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Abstract— This paper studies opinion dynamics in a large
number of homogeneous coalitional games with transfer-
able utilities (TU), where the characteristic function is a
continuous-time stochastic process. For each game, which we
can see as a “small world”, the players share opinions on
how to allocate revenues based on the mean-field interactions
with the other small worlds. As a result of such mean-field
interactions among small worlds, in each game, a central
planner allocates revenues based on the extra reward that a
coalition has received up to the current time and the extra
reward that the same coalition has received in the other
games. The paper also studies the convergence and stability
of opinions on allocations via stochastic stability theory.

I. INTRODUCTION

This paper considers a large number of the same copy
of a coalitional game with transferable utilities (TU game).
Each single game has a game designer who allocates
rewards or revenues based on the excesses of each coali-
tion. In a continuous-time repeated game, the excess of a
coalition is the cumulative deviation of the total amount
given to the coalition from the value of the coalition up to
the current time. The ultimate goal of the game designer
is to stabilize the grand coalition. This occurs when the
total revenue assigned to all members of any sub-coalition
is greater than the value of the sub-coalition itself (see the
notion of “core” in [18]).

The coalition’s values are time varying and thus the
excesses evolve according to controlled uncertain stochas-
tic differential equations. The objective of the game de-
signer is to align the excesses with the average value
computed over the infinite copies of the same game.
Such a phenomenon is known as crowd-seeking behavior
in mean-field games and mirrors a typical attitude in
macroeconomics known as inequity aversion.
Main result. For the problem at hand, we provide a mean-
field game formulation and conduct a heuristic robust
control design based on augmentation and regularization
of the state space [9]. The mean-field game involves
a macroscopic description based on a classical forward
Kolmogorov partial differential equation which generates
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the distribution of the excesses over the horizon. Further-
more, we perform a stability analysis on the microscopic
dynamics of the excesses as well as on the average
excess. According to this analysis the stochastic processes
describing the excesses are mean square bounded.
Related literature. Coalitional games with transferable
utilities (TU), introduced first by Von Neuman and Mor-
genstern [18], have recently sparked much interest in the
control and communication engineering communities [16].
In essence, coalitional TU games are comprised of a set
of players who can form coalitions and a characteristic
function associating a real number with every coalition.
This real number represents the value of the coalition
and can be thought of as a monetary value that can be
distributed among the members of the coalition according
to some appropriate fairness allocation rule. The value of
a coalition also reflects the monetary benefit demanded by
that coalition to be a part of the grand coalition. In the
context of coalitional TU games, robustness and dynamics
naturally arise in all the situations where the coalition
values are uncertain and time-varying, see e.g., [6], [7],
[15].

We also link the approach to the set invariance theory
[3] and stochastic stability theory [1], [10], [14], which
provides us some useful tools for stability analysis.

The theory on mean-field games originated in the work
of M.Y. Huang, P. E. Caines and R. Malhamé [11], [12]
and independently in that of J. M. Lasry and P.L. Lions
[13], where the now standard terminology of Mean Field
Game (MFG) was introduced (see also [17]). The problem
we analyze in this paper follows in spirit the study on
robust dynamical TU coalitional games in [8] with the
additional mean-field interactions between infinite copies
of the same game, which was not present in [8]. Explicit
solutions in terms of mean-field equilibria are not common
unless the problem has a linear-quadratic structure, see [2].
This justifies our solution approach which approximates
the original problem by an augmented linear quadratic
one.

The rest of the paper is organized as follows. In
Section II, we introduce the problem and the model. In
Section III, we present the mean-field game. In Section IV,
we describe the solution approach. In Section V, we per-
form numerical analysis. Finally, in Section VI, we draw
some conclusions and discuss possible future directions.
Notation. Given a set N = {1, . . . , n} of players and
a function η : S 7→ R defined for each nonempty
coalition S ⊆ N , we write < N, η > to denote the
transferable utility (TU) game with players’ set N and



characteristic function η. We let ηS be the value η(S) of
the characteristic function η associated with a nonempty
coalition S ⊆ N . Given a TU game < N, η >, we use
C(η) to denote the core of the game:

C(η) =
{
x ∈ Rn

∣∣∣ ∑i∈N xi = ηN ,
∑
i∈S xi ≥ ηS

for all nonempty S ⊂ N
}
.

Also, R+ denotes the set of nonnegative real numbers.
Given a random vector ξ, the notation E[ξ] denotes its
expected value. Given a Brownian motion (with drift)
B(t), we denote by dB(t) its infinitesimal increment, i.e.,
B(t) =

∫ t
0
dB(τ), the latter being the Itô integral. We use

B̄(t) = B(t)
t to indicate the average infinitesimal up to

time t. If a(t) is the derivative of an almost everywhere
differentiable function, the symbol ã(t) denotes the func-
tion itself, i.e., ã(t) =

∫ t
0
a(τ)dτ . We also use ā(t) = ã(t)

t
to indicate the average up to time t.

II. TU GAMES AS NETWORKS

We consider a large number of replicas of a single coali-
tional game. The game is an n-player robust dynamical
TU game < N, η(t) >, where η(t) is the characteristic
function representing the values of different coalitions.
The characteristic function is modeled as a diffusion
process with drift, and its evolution is described by the
stochastic differential equation:{

dη(t) = w(t)dt− σdB(t), in Rq,
η(0) = η0,

(1)

where q = 2n−1 is the number of coalitions. The model
admits a network representation. For each game, let H
be a corresponding hypergraph involving the vertex set V
and edge set E, namely:

H := {V,E}, V = {v1, . . . ,vq}, E := {e1, . . . , en}.

In other words, the vertex set V has one vertex per
coalition whereas the edge set E has one edge per player.
The incidence relations establish that a generic edge i is
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Fig. 1. Infinite copies of hypergraph H := {V,E} for a 3-player
coalitional game.

incident to a vertex vj if the player i is a member of the

the coalition linked to vj . The hypergraph can then be
described by an incidence matrix B whose rows are the
characteristic vectors cS ∈ Rn. The characteristic vectors
are in turn binary vectors where cSi = 1 if i ∈ S and
cSi = 0 if i /∈ S. Figure 1 depicts an example of a
hypergraph for a 3-player coalitional game on every single
grey node. Following the same approach as in [8], the
allocation ui(t) is represented by the flow on edge ei
and the coalition value wS(t) of a generic coalition S is
the demand in the corresponding vertex vj . It is apparent
then that any allocation in the core of the game C(η(t))
translates into over-satisfying the demand at the vertices.
In particular, we have

ũ(t) ∈ C(η(t)) ⇔ BHũ(t) ≥ η(t), (2)

where the last inequality is satisfied with equality due to
the efficiency condition of the core, i.e,

∑n
i=1 ũi(t) =

ηq(t), where ηq(t) denotes the qth component of η(t) and
is equal to the grand coalition value ηN (t). Denote by
x(t) ∈ Rq the coalition excess; then we can describe the
time evolution of x(t) through the following stochastic
differential equation:{

dx(t) = (Bu(t)− w(t))dt+ σdB(t),
x(0) = x0.

(3)

In essence, every component of vector Bu(t) is the total
amount given to the members of a coalition at time t,
and from this amount the value of the coalition itself,
w(t), is subtracted. Then, a positive x(t) means positive
cumulative excess. In a first scenario we assume that
controls and disturbances are unbounded. In a second
scenario we will hypothesize that the control and the
disturbances are bounded within polytopes, i.e.,
• u(t) is in the control set U ⊆ Rn, n > 0,

U := {u ∈ Rn|u−i ≤ u ≤ u
+
i }, (4)

where u−i ≤ u
+
i , u

−
i , u

+
i ∈ Rn;

• w(t) is in the disturbance set W ⊆ Rq , q > 0,

W := {w ∈ Rq|w−i ≤ w ≤ w
+
i }, (5)

where w−i ≤ w
+
i , w

−
i , w

+
i ∈ Rq .

With the above preamble in mind, and given the infinite
copies of the same game, we can derive a probability
density function m : Rq × [0,+∞[→ [0,+∞[, (x, t) 7→
m(x, t), for which

∫
Rq m(x, t)dx = 1 for every time

t. We also denote the mean distribution at time t by
m̄(t) :=

∫
Rq xm(x, t)dx.

In the spirit of inequity aversion, the designer of each
game follows a so-called crowd-seeking law in that it read-
justs the allocations by targeting the average distribution
of the other games.

This is captured by considering a running cost g : Rq×
Rq × Rn × Rq → [0,+∞[, (x, m̄, u, w) 7→ g(x, m̄, u, w)
of the quadratic form:

g(x, m̄, u, w) = 1
2

[
(m̄− x)

T
Q (m̄− x)

+uT (t)Ru(t)− wT (t)Γw(t)
]
,

(6)



where Q,R,Γ > 0, that is positive definite.
We also take as terminal cost the function Ψ : Rq ×

Rq → [0,+∞[, (x, m̄) 7→ Ψ(x, m̄) of the form

Ψ(x, m̄) =
1

2
(m̄− x)TS(m̄− x), (7)

where S > 0. We are then ready to formalize the problem
at hand as follows.

Problem 1: Find the closed-loop optimal control and
worst-case disturbance for the problem:

infu(·)∈U supw(·)∈W

{
J(x0, u(·), w(·),m(·))

= E
[ ∫ T

0
g(x, m̄, u, w)dt+ Ψ(x(T ), m̄(T ))

]}
,

dx(t) = (Bu(t)− w(t))dt− σdB(t),
(8)

where U and W are the sets of all measurable functions
u(·) and w(·) from [0,+∞[ to U and W , respectively, and
m(·) as a time-dependent function is the evolution of the
distribution under the optimal control and the worst-case
disturbance.

Note that the problem formulation includes the cases of
both bounded and unbounded controls and disturbances.

III. THE MEAN–FIELD GAME

Let us denote by v(x, t) the (upper) value of the
robust optimization problem under worst-case disturbance
starting from time t at state x (which in this case also
turns out to be the lower value, and hence the value, since
Isaacs condition [3] holds–see below). Problem 1 results
in the following mean-field game system for the unknown
functions v(x, t), and m(x, t):

∂tv(x, t) + inf
u∈U

sup
w∈W

{
(Bu− w)T∂xv(x, t)

+g(x, m̄, u, w)
}

+ σ2

2 Tr
(
∂2xxv(x, t)

)
= 0

in Rq × [0, T [,
v(x, T ) = Ψ(x, m̄) ∀ x ∈ Rq,

∂tm(x, t) + div(m(x, t) · (Bu− w))

−σ
2

2 Tr(∂
2
xxm(x, t)) = 0, in Rq × [0, T [,

m(0) = m0,
d
dtm̄t = Bū∗t − w̄∗t , in [0, T [,

(9)
where u∗(t, x) and w∗(t, x) are the optimal time-varying
state-feedback controls and disturbances, respectively, ob-
tained as

u∗(t, x) ∈ arg minu∈U{(Bu− w∗)∂xv(x, t)
+g(x, m̄, u, w∗)},

w∗(t, x) ∈ arg maxw∈W {(Bu− w)∂xv(x, t)
+g(x, m̄, u∗, w)}.

(10)

Note that the minimization and maximization problems
above are completely decoupled, and hence in (9) the
inf sup is the same as sup inf (that is, Isaacs condition
holds [3]). Further, we have replaced inf and sup in (10)
with min and max, respectively, since g is quadratic in u
and w.

The first equation in (9) is the Hamilton-Jacobi-Isaacs
(HJI) equation with variable v(x, t). Given the boundary
condition on final state (second equation in (9)), and
assuming a given population behavior captured by m(·),
the HJI equation is solved backwards and returns the value
function and best-response behavior of the individuals
(first equation in (10)) as well as the worst adversarial
response (second equation in (10)). The HJI equation is
coupled with a second PDE, known as the Fokker-Planck-
Kolmogorov (FPK) equation (third equation in (9)), de-
fined on variable m(·). Given the boundary condition
on initial distribution m(0) = m0 (fourth equation in
(9)), and assuming a given individual behavior described
by u∗, the FPK equation is solved forward and returns
the population behavior time evolution m(t). The last
equation in (9) is obtained by averaging the left and right
hand sides of the dynamics (3). Any solution of the above
system of equations along with (10) is referred to as worst-
disturbance feedback mean-field equilibrium.

Remark 1: (On the existence of solutions) Analyzing
the existence of solutions for the mean-field system (9)
is a challenging task. However, under some restrictive
sufficient conditions existence of classical solutions can
be established using a fixed-point theorem argument as in
[13]. Indeed, let us assume that the initial measure m0 is
absolutely continuous with a continuous density function
with finite second moment. In this case, we note that the
running cost is convex in u. With these conditions, the
existence of solution is established in Theorem 2.6 in [13].

Remark 2: (On connections with the finite case) As the
cost is Lipschitz continuous on m (given that the control is
bounded), the solution to the asymptotic case with infinite
number of players relates to the case with a finite number
of players as established in [12], [13]. In particular the
classical bound of 1√

N
holds true where N is the number

of games.

IV. AUGMENTATION

This section describes a simple heuristic approach to-
ward solving the set of equations (9)), based on state space
augmentation [9]. The augmented state space includes the
mean distribution, and thus the augmented state variables
evolve according to the equations[

dx(t)
dm̄(t)

]
=
(
B

[
u∗(x, t)
ū∗(t)

]
−
[
w∗(x, t)
w̄∗(t)

])
dt+

[
σdBt

0

]
.

(11)

For this system we introduce an assumption on the rate
of convergence of the state m̄(t).

Assumption 1: There exists a scalar θ > 0 such that

d

dt
m̄(t) = Bū∗(t)− w̄∗(t) ≥ −θm̄t, for all t ∈ [0, T ] ,

where the inequality is to be interpreted component-wise.

The above assumption implies that there exists a vari-
able m̃(t) which approximates the average mean value



from below and evolves according to{
d
dtm̃(t) = −θm̃(t), for all t ∈ [0, T ],
m̃0 = m̄0.

(12)

As a result, each single game is described by the
dynamical closed-loop system depicted in Fig. 2. The
block at the top represents the state dynamics (3), it
receives as input the control u(t), and the disturbances
w(t) and B(t). The block on the right includes the internal
model for m̃ as in (12) from which we obtain the error
e(t) := m̃(t) − x(t). The block at the bottom describes
the closed-loop state feedback control obtained solving
the linear quadratic tracking problem. The resulting linear
quadratic problem is detailed next.

dx(t) = (Bu(t)

−w(t))dt+ σdB(t)

w(t),B(t)

u(t)

φ(e(t))

e(t) = m̃(t)− x(t)

˙̃m(t) = −θm̃(t)

Fig. 2. The dynamical closed-loop system of each single game

By substituting the current mean value m̄(t) by its esti-
mate m̃(t) the augmented problem becomes

inf
u(·)∈U

sup
w(·)∈W

∫ T

0

1

2

[
(m̃(t)− x(t))

T
Q (m̃(t)− x(t))

+uT (t)Ru(t)− wT (t)Γw(t)
]
dt

[
dx(t)
dm̃(t)

]
=
([

0 0
0 −θI

] [
x(t)
m̃(t)

]
+

[
B
0

]
u(t)

−
[
I
0

]
w(t)

)
dt+

[
σdB(t)

0

]
.

Reformulating the problem in terms of the augmented
state

X(t) =

[
x(t)
m̃(t)

]
,

we have the linear quadratic problem:

inf
u(·)∈U

sup
w(·)∈W

∫ T

0

[1

2
(X(t)T Q̃X(t) + uT (t)Ru(t)

−wT (t)Γw(t))
]
dt+ Ψ̃(X(T ))

dX(t) =
(
FX(t) +Gu(t) +Hw(t)

)
dt+ LdBt,

where

Q̃ =

[
Q −Q
−Q Q

]
, L =

[
σI
0

]
,

F =

[
0 0
0 −θI

]
, G =

[
B
0

]
, H =

[
−I
0

]
,

R > 0, Γ > 0, and Ψ̃(X) := Ψ(x, m̃).
The idea is therefore to consider a new value function
Vt(x, m̃) (in compact form Vt(X)) in the augmented state
space, which satisfies

∂tVt(X) +H(X, ∂XVt(X))
+ 1

2σ
2Tr∂2xxVt(X) = 0, in R2q × [0, T [,

VT (X) = Ψ̃(X) in R2q,

where H(X, ∂XVt(X)) is the robust Hamiltonian [5]:

H(X, ∂XVt(X)) = 1
2 X

T Q̃X + ∂XVt(X)FX
− 1

2 ∂XVt(X)[GR−1GT −HΓ−1HT ](∂XVt(X))T .

This PDE admits the unique solution given by

Vt(X) =
1

2
X(t)T

[
P11(t) P12(t)
P12(t)T P22(t)

]
︸ ︷︷ ︸

P (t)

X(t) +
1

2
p(t),

where the symmetric matrix P (t) satisfies (is the unique
nonnegative-definite solution of) the generalized (game)
Riccati differential equation

Ṗ (t) + P (t)F + FTP (t)

−P (t)(GR−1GT −HΓ−1HT )P (t) + Q̃ = 0 ,

P (T ) =

[
S −S
−S S

]
,

(13)

and p(·) is solved from

ṗ(t) + σ2 TrP (t) , p(T ) = 0 .

Then, the corresponding optimal control is given by

ũ(t) = −R−1GTP (t)X(t)
= −R−1BT (P11(t)x(t) + P12(t)m̄(t)),

(14)

and the worst-case disturbance is given by

w̃(t) = Γ−1HTPX(t)
= −Γ−1(P11(t)x(t) + P12(t)m̄(t)).

(15)

A. Bounded controls and disturbances
Consider now a second scenario where both controls

and disturbances are bounded. Let us introduce the sat
function as in [4]:

sat[u−
i ,u

+
i ]{ξ}

.
=


u−i if ξ < u−i
u+i if ξ > u+i
ξ if u−i ≤ ξ ≤ u

+
i

,

where u−i and u+i are, respectively, the lower and upper
bounds on ui. Then a sub-optimal control is given by

ũ(t) = sat
{
−R−1GTP (t)X(t)

}
= sat

{
−R−1BT (P11(t)x(t) + P12(t)m̄(t))

}
,

and the worst-case disturbance can be approximated by

w̃(t) = sat
{

Γ−1HTPX(t)
}

= sat
{
− Γ−1(P11(t)x(t) + P12(t)m̄(t))

}
.

The underlying idea of the approximation above is to con-
sider the solution of the soft-constrained linear quadratic
problem when the hard constraints are not active, while
saturating every single component as soon as it reaches
its upper or lower bounds.



B. Asymptotic stability and mean-field equilibrium

Using the optimal control and worst-case disturbance
(14)-(15) in the SDE (3) we obtain

dx(t) = (−R−1BT − Γ−1)P11(t)x(t)
+ (−R−1BT − Γ−1)P12(t)m̄(t)

+σdB(t), t ∈ (0, T ], x0 ∈ R.
(16)

Assumption 2: There exists κ > 0 such that

−κx(t) ≥ (−R−1BT − Γ−1)P11(t)x(t)
+ (−R−1BT − Γ−1)P12(t)m̄(t)

(17)

Under the above assumption, the SDE is linear and
time-varying and the corresponding stochastic process can
be analyzed in the context of stochastic stability theory
[14].

Definition 1 (cf. Definition (11.3.1) in [1]): (stability
in pth moment) The equilibrium solution of a stochastic
process ξ(t) is said to be stable in pth moment, p > 0,
if given ε > 0, there exists a δ(ε, t0) > 0 so that
‖x(0)‖ ≤ δ guarantees that

E{sup
t≥t0
‖x(t)‖p < ε}.

When p = 1 or 2 we speak of stability in mean or in
mean square respectively.

Theorem 1: The stochastic process (16) describing the
time evolution of the excesses is mean square stable.

Proof: Let us consider as Lyapunov function the
quadratic function V (x) = x2 and observe that V (x) ≥ 0,
V (0) = 0.

In addition to this, let the infinitesimal generator be

L =
1

2
σ2 d

2

dx2
− κx(t)

d

dx
. (18)

We recall that for a Brownian motion we have EdBt = 0
and EdB2t = dt and dropping the second-order terms (in
dt2) one obtains (18).

Then the stochastic derivative of V (x) can be obtained
by applying the infinitesimal generator to V (x), which
yields

LV (x(t)) = lim
dt→0

EV (x(t+ dt))− V (x(t))

dt
= σ2 − 2κx2(t).

Then we have that LV (x) ≤ 0 on Qε := {x : V (x) ≥
ε} for some ε > 0. Hence the 2nd moment is bounded
and the process is mean square stable.
The interpretation of the above result is that the variance
of the excesses in each game is bounded.

C. Mean-field equilibrium

We can approximate the mean-field equilibrium, which
is captured by the evolution of m̄t over the horizon (0, T ],
as

d
dtm̄t = ((−R−1BT − Γ−1)P11(t)

∫
x(t)dm

+(−R−1BT − Γ−1)P12(t)m̄(t)
= (−R−1BT − Γ−1)(P11(t) + P12)m̄t

t ∈ (0, T ], x0 ∈ R.

Actually, we can derive an expression based on the matrix
exponential eρt describing the evolution of the mean
distribution which represents a bound, namely{

m̄t = m̄0e
ρt

ρ = (−R−1BT − Γ−1)(P11(t) + P12).

The equation above corresponds to saying that the mean
distribution converges exponentially to zero in the absence
of the stochastic disturbances (the Brownian motion).

V. SIMULATIONS

In this section we provide simulations of a game with
three players. Matrix B ∈ {0, 1}7×3 takes the form

BT =

 1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

 .
step size horizon length σ θ

0.1 500 0.01 0.01

TABLE I
SIMULATIONS DATA

Given that (3) is an overdetermined system, where B
is a tall matrix, we take the error as

e(t) = m(t)− x(t)

and calculate the least square approximation as

els(t) = (BTB)−1BT e(t).

We simulate (3) using the discrete-time expression

x(t+ dt) = x(t) + (Bu)dt+ σ(B(t+ dt)− B(t)) (19)

where the control u(t) = els(t), the step size dt = 0.1
and σ = 0.01. The initial state is randomly selected, and
in this specific example takes the value

x(0) = [1 3 2 3 2 5 4],

while for the initial average distribution we take

m̄(0) = [10 20 50 30 20 50 40].

We also approximate the time evolution of the average
(12) by using the discrete-time expression{

m̃(t+ dt) = m̃(t)− θm̃(t)dt, for all t ∈ [0, T ],
m̃0 = m̄0.

where θ = 0.01.
The temporal evolution of the state is depicted in

Figure 3. As to be expected, the state converges to a
neighborhood of the origin. For a second scenario we
take θ = 0, which implies that the average m̄ is constant
and simulate the state evolution in absence of disturbance
(σ = 0). The resulting time-plot is depicted in Fig. 4.
We observe that the state converges to the least squares
approximation of m̄(0).



Algorithm

Input: Set of parameters as in Table I.
Output: State trajectory x(t)

1 : Initialize. Generate x0 and m̄0

2 : for time t = 0, 1, . . . , T − 1 do
3 : if t > 0, then compute m̄t

4 : end if
5 : compute least-square error els(t),
6 : compute new state x(t+ 1) by executing (19)
7 : end for
12 : STOP
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Fig. 3. First simulation scenario: time plot of state x(t).

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have provided a mean-field game formulation of
infinite copies of “small worlds”, each one described as
a TU coalitional game. The problem has connections to
recent research on robust dynamic coalitional TU games
[8] and robust mean-field games [5], [9]. A quantitative
analysis of the approximation error of the solution pre-
sented is left as future work.
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game theory for communication networks: A tutorial”, IEEE Signal
Processing Magazine, Special Issue on Game Theory, vol. 26, no.
5, pp. 77–97 (2009).

[17] G. Y. Weintraub, C. Benkard, and B. Van Roy, Oblivious Equi-
librium: A Mean Field Approximation for Large-Scale Dynamic
Games, Advances in Neural Information Processing Systems, MIT
Press (2005).

[18] J. von Neumann, O. Morgenstern, Theory of Games and Economic
Behavior, Princeton Univ. Press. (1944).


	Introduction
	TU games as networks
	The mean–field game
	Augmentation
	Bounded controls and disturbances
	Asymptotic stability and mean-field equilibrium
	Mean-field equilibrium

	Simulations
	Conclusions and future directions
	References

