X(t)) = ‖X(t+ dt)−ΠX (X(t))‖ − ‖X(t)−ΠX (X(t))‖

= ‖X(t) + dX(t)− ΠX (X(t))‖ − ‖X(t)− ΠX (X(t))‖

= 1
‖X(t)+dX(t)−ΠX (X(t))‖

‖X(t) + dX(t)−ΠX (X(t))‖2

− 1
‖X(t)−ΠX (X(t))‖

‖X(t)−ΠX (X(t))‖2.

(69)

From the definition of infinitesimal generator

V̇ (X(t)) = limdt→0
V (X(t+dt))−V (X(t))

dt

= limdt→0
1
dt

[

1
‖X(t)+dX(t)−ΠX (X(t))‖

‖X(t) + dX(t)− ΠX (X(t))‖2

≤ 1
‖X(t)−ΠX (X(t))‖

[

∂XV (X, t)T
(

[A+ (−BR−1BT + 1
γ2DDT )P ]X(t)

+(−BR−1BT + 1
γ2DDT )Ψ∗(x(t), e(t)) + C

)

≤ 0

(70)

which implies LV (ρ(t)) < 0, for all X(t) 6= X and this concludes our proof.
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